Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from sentence_transformers import SentenceTransformer | |
import torch | |
# Load knowledge | |
with open("food_recipe.txt", "r", encoding="utf-8") as file: | |
knowledge = file.read() | |
cleaned_chunks = [chunk.strip() for chunk in knowledge.strip().split("\n") if chunk.strip()] | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
chunk_embeddings = model.encode(cleaned_chunks, convert_to_tensor=True) | |
def get_top_chunks(query): | |
query_embedding = model.encode(query, convert_to_tensor=True) | |
query_embedding_normalized = query_embedding / query_embedding.norm() | |
similarities = torch.matmul(chunk_embeddings, query_embedding_normalized) | |
top_indices = torch.topk(similarities, k=5).indices.tolist() | |
return [cleaned_chunks[i] for i in top_indices] | |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") | |
def respond(message, history): | |
response = "" | |
top_chunks = get_top_chunks(message) | |
context = "\n".join(top_chunks) | |
messages = [ | |
{ | |
"role": "system", | |
"content": f"You are a friendly chatbot that responds to the user with this context {context}" | |
} | |
] | |
if history: | |
messages.extend(history) | |
messages.append({"role": "user", "content": message}) | |
stream = client.chat_completion( | |
messages, | |
max_tokens=300, | |
temperature=1.2, | |
stream=True, | |
) | |
for message in stream: | |
token = message.choices[0].delta.content | |
if token is not None: | |
response += token | |
yield response | |
with gr.Blocks() as chatbot: | |
gr.ChatInterface( | |
fn=respond, | |
type="messages", | |
) | |
chatbot.launch() | |