Spaces:
Running
Running
# memory.py | |
import re, time, hashlib, asyncio, os | |
from collections import defaultdict, deque | |
from typing import List, Dict | |
import numpy as np | |
import faiss | |
from sentence_transformers import SentenceTransformer | |
from google import genai # must be configured in app.py and imported globally | |
import logging | |
_LLM_SMALL = "gemini-2.5-flash-lite-preview-06-17" | |
# Load embedding model | |
EMBED = SentenceTransformer("/app/model_cache", device="cpu").half() | |
logger = logging.getLogger("rag-agent") | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s — %(name)s — %(levelname)s — %(message)s", force=True) # Change INFO to DEBUG for full-ctx JSON loader | |
api_key = os.getenv("FlashAPI") | |
client = genai.Client(api_key=api_key) | |
class MemoryManager: | |
def __init__(self, max_users=1000, history_per_user=10, max_chunks=30): | |
self.text_cache = defaultdict(lambda: deque(maxlen=history_per_user)) | |
self.chunk_index = defaultdict(self._new_index) # user_id -> faiss index | |
self.chunk_meta = defaultdict(list) # '' -> list[{text,tag}] | |
self.user_queue = deque(maxlen=max_users) # LRU of users | |
self.max_chunks = max_chunks # hard cap per user | |
self.chunk_cache = {} # hash(query+resp) -> [chunks] | |
# ---------- Public API ---------- | |
def add_exchange(self, user_id: str, query: str, response: str, lang: str = "EN"): | |
self._touch_user(user_id) | |
self.text_cache[user_id].append(((query or "").strip(), (response or "").strip())) | |
if not response: return [] | |
# Avoid re-chunking identical response | |
cache_key = hashlib.md5((query + response).encode()).hexdigest() | |
if cache_key in self.chunk_cache: | |
chunks = self.chunk_cache[cache_key] | |
else: | |
chunks = self.chunk_response(response, lang) | |
self.chunk_cache[cache_key] = chunks | |
text_set = set(c["text"] for c in self.chunk_meta[user_id]) # Set list of metadata for deduplication | |
# Store chunks → faiss | |
for chunk in chunks: | |
if chunk["text"] in text_set: | |
continue # skip duplicate | |
vec = self._embed(chunk["text"]) | |
self.chunk_index[user_id].add(np.array([vec])) | |
# Store each chunk’s vector once and reuse it | |
chunk_with_vec = { | |
**chunk, | |
"vec": vec, | |
"timestamp": time.time(), # store creation time | |
"used": 0 # track usage | |
} | |
self.chunk_meta[user_id].append(chunk_with_vec) | |
# Trim to max_chunks to keep latency O(1) | |
if len(self.chunk_meta[user_id]) > self.max_chunks: | |
self._rebuild_index(user_id, keep_last=self.max_chunks) | |
def get_relevant_chunks(self, user_id: str, query: str, top_k: int = 3, min_sim: float = 0.30) -> List[str]: | |
"""Return texts of chunks whose cosine similarity ≥ min_sim.""" | |
if self.chunk_index[user_id].ntotal == 0: | |
return [] | |
# Encode chunk | |
qvec = self._embed(query) | |
sims, idxs = self.chunk_index[user_id].search(np.array([qvec]), k=top_k) | |
results = [] | |
# Append related result with smart-decay to optimize storage and prioritize most-recent chat | |
for sim, idx in zip(sims[0], idxs[0]): | |
if idx < len(self.chunk_meta[user_id]) and sim >= min_sim: | |
chunk = self.chunk_meta[user_id][idx] | |
chunk["used"] += 1 # increment usage | |
# Decay function (you can tweak) | |
age_sec = time.time() - chunk["timestamp"] | |
decay = 1.0 / (1.0 + age_sec / 300) # 5-min half-life | |
score = sim * decay * (1 + 0.1 * chunk["used"]) | |
# Append chunk with score | |
results.append((score, chunk)) | |
# Sort result on best scored | |
results.sort(key=lambda x: x[0], reverse=True) | |
# logger.info(f"[Memory] RAG Retrieved Topic: {results}") # Inspect vector data | |
return [f"### Topic: {c['tag']}\n{c['text']}" for _, c in results] | |
def get_context(self, user_id: str, num_turns: int = 3) -> str: | |
history = list(self.text_cache.get(user_id, []))[-num_turns:] | |
return "\n".join(f"User: {q}\nBot: {r}" for q, r in history) | |
