LiamKhoaLe commited on
Commit
a8b5cb5
·
1 Parent(s): 115b95d

Upd chat-history README

Browse files
Files changed (1) hide show
  1. chat-history.md +277 -158
chat-history.md CHANGED
@@ -1,161 +1,231 @@
1
- # 🔄 Hybrid Context Retrieval System
2
 
3
  ## Overview
4
 
5
- The Medical Chatbot now implements a **hybrid context retrieval system** that combines **semantic search (RAG)** with **recent chat history** to provide more intelligent and contextually aware responses. This addresses the limitation of pure RAG systems that can miss conversational context like "What's the diagnosis again?" or "Can you clarify that?"
6
 
7
  ## 🏗️ Architecture
8
 
9
- ### Before (Pure RAG)
10
  ```
11
- User Query → Semantic SearchFAISS Index Relevant Chunks → LLM Response
12
- ```
13
-
14
- ### After (Hybrid Approach)
15
- ```
16
- User Query → Hybrid Context Retrieval → Intelligent Context Selection → LLM Response
17
 
18
- ┌─────────────────┬─────────────────┐
19
- │ RAG Search │ Recent History │
20
- │ (Semantic) │ (Conversational)│
21
- └─────────────────┴─────────────────┘
22
 
23
  Gemini Flash Lite Contextual Analysis
24
 
25
- Selected Relevant Context
26
  ```
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ## 🔧 Key Components
29
 
30
- ### 1. Memory Manager (`memory.py`)
31
 
32
- #### New Method: `get_recent_chat_history()`
33
  ```python
34
- def get_recent_chat_history(self, user_id: str, num_turns: int = 3) -> List[Dict]:
35
  """
36
- Get the most recent chat history with both user questions and bot responses.
37
- Returns: [{"user": "question", "bot": "response", "timestamp": time}, ...]
38
  """
39
  ```
40
 
41
- **Features:**
42
- - Stores last 3 conversations by default
43
- - Maintains chronological order
44
- - Includes both user questions and bot responses
45
- - Accessible for conversational continuity
46
 
47
- #### Existing Method: `get_relevant_chunks()`
48
- - Semantic search using FAISS
49
- - Cosine similarity-based retrieval
50
- - Smart deduplication and scoring
 
51
 
52
- ### 2. Chatbot Class (`app.py`)
 
 
 
 
53
 
54
- #### New Method: `_get_contextual_chunks()`
55
  ```python
56
- def _get_contextual_chunks(self, user_id: str, current_query: str,
57
- recent_history: List[Dict], rag_chunks: List[str],
58
- lang: str) -> List[str]:
 
 
59
  ```
60
 
61
- **Purpose:**
62
- - Analyzes current query against available context
63
- - Uses Gemini Flash Lite for intelligent context selection
64
- - Combines RAG results with recent history
65
- - Ensures conversational continuity
66
 
67
- ## 🚀 How It Works
68
 
69
- ### Step 1: Context Collection
70
  ```python
71
- # Get both types of context
72
- rag_context = memory.get_relevant_chunks(user_id, user_query, top_k=3)
73
- recent_history = memory.get_recent_chat_history(user_id, num_turns=3)
 
 
74
  ```
75
 
76
- ### Step 2: Contextual Analysis
77
- The system sends both context sources to Gemini Flash Lite with this prompt:
 
 
 
78
 
 
 
 
 
 
 
 
 
 
79
  ```
80
- You are a medical assistant analyzing conversation context to provide relevant information.
81
 
82
- Current user query: "{current_query}"
 
 
 
83
 
84
- Available context information:
85
- {recent_history + rag_chunks}
86
 
87
- Task: Analyze the current query and determine which pieces of context are most relevant.
 
 
88
 
89
- Consider:
90
- 1. Is the user asking for clarification about something mentioned before?
91
- 2. Is the user referencing a previous diagnosis or recommendation?
92
- 3. Are there any follow-up questions that build on previous responses?
93
- 4. Which chunks provide the most relevant medical information for the current query?
94
 
95
- Output: Return only the most relevant context chunks that should be included in the response.
96
  ```
 
97
 
98
- ### Step 3: Intelligent Selection
99
- Gemini Flash Lite analyzes the query and selects relevant context from:
100
- - **Recent conversations** (for continuity)
101
- - **Semantic chunks** (for topic relevance)
102
- - **Combined insights** (for comprehensive understanding)
103
 
