Spaces:
Running
Running
Commit
·
986cdbd
1
Parent(s):
1061730
Update logger
Browse files
app.py
CHANGED
@@ -28,7 +28,6 @@ logger.setLevel(logging.DEBUG)
|
|
28 |
|
29 |
# Debug Start
|
30 |
logger.info("🚀 Starting Medical Chatbot API...")
|
31 |
-
print("🚀 Starting Medical Chatbot API...")
|
32 |
|
33 |
# ✅ Environment Variables
|
34 |
mongo_uri = os.getenv("MONGO_URI")
|
@@ -47,7 +46,7 @@ def check_system_resources():
|
|
47 |
cpu = psutil.cpu_percent(interval=1)
|
48 |
disk = psutil.disk_usage("/")
|
49 |
# Defines log info messages
|
50 |
-
logger.info(f"🔍 System Resources - RAM: {memory.percent}%, CPU: {cpu}%, Disk: {disk.percent}%")
|
51 |
if memory.percent > 85:
|
52 |
logger.warning("⚠️ High RAM usage detected!")
|
53 |
if cpu > 90:
|
@@ -85,14 +84,12 @@ app.add_middleware(
|
|
85 |
index = None # Delay FAISS Index loading until first query
|
86 |
|
87 |
# ✅ Load SentenceTransformer Model (Quantized/Halved)
|
88 |
-
logger.info("📥 Loading SentenceTransformer Model...")
|
89 |
-
print("📥 Loading SentenceTransformer Model...")
|
90 |
MODEL_CACHE_DIR = "/app/model_cache"
|
91 |
try:
|
92 |
embedding_model = SentenceTransformer(MODEL_CACHE_DIR, device="cpu")
|
93 |
embedding_model = embedding_model.half() # Reduce memory
|
94 |
logger.info("✅ Model Loaded Successfully.")
|
95 |
-
print("✅ Model Loaded Successfully.")
|
96 |
except Exception as e:
|
97 |
logger.error(f"❌ Model Loading Failed: {e}")
|
98 |
exit(1)
|
@@ -115,17 +112,15 @@ fs = gridfs.GridFS(idb, collection="faiss_index_files")
|
|
115 |
def load_faiss_index():
|
116 |
global index
|
117 |
if index is None:
|
118 |
-
|
119 |
existing_file = fs.find_one({"filename": "faiss_index.bin"})
|
120 |
if existing_file:
|
121 |
stored_index_bytes = existing_file.read()
|
122 |
index_bytes_np = np.frombuffer(stored_index_bytes, dtype='uint8')
|
123 |
index = faiss.deserialize_index(index_bytes_np)
|
124 |
-
|
125 |
-
logger.info("✅ FAISS Index Loaded")
|
126 |
else:
|
127 |
-
|
128 |
-
logger.error("❌ FAISS index not found in GridFS.")
|
129 |
return index
|
130 |
|
131 |
# ✅ Retrieve Medical Info
|
@@ -148,8 +143,7 @@ def gemini_flash_completion(prompt, model, temperature=0.7):
|
|
148 |
response = client_genai.models.generate_content(model=model, contents=prompt)
|
149 |
return response.text
|
150 |
except Exception as e:
|
151 |
-
logger.error(f"❌ Error calling Gemini API: {e}")
|
152 |
-
print(f"❌ Error calling Gemini API: {e}")
|
153 |
return "Error generating response from Gemini."
|
154 |
|
155 |
# ✅ Chatbot Class
|
@@ -177,6 +171,7 @@ class RAGMedicalChatbot:
|
|
177 |
parts.append(f"Question: {user_query}")
|
178 |
parts.append(f"Language: {lang}")
|
179 |
prompt = "\n\n".join(parts)
|
|
|
180 |
response = gemini_flash_completion(prompt, model=self.model_name, temperature=0.7)
|
181 |
# Store exchange + chunking
|
182 |
if user_id:
|
@@ -205,8 +200,7 @@ async def chat_endpoint(req: Request):
|
|
205 |
|
206 |
# ✅ Run Uvicorn
|
207 |
if __name__ == "__main__":
|
208 |
-
logger.info("✅ Starting FastAPI Server...")
|
209 |
-
print("✅ Starting FastAPI Server...")
|
210 |
try:
|
211 |
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="debug")
|
212 |
except Exception as e:
|
|
|
28 |
|
29 |
# Debug Start
|
30 |
logger.info("🚀 Starting Medical Chatbot API...")
|
|
|
31 |
|
32 |
# ✅ Environment Variables
|
33 |
mongo_uri = os.getenv("MONGO_URI")
|
|
|
46 |
cpu = psutil.cpu_percent(interval=1)
|
47 |
disk = psutil.disk_usage("/")
|
48 |
# Defines log info messages
|
49 |
+
logger.info(f"[System] 🔍 System Resources - RAM: {memory.percent}%, CPU: {cpu}%, Disk: {disk.percent}%")
|
50 |
if memory.percent > 85:
|
51 |
logger.warning("⚠️ High RAM usage detected!")