def reset(self, user_id: str): | |
self._drop_user(user_id) | |
# ---------- Internal helpers ---------- | |
def _touch_user(self, user_id: str): | |
if user_id not in self.text_cache and len(self.user_queue) >= self.user_queue.maxlen: | |
self._drop_user(self.user_queue.popleft()) | |
if user_id in self.user_queue: | |
self.user_queue.remove(user_id) | |
self.user_queue.append(user_id) | |
def _drop_user(self, user_id: str): | |
self.text_cache.pop(user_id, None) | |
self.chunk_index.pop(user_id, None) | |
self.chunk_meta.pop(user_id, None) | |
if user_id in self.user_queue: | |
self.user_queue.remove(user_id) | |
def _rebuild_index(self, user_id: str, keep_last: int): | |
"""Trim chunk list + rebuild FAISS index for user.""" | |
self.chunk_meta[user_id] = self.chunk_meta[user_id][-keep_last:] | |
index = self._new_index() | |
# Store each chunk’s vector once and reuse it. | |
for chunk in self.chunk_meta[user_id]: | |
index.add(np.array([chunk["vec"]])) | |
self.chunk_index[user_id] = index | |
def _new_index(): | |
# Use cosine similarity (vectors must be L2-normalised) | |
return faiss.IndexFlatIP(384) | |
def _embed(text: str): | |
vec = EMBED.encode(text, convert_to_numpy=True) | |
# L2 normalise for cosine on IndexFlatIP | |
return vec / (np.linalg.norm(vec) + 1e-9) | |
def chunk_response(self, response: str, lang: str) -> List[Dict]: | |
""" | |
Calls Gemini to: | |
- Translate (if needed) | |
- Chunk by context/topic (exclude disclaimer section) | |
- Summarise | |
Returns: [{"tag": ..., "text": ...}, ...] | |
""" | |
if not response: return [] | |
# Gemini instruction | |
instructions = [] | |
if lang.upper() != "EN": | |
instructions.append("- Translate the response to English.") | |
instructions.append("- Break the translated (or original) text into semantically distinct parts, grouped by medical topic or symptom.") | |
instructions.append("- For each part, generate a clear, concise summary. The summary may vary in length depending on the complexity of the topic — do not omit key clinical instructions.") | |
instructions.append("- At the start of each part, write `Topic: <one line description>`.") | |
instructions.append("- Separate each part using three dashes `---` on a new line.") | |
# Gemini prompt | |
prompt = f""" | |
You are a medical assistant helping organize and condense a clinical response. | |
Below is the user-provided medical response written in `{lang}`: | |
------------------------ | |
{response} | |
------------------------ | |
Please perform the following tasks: | |
{chr(10).join(instructions)} | |
Output only the structured summaries, separated by dashes. | |
""" | |
retries = 0 | |
while retries < 5: | |
try: | |
client = genai.Client(api_key=os.getenv("FlashAPI")) | |
result = client.models.generate_content( | |
model=_LLM_SMALL, | |
contents=prompt | |
# ,generation_config={"temperature": 0.4} # Skip temp configs for gem-flash | |
) | |
output = result.text.strip() | |
logger.info(f"[Memory] 📦 Gemini summarized chunk output: {output}") | |
return [ | |
{"tag": self._quick_extract_topic(chunk), "text": chunk.strip()} | |
for chunk in output.split('---') if chunk.strip() | |
] | |
except Exception as e: | |
logger.warning(f"[Memory] ❌ Gemini chunking failed: {e}") | |
retries += 1 | |
time.sleep(0.5) | |
return [{"tag": "general", "text": response.strip()}] # fallback | |
def _quick_extract_topic(chunk: str) -> str: | |
"""Heuristically extract the topic from a chunk (title line or first 3 words).""" | |
# Expecting 'Topic: <something>' | |
match = re.search(r'^Topic:\s*(.+)', chunk, re.IGNORECASE | re.MULTILINE) | |
if match: | |
return match.group(1).strip() | |
lines = chunk.strip().splitlines() | |
for line in lines: | |
if len(line.split()) <= 8 and line.strip().endswith(":"): | |
return line.strip().rstrip(":") | |
return " ".join(chunk.split()[:3]).rstrip(":.,") | |