104
- ### Step 4: Context Integration
105
- Selected context is integrated into the main LLM prompt, ensuring the response is both:
106
- - **Semantically relevant** (from RAG)
107
- - **Conversationally continuous** (from recent history)
108
 
109
- ## 📊 Benefits
 
110
 
111
- ### 1. **Conversational Continuity**
112
- - Handles follow-up questions naturally
113
- - Maintains context across multiple exchanges
114
- - Understands references to previous responses
115
 
116
- ### 2. **Intelligent Context Selection**
117
- - No more irrelevant context injection
118
- - Gemini Flash Lite decides what's truly relevant
119
- - Balances semantic relevance with conversational flow
 
 
120
 
121
- ### 3. **Fallback Mechanisms**
122
- - If contextual analysis fails, falls back to RAG
123
- - If RAG fails, falls back to recent history
124
- - Ensures system reliability
125
 
126
- ### 4. **Performance Optimization**
127
- - Uses lightweight Gemini Flash Lite for context analysis
128
- - Maintains existing RAG performance
129
- - Minimal additional latency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
  ## 🧪 Example Scenarios
132
 
133
- ### Scenario 1: Follow-up Question
134
  ```
135
- User: "I have a headache"
136
- Bot: "This could be a tension headache. Try rest and hydration."
137
 
138
- User: "What medication should I take?"
139
- Bot: "For tension headaches, try acetaminophen or ibuprofen..."
140
 
141
- User: "Can you clarify the dosage again?"
142
- Bot: "For ibuprofen: 200-400mg every 4-6 hours, max 1200mg/day..."
 
 
 
 
 
 
 
143
  ```
144
- **Result:** System retrieves ibuprofen dosage from recent conversation, not just semantic search.
145
 
146
- ### Scenario 2: Reference to Previous Diagnosis
147
  ```
148
- User: "What was the diagnosis you mentioned?"
149
- Bot: "I previously diagnosed this as a tension headache based on your symptoms..."
150
  ```
151
- **Result:** System understands the reference and retrieves previous diagnosis.
152
 
153
- ### Scenario 3: Clarification Request
154
  ```
155
- User: "I didn't understand the part about prevention"
156
- Bot: "Let me clarify the prevention steps I mentioned earlier..."
157
  ```
158
- **Result:** System identifies the clarification request and retrieves relevant previous response.
159
 
160
  ## ⚙️ Configuration
161
 
@@ -164,100 +234,149 @@ Bot: "Let me clarify the prevention steps I mentioned earlier..."
164
  FlashAPI=your_gemini_api_key # For both main LLM and contextual analysis
165
  ```
166
 
167
- ### Memory Settings
168
  ```python
169
  memory = MemoryManager(
170
  max_users=1000, # Maximum users in memory
171
- history_per_user=10, # Chat history per user
172
- max_chunks=30 # Maximum chunks per user
173
  )
174
  ```
175
 
176
- ### Context Parameters
177
  ```python
178
- # Recent history retrieval
179
- recent_history = memory.get_recent_chat_history(user_id, num_turns=3)
180
 
181
- # RAG retrieval
182
  rag_chunks = memory.get_relevant_chunks(user_id, query, top_k=3, min_sim=0.30)
183
 
184
- # Contextual analysis
185
- contextual_chunks = self._get_contextual_chunks(
186
- user_id, current_query, recent_history, rag_chunks, lang
187
- )
 
 
 
 
 
 
 
 
 
188
  ```
189
 
190
  ## 🔍 Monitoring & Debugging
191
 
192
- ### Logging
193
- The system provides comprehensive logging:
194
  ```python
195
- logger.info(f"[Contextual] Gemini selected {len(relevant_chunks)} relevant chunks")
196
- logger.warning(f"[Contextual] Gemini contextual analysis failed: {e}")
 
 
 
 
 
 
 
 
 
