bitebot_app / apptwo.py
aashnaj's picture
rename
a9f74cb verified
import gradio as gr
from huggingface_hub import InferenceClient
from sentence_transformers import SentenceTransformer
import torch
# Load knowledge
with open("recipesplease.txt", "r", encoding="utf-8") as file:
knowledge = file.read()
cleaned_chunks = [chunk.strip() for chunk in knowledge.strip().split("\n") if chunk.strip()]
model = SentenceTransformer('all-MiniLM-L6-v2')
chunk_embeddings = model.encode(cleaned_chunks, convert_to_tensor=True)
def get_top_chunks(query):
query_embedding = model.encode(query, convert_to_tensor=True)
query_embedding_normalized = query_embedding / query_embedding.norm()
similarities = torch.matmul(chunk_embeddings, query_embedding_normalized)
top_indices = torch.topk(similarities, k=5).indices.tolist()
return [cleaned_chunks[i] for i in top_indices]
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
def respond(message, history, cuisine, dietary_restrictions, allergies, preferred_ingredient):
response = ""
top_chunks = get_top_chunks(message)
top_chunks += get_top_chunks(cuisine)
top_chunks += get_top_chunks(str(dietary_restrictions)) # convert list to str
top_chunks += get_top_chunks(allergies)
top_chunks += get_top_chunks(preferred_ingredient)
print(top_chunks)
messages = [
{
"role": "system",
"content": f"""
You are BiteBot, a friendly recipe chatbot. Use only the recipes from the following content: {top_chunks}.
The user prefers {cuisine} cuisine, has the following dietary restrictions: {dietary_restrictions}, and is allergic to: {allergies}.
Suggest one suitable recipe that matches these preferences. Say something like:
"Based on your preferences, would you like to try Elizabeth's Sweet Potato Casserole?"
If they say yes:
- First, share the ingredients.
- Then ask if they'd like the instructions.
- If they agree, provide the instructions.
If they say no:
- Ask if they'd like another recommendation.
Always use recipes only from {top_chunks}.
"""
}
]
if history:
messages.extend(history)
messages.append({"role": "user", "content": message})
stream = client.chat_completion(
messages,
max_tokens=700,
temperature=1.5,top_p=0.7,
stream=True,
)
for message in stream:
token = message.choices[0].delta.content
if token is not None:
response += token
yield response
logo="banner.png"
theme = gr.themes.Monochrome(
primary_hue="orange",
secondary_hue="zinc",
neutral_hue=gr.themes.Color(c100="rgba(255, 227.4411088400613, 206.9078947368421, 1)", c200="rgba(255, 229.53334184977007, 218.0921052631579, 1)", c300="rgba(255, 234.91658150229947, 213.6184210526316, 1)", c400="rgba(189.603125, 154.41663986650488, 133.88641721491229, 1)", c50="#f3d1bbff", c500="rgba(170.2125, 139.18781968574348, 118.70082236842106, 1)", c600="rgba(193.32187499999998, 129.35648241888094, 111.07528782894737, 1)", c700="rgba(184.13125000000002, 141.9707339039346, 106.60230263157897, 1)", c800="rgba(156.06796875, 104.12209005333418, 69.81988075657894, 1)", c900="rgba(156.39999999999998, 117.22008175779253, 80.2578947368421, 1)", c950="rgba(158.43203125, 125.1788770279765, 97.28282620614036, 1)"),
text_size="sm",
spacing_size="md",
radius_size="sm",
).set(
body_background_fill='*primary_50',
body_background_fill_dark='*primary_50'
)
with gr.Blocks(theme=theme) as chatbot:
gr.Image(
value="Henrietta.png",
show_label=False,
show_share_button = False,
show_download_button = False)
gr.Markdown("### 👋 Welcome to BiteBot!\nTell me your preferred **cuisine**, any **dietary restrictions**, and **allergies**, and I’ll help you figure out what to cook. You can ask questions like:\n- _“What should I make tonight?”_\n- _“I'm feeling like eating something spicy.”_\n- _“Give me a recipe extra cheesy”_")
cuisine=gr.Textbox(label="cuisine")
dietary_restrictions=gr.Dropdown(["Gluten-Free","Dairy-Free","Vegan","Vegetarian","Keto","Kosher","No Soy","No Seafood","No Pork","No Beef"], label="dietary restrictions", multiselect=True,info="you can select multiple!")
allergies=gr.Textbox(label="allergies")
preferred_ingredients=gr.Textbox(label="preferred ingredients")
gr.ChatInterface(
fn=respond,
type="messages", additional_inputs=[cuisine,dietary_restrictions,allergies,preferred_ingredients]
)
chatbot.launch()