|
52 |
if cpu > 90:
|
|
|
84 |
index = None # Delay FAISS Index loading until first query
|
85 |
|
86 |
# ✅ Load SentenceTransformer Model (Quantized/Halved)
|
87 |
+
logger.info("[Embedder] 📥 Loading SentenceTransformer Model...")
|
|
|
88 |
MODEL_CACHE_DIR = "/app/model_cache"
|
89 |
try:
|
90 |
embedding_model = SentenceTransformer(MODEL_CACHE_DIR, device="cpu")
|
91 |
embedding_model = embedding_model.half() # Reduce memory
|
92 |
logger.info("✅ Model Loaded Successfully.")
|
|
|
93 |
except Exception as e:
|
94 |
logger.error(f"❌ Model Loading Failed: {e}")
|
95 |
exit(1)
|
|
|
112 |
def load_faiss_index():
|
113 |
global index
|
114 |
if index is None:
|
115 |
+
logger.info("[KB] ⏳ Loading FAISS index from GridFS...")
|
116 |
existing_file = fs.find_one({"filename": "faiss_index.bin"})
|
117 |
if existing_file:
|
118 |
stored_index_bytes = existing_file.read()
|
119 |
index_bytes_np = np.frombuffer(stored_index_bytes, dtype='uint8')
|
120 |
index = faiss.deserialize_index(index_bytes_np)
|
121 |
+
logger.info("[KB] ✅ FAISS Index Loaded")
|
|
|
122 |
else:
|
123 |
+
logger.error("[KB] ❌ FAISS index not found in GridFS.")
|
|
|
124 |
return index
|
125 |
|
126 |
# ✅ Retrieve Medical Info
|
|
|
143 |
response = client_genai.models.generate_content(model=model, contents=prompt)
|
144 |
return response.text
|
145 |
except Exception as e:
|
146 |
+
logger.error(f"[LLM] ❌ Error calling Gemini API: {e}")
|
|
|
147 |
return "Error generating response from Gemini."
|
148 |
|
149 |
# ✅ Chatbot Class
|
|
|
171 |
parts.append(f"Question: {user_query}")
|
172 |
parts.append(f"Language: {lang}")
|
173 |
prompt = "\n\n".join(parts)
|
174 |
+
logger.info(f"[LLM] Question query in `prompt`: {prompt}") # Debug out checking RAG on kb and history
|
175 |
response = gemini_flash_completion(prompt, model=self.model_name, temperature=0.7)
|
176 |
# Store exchange + chunking
|
177 |
if user_id:
|
|
|
200 |
|
201 |
# ✅ Run Uvicorn
|
202 |
if __name__ == "__main__":
|
203 |
+
logger.info("[System] ✅ Starting FastAPI Server...")
|
|
|
204 |
try:
|
205 |
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="debug")
|
206 |
except Exception as e:
|
memory.py
CHANGED
@@ -78,6 +78,7 @@ class MemoryManager:
|
|
78 |
results.append((score, chunk))
|
79 |
# Sort result on best scored
|
80 |
results.sort(key=lambda x: x[0], reverse=True)
|
|
|
81 |
return [f"### Topic: {c['tag']}\n{c['text']}" for _, c in results]
|
82 |
|
83 |
|
@@ -162,14 +163,13 @@ class MemoryManager:
|
|
162 |
# ,generation_config={"temperature": 0.4} # Skip temp configs for gem-flash
|
163 |
)
|
164 |
output = result.text.strip()
|
165 |
-
logger.info(f"📦 Gemini summarized chunk output: {output}")
|
166 |
-
print(f"📦 Gemini summarized chunk output: {output}")
|
167 |
return [
|
168 |
{"tag": self._quick_extract_topic(chunk), "text": chunk.strip()}
|
169 |
for chunk in output.split('---') if chunk.strip()
|
170 |
]
|
171 |
except Exception as e:
|
172 |
-
logger.warning(f"❌ Gemini chunking failed: {e}")
|
173 |
retries += 1
|
174 |
time.sleep(0.5)
|
175 |
return [{"tag": "general", "text": response.strip()}] # fallback
|
|
|
78 |
results.append((score, chunk))
|
79 |
# Sort result on best scored
|
80 |
results.sort(key=lambda x: x[0], reverse=True)
|
81 |
+
logger.info(f"[Memory] RAG Retrieved Topic: {results}")
|
82 |
return [f"### Topic: {c['tag']}\n{c['text']}" for _, c in results]
|
83 |
|
84 |
|
|
|
163 |
# ,generation_config={"temperature": 0.4} # Skip temp configs for gem-flash
|
164 |
)
|
165 |
output = result.text.strip()
|
166 |
+
logger.info(f"[Memory] 📦 Gemini summarized chunk output: {output}")
|
|
|
167 |
return [
|
168 |
{"tag": self._quick_extract_topic(chunk), "text": chunk.strip()}
|
169 |
for chunk in output.split('---') if chunk.strip()
|
170 |
]
|
171 |
except Exception as e:
|
172 |
+
logger.warning(f"[Memory] ❌ Gemini chunking failed: {e}")
|
173 |
retries += 1
|
174 |
time.sleep(0.5)
|
175 |
return [{"tag": "general", "text": response.strip()}] # fallback
|