197
  ```
198
 
199
  ### Performance Metrics
200
- - Context retrieval time
201
- - Number of relevant chunks selected
202
- - Fallback usage statistics
 
203
 
204
  ## 🚨 Error Handling
205
 
206
- ### Fallback Strategy
207
- 1. **Primary:** Gemini Flash Lite contextual analysis
208
- 2. **Secondary:** RAG semantic search
209
- 3. **Tertiary:** Recent chat history
210
- 4. **Final:** No context (minimal response)
 
211
 
212
- ### Error Scenarios
213
- - Gemini API failure → Fall back to RAG
214
- - RAG failureFall back to recent history
215
- - Memory corruption → Reset user session
 
 
216
 
217
  ## 🔮 Future Enhancements
218
 
219
- ### 1. **Context Scoring**
220
- - Implement confidence scores for context relevance
221
- - Weight recent history vs. semantic chunks
222
- - Dynamic threshold adjustment
223
-
224
- ### 2. **Multi-turn Context**
225
- - Extend beyond 3 recent turns
226
- - Implement conversation threading
227
- - Handle multiple conversation topics
228
-
229
- ### 3. **Context Compression**
230
- - Summarize long conversation histories
231
- - Implement context pruning strategies
232
- - Optimize memory usage
233
-
234
- ### 4. **Language-specific Context**
235
- - Enhance context analysis for different languages
236
- - Implement language-aware context selection
237
- - Cultural context considerations
 
 
 
 
 
 
 
 
 
 
238
 
239
  ## 📝 Testing
240
 
241
- Run the test script to verify functionality:
242
  ```bash
243
  cd Medical-Chatbot
244
- python test_hybrid_context.py
245
  ```
246
 
247
- This will demonstrate:
248
- - Memory management
249
- - Context retrieval
250
- - Hybrid approach simulation
251
- - Expected behavior examples
 
 
 
 
 
 
 
 
 
252
 
253
  ## 🎯 Summary
254
 
255
- The hybrid context retrieval system transforms the Medical Chatbot from a simple RAG system to an intelligent, contextually aware assistant that:
 
 
 
 
 
 
 
 
256
 
257
- **Maintains conversational continuity**
258
- **Provides semantically relevant responses**
259
- **Handles follow-up questions naturally**
260
- **Uses AI for intelligent context selection**
261
- **Maintains performance and reliability**
262
 
263
- This system addresses real-world conversational patterns that pure RAG systems miss, making the chatbot more human-like and useful in extended medical consultations.
 
1
+ # 🔄 Enhanced Memory System: STM + LTM + Hybrid Context Retrieval
2
 
3
  ## Overview
4
 
5
+ The Medical Chatbot now implements an **advanced memory system** with **Short-Term Memory (STM)** and **Long-Term Memory (LTM)** that intelligently manages conversation context, semantic knowledge, and conversational continuity. This system goes beyond simple RAG to provide truly intelligent, contextually aware responses that remember and build upon previous interactions.
6
 
7
  ## 🏗️ Architecture
8
 
9
+ ### Memory Hierarchy
10
  ```
11
+ User Query → Enhanced Memory System Intelligent Context Selection → LLM Response
 
 
 
 
 
12
 
13
+ ┌─────────────────┬─────────────────┬─────────────────┐
14
+ STM (5 items) │ LTM (60 items)│ RAG Search │
15
+ │ (Recent Summaries)│ (Semantic Store)│ (Knowledge Base)│
16
+ └─────────────────┴─────────────────┴─────────────────┘
17
 
