File size: 6,390 Bytes
85a758a
 
 
d61cdb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a758a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr
import requests


#------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Step 1 - Semantic Search
from sentence_transformers import SentenceTransformer
import torch



# Step 2 - Semantic Search
    # Open the water_cycle.txt file in read mode with UTF-8 encoding
with open("water_cycle.txt", "r", encoding="utf-8") as file:
      # Read the entire contents of the file and store it in a variable
  water_cycle_text = file.read()
    # Print the text below
print(water_cycle_text)



# Step 3 - Semantic Search
def preprocess_text(text):
  # Strip extra whitespace from the beginning and the end of the text
  cleaned_text = text.strip()

  # Split the cleaned_text by every newline character (\n)
  chunks = cleaned_text.split("\n")

  # Create an empty list to store cleaned chunks
  cleaned_chunks = []

  # Write your for-in loop below to clean each chunk and add it to the cleaned_chunks list
  for chunk in chunks:
    stripped_chunk = chunk.strip()
    if len(stripped_chunk) > 0:
      cleaned_chunks.append(stripped_chunk)

  # Print cleaned_chunks
  print(cleaned_chunks)

  # Print the length of cleaned_chunks
  print(len(cleaned_chunks))

  # Return the cleaned_chunks
  return cleaned_chunks



# Step 4 - Semantic Search
    # Load the pre-trained embedding model that converts text to vectors
model = SentenceTransformer('all-MiniLM-L6-v2')

def create_embeddings(text_chunks):
      # Convert each text chunk into a vector embedding and store as a tensor
  chunk_embeddings = model.encode(text_chunks, convert_to_tensor=True) # Replace ... with the text_chunks list

      # Print the chunk embeddings
  print(chunk_embeddings)

      # Print the shape of chunk_embeddings
  print(chunk_embeddings.shape)

      # Return the chunk_embeddings
  return chunk_embeddings

    # Call the create_embeddings function and store the result in a new chunk_embeddings variable
chunk_embeddings = create_embeddings(cleaned_chunks) # Complete this line

    # Call the preprocess_text function and store the result in a cleaned_chunks variable
#cleaned_chunks = preprocess_text(water_cycle_text) # Complete this line



# Step 5 - Semantic Search
def get_top_chunks(query, chunk_embeddings, text_chunks):
  # Convert the query text into a vector embedding
  query_embedding = model.encode(query, convert_to_tensor = True) # Complete this line

  # Normalize the query embedding to unit length for accurate similarity comparison
  query_embedding_normalized = query_embedding / query_embedding.norm()

  # Normalize all chunk embeddings to unit length for consistent comparison
  chunk_embeddings_normalized = chunk_embeddings / chunk_embeddings.norm(dim=1, keepdim=True)

  # Calculate cosine similarity between query and all chunks using matrix multiplication
  similarities = torch.matmul(chunk_embeddings_normalized, query_embedding_normalized) # Complete this line

  # Print the similarities
  print(similarities)

  # Find the indices of the 3 chunks with highest similarity scores
  top_indices = torch.topk(similarities, k=3).indices

  # Print the top indices
  print(top_indices)

  # Create an empty list to store the most relevant chunks
  top_chunks = []

  # Loop through the top indices and retrieve the corresponding text chunks
  for i in top_indices:
    chunk = text_chunks[i]
    top_chunks.append(chunk)

  # Return the list of most relevant chunks
  return top_chunks



# Step 6 - Semantic Search
    # Call the get_top_chunks function with the original query
top_results = get_top_chunks("How does water get into the sky", chunk_embeddings, cleaned_chunks) # Complete this line
    # Print the top results
print(top_results)
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


SPOONACULAR_API_KEY = "71259036cfb3405aa5d49c1220a988c5"
recipe_id_map = {}

# search for recipes
def search_recipes(ingredient, cuisine, dietary):
    global recipe_id_map
    url = "https://api.spoonacular.com/recipes/complexSearch"
    params = {
        "query": ingredient,
        "cuisine": cuisine,
        "diet": dietary,
        "number": 3,
        "apiKey": SPOONACULAR_API_KEY
    }

    res = requests.get(url, params=params)
    data = res.json()

    if "results" not in data or not data["results"]:
        recipe_id_map = {}
        return gr.update(choices=[], visible=True, label="No recipes found"), gr.update(value="No recipes found.")

    recipe_id_map = {r["title"]: r["id"] for r in data["results"]}
    return gr.update(choices=list(recipe_id_map.keys()), visible=True, label="Select a recipe"), gr.update(value="Select a recipe from the dropdown above.")

# get recipe details
def get_recipe_details(selected_title):
    if not selected_title or selected_title not in recipe_id_map:
        return "Please select a valid recipe."

    recipe_id = recipe_id_map[selected_title]
    url = f"https://api.spoonacular.com/recipes/{recipe_id}/information"
    params = {"apiKey": SPOONACULAR_API_KEY}
    res = requests.get(url, params=params)
    data = res.json()

    title = data.get("title", "Unknown Title")
    time = data.get("readyInMinutes", "N/A")
    instructions = data.get("instructions") or "No instructions available."
    return f"### 🍽️ {title}\n**⏱️ Cook Time:** {time} minutes\n\n**📋 Instructions:**\n{instructions}"


# UI
with gr.Blocks() as demo:
    gr.Markdown("## 🥗 The BiteBot")

    with gr.Row():
        ingredient = gr.Textbox(label="Preferred Ingredient", placeholder="e.g., chicken")
        cuisine = gr.Textbox(label="Preferred Cuisine", placeholder="e.g., Indian")
        diet = gr.Textbox(label="Dietary Restrictions", placeholder="e.g., vegetarian")

    search_button = gr.Button("Search Recipes")
    recipe_dropdown = gr.Dropdown(label="Select a recipe", visible=False)
    recipe_output = gr.Markdown()

    search_button.click(
        fn=search_recipes,
        inputs=[ingredient, cuisine, diet],
        outputs=[recipe_dropdown, recipe_output]
    )

    recipe_dropdown.change(
        fn=get_recipe_details,
        inputs=recipe_dropdown,
        outputs=recipe_output
    )

demo.launch()