18
  Gemini Flash Lite Contextual Analysis
19
 
20
+ Summarized Context + Semantic Knowledge
21
  ```
22
 
23
+ ### Memory Types
24
+
25
+ #### 1. **Short-Term Memory (STM)**
26
+ - **Capacity:** 5 recent conversation summaries
27
+ - **Content:** Chunked and summarized LLM responses with enriched topics
28
+ - **Features:** Semantic deduplication, intelligent merging, topic enrichment
29
+ - **Purpose:** Maintain conversational continuity and immediate context
30
+
31
+ #### 2. **Long-Term Memory (LTM)**
32
+ - **Capacity:** 60 semantic chunks (~20 conversational rounds)
33
+ - **Content:** FAISS-indexed medical knowledge chunks
34
+ - **Features:** Semantic similarity search, usage tracking, smart eviction
35
+ - **Purpose:** Provide deep medical knowledge and historical context
36
+
37
+ #### 3. **RAG Knowledge Base**
38
+ - **Content:** External medical knowledge and guidelines
39
+ - **Features:** Real-time retrieval, semantic matching
40
+ - **Purpose:** Supplement with current medical information
41
+
42
  ## 🔧 Key Components
43
 
44
+ ### 1. Enhanced Memory Manager (`memory.py`)
45
 
46
+ #### STM Management
47
  ```python
48
+ def get_recent_chat_history(self, user_id: str, num_turns: int = 5) -> List[Dict]:
49
  """
50
+ Get the most recent STM summaries (not raw Q/A).
51
+ Returns: [{"user": "", "bot": "Topic: ...\n<summary>", "timestamp": time}, ...]
52
  """
53
  ```
54
 
55
+ **STM Features:**
56
+ - **Capacity:** 5 recent conversation summaries
57
+ - **Content:** Chunked and summarized LLM responses with enriched topics
58
+ - **Deduplication:** Semantic similarity-based merging (≥0.92 identical, ≥0.75 merge)
59
+ - **Topic Enrichment:** Uses user question context to generate detailed topics
60
 
61
+ #### LTM Management
62
+ ```python
63
+ def get_relevant_chunks(self, user_id: str, query: str, top_k: int = 3, min_sim: float = 0.30) -> List[str]:
64
+ """Return texts of chunks whose cosine similarity ≥ min_sim."""
65
+ ```
66
 
67
+ **LTM Features:**
68
+ - **Capacity:** 60 semantic chunks (~20 conversational rounds)
69
+ - **Indexing:** FAISS-based semantic search
70
+ - **Smart Eviction:** Usage-based decay and recency scoring
71
+ - **Merging:** Intelligent deduplication and content fusion
72
 
73
+ #### Enhanced Chunking
74
  ```python
75
+ def chunk_response(self, response: str, lang: str, question: str = "") -> List[Dict]:
76
+ """
77
+ Enhanced chunking with question context for richer topics.
78
+ Returns: [{"tag": "detailed_topic", "text": "summary"}, ...]
79
+ """
80
  ```
81
 
82
+ **Chunking Features:**
83
+ - **Question Context:** Incorporates user's latest question for topic generation
84
+ - **Rich Topics:** Detailed topics (10-20 words) capturing context, condition, and action
85
+ - **Medical Focus:** Excludes disclaimers, includes exact medication names/doses
86
+ - **Semantic Grouping:** Groups by medical topic, symptom, assessment, plan, or instruction
87
 
88
+ ### 2. Intelligent Context Retrieval
89
 
90
+ #### Contextual Summarization
91
  ```python
92
+ def get_contextual_chunks(self, user_id: str, current_query: str, lang: str = "EN") -> str:
93
+ """
94
+ Creates a single, coherent summary from STM + LTM + RAG.
95
+ Returns: A single summary string for the main LLM.
96
+ """
97
  ```
98
 
99
+ **Features:**
100
+ - **Unified Summary:** Combines STM (5 turns) + LTM (semantic) + RAG (knowledge)
101
+ - **Gemini Analysis:** Uses Gemini Flash Lite for intelligent context selection
102
+ - **Conversational Flow:** Maintains continuity while providing medical relevance
103
+ - **Fallback Strategy:** Graceful degradation if analysis fails
104
 
105
+ ## 🚀 How It Works
106
+
107
+ ### Step 1: Enhanced Memory Processing
108
+ ```python
109
+ # Process new exchange through STM and LTM
110
+ chunks = memory.chunk_response(response, lang, question=query)
111
+ for chunk in chunks:
112
+ memory._upsert_stm(user_id, chunk, lang) # STM with dedupe/merge
113
+ memory._upsert_ltm(user_id, chunks, lang) # LTM with semantic storage
114
  ```
 
115
 
116
+ ### Step 2: Context Retrieval
117
+ ```python
118
+ # Get STM summaries (5 recent turns)
119
+ recent_history = memory.get_recent_chat_history(user_id, num_turns=5)
120
 
121
+ # Get LTM semantic chunks
122
+ rag_chunks = memory.get_relevant_chunks(user_id, current_query, top_k=3)
123
 
124
+ # Get external RAG knowledge
125
+ external_rag = retrieve_medical_info(current_query)
126
+ ```
127
 
128
+ ### Step 3: Intelligent Context Summarization
129
+ The system sends all context sources to Gemini Flash Lite for unified summarization:
 
 
 
130
 
 
131
  ```
132
+ You are a medical assistant creating a concise summary of conversation context for continuity.
133
 
134
+ Current user query: "{current_query}"
 
 
 
 
135
 
136
+ Available context information:
137
+ Recent conversation history:
138
+ {recent_history}
 
139
 
140
+ Semantically relevant historical medical information:
141
+ {rag_chunks}
142
 
143
+ Task: Create a brief, coherent summary that captures the key points from the conversation history and relevant medical information that are important for understanding the current query.
 
 
 
144
 
145
+ Guidelines:
146
+ 1. Focus on medical symptoms, diagnoses, treatments, or recommendations mentioned
147
+ 2. Include any patient concerns or questions that are still relevant
148
+ 3. Highlight any follow-up needs or pending clarifications
149
+ 4. Keep the summary concise but comprehensive enough for context
150
+ 5. Maintain conversational flow and continuity
151
 
152
+ Output: Provide a single, well-structured summary paragraph that can be used as context for the main LLM to provide a coherent response.
153
+ ```
 
 
154
 
155
+ ### Step 4: Unified Context Integration
156
+ The single, coherent summary is integrated into the main LLM prompt, providing:
157
+ - **Conversational continuity** (from STM summaries)
158
+ - **Medical knowledge** (from LTM semantic chunks)
159
+ - **Current information** (from external RAG)
160
+ - **Unified narrative** (single summary instead of multiple chunks)
161
+
162
+ ## 📊 Benefits
163
+
164
+ ### 1. **Advanced Memory Management**
165
+ - **STM:** Maintains 5 recent conversation summaries with intelligent deduplication
166
+ - **LTM:** Stores 60 semantic chunks (~20 rounds) with FAISS indexing
167
+ - **Smart Merging:** Combines similar content while preserving unique details
168
+ - **Topic Enrichment:** Detailed topics using user question context
169
+
170
+ ### 2. **Intelligent Context Summarization**
171
+ - **Unified Summary:** Single coherent narrative instead of multiple chunks
172
+ - **Gemini Analysis:** AI-powered context selection and summarization
173
+ - **Medical Focus:** Prioritizes symptoms, diagnoses, treatments, and recommendations
174
+ - **Conversational Flow:** Maintains natural dialogue continuity
175
+
176
+ ### 3. **Enhanced Chunking & Topics**
177
+ - **Question Context:** Incorporates user's latest question for richer topics
178
+ - **Detailed Topics:** 10-20 word descriptions capturing context, condition, and action
179
+ - **Medical Precision:** Includes exact medication names, doses, and clinical instructions
180
+ - **Semantic Grouping:** Organizes by medical topic, symptom, assessment, plan, or instruction
181
+
182
+ ### 4. **Robust Fallback Strategy**
183
+ - **Primary:** Gemini Flash Lite contextual summarization
184
+ - **Secondary:** LTM semantic search with usage-based scoring
185
+ - **Tertiary:** STM recent summaries
186
+ - **Final:** External RAG knowledge base
187
+
188
+ ### 5. **Performance & Scalability**
189
+ - **Efficient Storage:** Semantic deduplication reduces memory footprint
190
+ - **Fast Retrieval:** FAISS indexing for sub-millisecond LTM search
191
+ - **Smart Eviction:** Usage-based decay and recency scoring
192
+ - **Minimal Latency:** Optimized for real-time medical consultations
193
 
194
  ## 🧪 Example Scenarios
195
 
196
+ ### Scenario 1: STM Deduplication & Merging
197
  ```
198
+ User: "I have chest pain"
199
+ Bot: "This could be angina. Symptoms include pressure, tightness, and shortness of breath."
200
 
201
+ User: "What about chest pain with shortness of breath?"
202
+ Bot: "Chest pain with shortness of breath is concerning for angina or heart attack..."
203
 
204
+ User: "Tell me more about the symptoms"
205
+ Bot: "Angina symptoms include chest pressure, tightness, shortness of breath, and may radiate to arms..."
206
+ ```
207
+ **Result:** STM merges similar responses, creating a comprehensive summary: "Patient has chest pain symptoms consistent with angina, including pressure, tightness, shortness of breath, and potential radiation to arms. This represents a concerning cardiac presentation requiring immediate evaluation."
208
+
209
+ ### Scenario 2: LTM Semantic Retrieval
210
+ ```
211
+ User: "What medications should I avoid with my condition?"
212
+ Bot: "Based on your previous discussion about hypertension and the medications mentioned..."
213
  ```
214
+ **Result:** LTM retrieves relevant medical information about hypertension medications and contraindications from previous conversations, even if not in recent STM.
215
 
216
+ ### Scenario 3: Enhanced Topic Generation
217
  ```
218
+ User: "I'm having trouble sleeping"
219
+ Bot: "Topic: Sleep disturbance evaluation and management for adult patient with insomnia symptoms"
220
  ```
221
+ **Result:** The topic incorporates the user's question context to create a detailed, medical-specific description instead of just "Sleep problems."
222
 
223
+ ### Scenario 4: Unified Context Summarization
224
  ```
225
+ User: "Can you repeat the treatment plan?"
226
+ Bot: "Based on our conversation about your hypertension and sleep issues, your treatment plan includes..."
227
  ```
228
+ **Result:** The system creates a unified summary combining STM (recent sleep discussion), LTM (hypertension history), and RAG (current treatment guidelines) into a single coherent narrative.
229
 
230
  ## ⚙️ Configuration
231
 
 
234
  FlashAPI=your_gemini_api_key # For both main LLM and contextual analysis
235
  ```
236
 
237
+ ### Enhanced Memory Settings
238
  ```python
239
  memory = MemoryManager(
240
  max_users=1000, # Maximum users in memory
241
+ history_per_user=5, # STM capacity (5 recent summaries)
242
+ max_chunks=60 # LTM capacity (~20 conversational rounds)
243
  )
244
  ```
245
 
246
+ ### Memory Parameters
247
  ```python
248
+ # STM retrieval (5 recent turns)
249
+ recent_history = memory.get_recent_chat_history(user_id, num_turns=5)
250
 
251
+ # LTM semantic search
252
  rag_chunks = memory.get_relevant_chunks(user_id, query, top_k=3, min_sim=0.30)
253
 
254
+ # Unified context summarization
255
+ contextual_summary = memory.get_contextual_chunks(user_id, current_query, lang)
256
+ ```
257
+
258
+ ### Similarity Thresholds
259
+ ```python
260
+ # STM deduplication thresholds
261
+ IDENTICAL_THRESHOLD = 0.92 # Replace older with newer
262
+ MERGE_THRESHOLD = 0.75 # Merge similar content
263
+
264
+ # LTM semantic search
265
+ MIN_SIMILARITY = 0.30 # Minimum similarity for retrieval
266
+ TOP_K = 3 # Number of chunks to retrieve
267
  ```
268
 
269
  ## 🔍 Monitoring & Debugging
270
 
271
+ ### Enhanced Logging
272
+ The system provides comprehensive logging for all memory operations:
273
  ```python
274
+ # STM operations
275
+ logger.info(f"[Contextual] Retrieved {len(recent_history)} recent history items")
276
+ logger.info(f"[Contextual] Retrieved {len(rag_chunks)} RAG chunks")
277
+
278
+ # Chunking operations
279
+ logger.info(f"[Memory] 📦 Gemini summarized chunk output: {output}")
280
+ logger.warning(f"[Memory] ❌ Gemini chunking failed: {e}")
281
+
282
+ # Contextual summarization
283
+ logger.info(f"[Contextual] Gemini created summary: {summary[:100]}...")
284
+ logger.warning(f"[Contextual] Gemini summarization failed: {e}")
285
  ```
286
 
287
  ### Performance Metrics
288
+ - **STM Operations:** Deduplication rate, merge frequency, topic enrichment quality
289
+ - **LTM Operations:** FAISS search latency, semantic similarity scores, eviction patterns
290
+ - **Context Summarization:** Gemini response time, summary quality, fallback usage
291
+ - **Memory Usage:** Storage efficiency, retrieval hit rates, cache performance
292
 
293
  ## 🚨 Error Handling
294
 
295
+ ### Enhanced Fallback Strategy
296
+ 1. **Primary:** Gemini Flash Lite contextual summarization
297
+ 2. **Secondary:** LTM semantic search with usage-based scoring
298
+ 3. **Tertiary:** STM recent summaries
299
+ 4. **Final:** External RAG knowledge base
300
+ 5. **Emergency:** No context (minimal response)
301
 
302
+ ### Error Scenarios & Recovery
303
+ - **Gemini API failure** → Fall back to LTM semantic search
304
+ - **LTM corruption**Rebuild FAISS index from remaining chunks
305
+ - **STM corruption** → Reset to empty STM, continue with LTM
306
+ - **Memory corruption** → Reset user session, clear all memory
307
+ - **Chunking failure** → Store raw response as fallback chunk
308
 
309
  ## 🔮 Future Enhancements
310
 
311
+ ### 1. **Persistent Memory Storage**
312
+ - **Database Integration:** Store LTM in PostgreSQL/SQLite with FAISS index persistence
313
+ - **Session Recovery:** Resume conversations after system restarts
314
+ - **Memory Export:** Allow users to export their conversation history
315
+ - **Cross-device Sync:** Synchronize memory across different devices
316
+
317
+ ### 2. **Advanced Memory Features**
318
+ - **Fact Store:** Dedicated storage for critical medical facts (allergies, chronic conditions, medications)
319
+ - **Memory Compression:** Summarize older STM entries into LTM when STM overflows
320
+ - **Contextual Tags:** Add metadata tags (encounter type, modality, urgency) to bias retrieval
321
+ - **Memory Analytics:** Track memory usage patterns and optimize storage strategies
322
+
323
+ ### 3. **Intelligent Memory Management**
324
+ - **Adaptive Thresholds:** Dynamically adjust similarity thresholds based on conversation context
325
+ - **Memory Prioritization:** Protect critical medical information from eviction
326
+ - **Usage-based Retention:** Keep frequently accessed information longer
327
+ - **Semantic Clustering:** Group related memories for better organization
328
+
329
+ ### 4. **Enhanced Medical Context**
330
+ - **Clinical Decision Support:** Integrate with medical guidelines and protocols
331
+ - **Risk Assessment:** Track and alert on potential medical risks across conversations
332
+ - **Medication Reconciliation:** Maintain accurate medication lists across sessions
333
+ - **Follow-up Scheduling:** Track recommended follow-ups and reminders
334
+
335
+ ### 5. **Multi-modal Memory**
336
+ - **Image Memory:** Store and retrieve medical images with descriptions
337
+ - **Voice Memory:** Convert voice interactions to text for memory storage
338
+ - **Document Memory:** Process and store medical documents and reports
339
+ - **Temporal Memory:** Track changes in symptoms and conditions over time
340
 
341
  ## 📝 Testing
342
 
343
+ ### Memory System Testing
344
  ```bash
345
  cd Medical-Chatbot
346
+ python test_memory_system.py
347
  ```
348
 
349
+ ### Test Scenarios
350
+ 1. **STM Deduplication Test:** Verify similar responses are merged correctly
351
+ 2. **LTM Semantic Search Test:** Test FAISS retrieval with various queries
352
+ 3. **Context Summarization Test:** Validate unified summary generation
353
+ 4. **Topic Enrichment Test:** Check detailed topic generation with question context
354
+ 5. **Memory Capacity Test:** Verify STM (5 items) and LTM (60 items) limits
355
+ 6. **Fallback Strategy Test:** Test system behavior when Gemini API fails
356
+
357
+ ### Expected Behaviors
358
+ - **STM:** Similar responses merge, unique details preserved
359
+ - **LTM:** Semantic search returns relevant chunks with usage tracking
360
+ - **Topics:** Detailed, medical-specific descriptions (10-20 words)
361
+ - **Summaries:** Coherent narratives combining STM + LTM + RAG
362
+ - **Performance:** Sub-second retrieval times for all operations
363
 
364
  ## 🎯 Summary
365
 
366
+ The enhanced memory system transforms the Medical Chatbot into a sophisticated, memory-aware medical assistant that:
367
+
368
+ ✅ **Maintains Short-Term Memory (STM)** with 5 recent conversation summaries and intelligent deduplication
369
+ ✅ **Provides Long-Term Memory (LTM)** with 60 semantic chunks and FAISS-based retrieval
370
+ ✅ **Generates Enhanced Topics** using question context for detailed, medical-specific descriptions
371
+ ✅ **Creates Unified Summaries** combining STM + LTM + RAG into coherent narratives
372
+ ✅ **Implements Smart Merging** that preserves unique details while eliminating redundancy
373
+ ✅ **Ensures Conversational Continuity** across extended medical consultations
374
+ ✅ **Optimizes Performance** with sub-second retrieval and efficient memory management
375
 
376
+ This advanced memory system addresses the limitations of simple RAG systems by providing:
377
+ - **Intelligent context management** that remembers and builds upon previous interactions
378
+ - **Medical precision** with detailed topics and exact clinical information
379
+ - **Scalable architecture** that can handle extended conversations without performance degradation
380
+ - **Robust fallback strategies** ensuring system reliability in all scenarios
381
 
382
+ The result is a medical chatbot that truly understands conversation context, remembers patient history, and provides increasingly relevant and personalized medical guidance over time.