Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -1,99 +1,30 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
import requests
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
import torch
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"
|
22 |
-
|
23 |
-
|
24 |
-
res = requests.get(url, params=params)
|
25 |
-
data = res.json()
|
26 |
-
|
27 |
-
|
28 |
-
# if "results" not in data or not data["results"]:
|
29 |
-
# recipe_id_map = {}
|
30 |
-
# return gr.update(choices=[], visible=True, label="No recipes found"), gr.update(value="No recipes found.")
|
31 |
-
|
32 |
-
# recipe_id_map = {r["title"]: r["id"] for r in data["results"]}
|
33 |
-
# return gr.update(choices=list(recipe_id_map.keys()), visible=True), gr.update(value="Select a recipe from the dropdown.")
|
34 |
-
|
35 |
-
# # Get recipe details
|
36 |
-
# def get_recipe_details(selected_title):
|
37 |
-
# if not selected_title or selected_title not in recipe_id_map:
|
38 |
-
# return "Please select a valid recipe."
|
39 |
-
|
40 |
-
# recipe_id = recipe_id_map[selected_title]
|
41 |
-
# url = f"https://api.spoonacular.com/recipes/{recipe_id}/information"
|
42 |
-
# params = {"apiKey": SPOONACULAR_API_KEY}
|
43 |
-
# res = requests.get(url, params=params)
|
44 |
-
# data = res.json()
|
45 |
-
|
46 |
-
# title = data.get("title", "Unknown Title")
|
47 |
-
# time = data.get("readyInMinutes", "N/A")
|
48 |
-
# instructions = data.get("instructions") or "No instructions available."
|
49 |
-
# ingredients_list = data.get("extendedIngredients", [])
|
50 |
-
# ingredients = "\n".join([f"- {item.get('original')}" for item in ingredients_list])
|
51 |
-
|
52 |
-
# return f"### 🍽️ {title}\n**⏱️ Cook Time:** {time} minutes\n\n**📋 Instructions:**\n{instructions}"
|
53 |
-
# gr.Markdown("💬 Go to the next tab to ask our chatbot your questions on the recipe!")
|
54 |
-
# # Handle chatbot questions
|
55 |
-
# def ask_recipe_bot(message, history):
|
56 |
-
# # Try to find a recipe ID from previous dropdown results
|
57 |
-
# if not recipe_id_map:
|
58 |
-
# return "Please use the dropdown tab first to search for a recipe."
|
59 |
-
|
60 |
-
# # Use the first recipe ID from the map
|
61 |
-
# recipe_id = list(recipe_id_map.values())[0]
|
62 |
-
# url = f"https://api.spoonacular.com/recipes/{recipe_id}/nutritionWidget.json"
|
63 |
-
# params = {"apiKey": SPOONACULAR_API_KEY}
|
64 |
-
# res = requests.get(url, params=params)
|
65 |
-
|
66 |
-
# if res.status_code != 200:
|
67 |
-
# return "Sorry, I couldn't retrieve nutrition info."
|
68 |
-
|
69 |
-
# data = res.json()
|
70 |
-
# calories = data.get("calories", "N/A")
|
71 |
-
# carbs = data.get("carbs", "N/A")
|
72 |
-
# protein = data.get("protein", "N/A")
|
73 |
-
# fat = data.get("fat", "N/A")
|
74 |
-
|
75 |
-
# if "calorie" in message.lower():
|
76 |
-
# return f"This recipe has {calories}."
|
77 |
-
# elif "protein" in message.lower():
|
78 |
-
# return f"It contains {protein}."
|
79 |
-
# elif "carb" in message.lower():
|
80 |
-
# return f"It has {carbs}."
|
81 |
-
# elif "fat" in message.lower():
|
82 |
-
# return f"The fat content is {fat}."
|
83 |
-
# elif "scale" in message.lower() or "double" in message.lower():
|
84 |
-
# return "You can scale ingredients by multiplying each quantity. For example, to double the recipe, multiply every amount by 2."
|
85 |
-
# elif "substitute" in message.lower():
|
86 |
-
# return "Let me know the ingredient you'd like to substitute, and I’ll try to help!"
|
87 |
-
# else:
|
88 |
-
# return "You can ask about calories, protein, carbs, fat, substitutes, or scaling tips."
|
89 |
-
|
90 |
-
def respond(message, history, ingredient, cuisine, diet):
|
91 |
-
|
92 |
-
context = search_recipes(ingredient, cuisine, diet)
|
93 |
messages = [
|
94 |
{
|
95 |
"role": "system",
|
96 |
-
"content": f"You
|
97 |
}
|
98 |
]
|
99 |
if history:
|
@@ -109,38 +40,11 @@ def respond(message, history, ingredient, cuisine, diet):
|
|
109 |
token = message.choices[0].delta.content
|
110 |
if token is not None:
|
111 |
response += token
|
112 |
-
yield response
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
with gr.Tabs():
|
120 |
-
# with gr.Tab("Search Recipes"):
|
121 |
-
with gr.Row():
|
122 |
-
ingredient = gr.Textbox(label="Preferred Ingredient")
|
123 |
-
cuisine = gr.Textbox(label="Preferred Cuisine")
|
124 |
-
diet = gr.Textbox(label="Dietary Restrictions")
|
125 |
-
|
126 |
-
# search_button = gr.Button("Search Recipes")
|
127 |
-
# recipe_dropdown = gr.Dropdown(label="Select a recipe", visible=False)
|
128 |
-
# recipe_output = gr.Markdown()
|
129 |
-
|
130 |
-
# search_button.click(
|
131 |
-
# fn=search_recipes,
|
132 |
-
# inputs=[ingredient, cuisine, diet],
|
133 |
-
# outputs=[recipe_dropdown, recipe_output]
|
134 |
-
# )
|
135 |
-
|
136 |
-
# recipe_dropdown.change(
|
137 |
-
# fn=get_recipe_details,
|
138 |
-
# inputs=recipe_dropdown,
|
139 |
-
# outputs=recipe_output
|
140 |
-
# )
|
141 |
-
|
142 |
-
# with gr.Tab("Ask BiteBot"):
|
143 |
-
chatbot = gr.ChatInterface(fn=respond, additional_inputs = [ingredient, cuisine, diet], type="messages")
|
144 |
-
gr.Markdown("💬 Ask about calories, macros, scaling, or substitutions. (Run a recipe search first!)")
|
145 |
|
146 |
-
demo.launch()
|
|
|
1 |
+
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
import torch
|
6 |
|
7 |
+
# Load knowledge
|
8 |
+
with open("recipedataset.txt", "r", encoding="utf-8") as file:
|
9 |
+
knowledge = file.read()
|
10 |
+
cleaned_chunks = [chunk.strip() for chunk in knowledge.strip().split("\n") if chunk.strip()]
|
11 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
12 |
+
chunk_embeddings = model.encode(cleaned_chunks, convert_to_tensor=True)
|
13 |
+
def get_top_chunks(query):
|
14 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
15 |
+
query_embedding_normalized = query_embedding / query_embedding.norm()
|
16 |
+
similarities = torch.matmul(chunk_embeddings, query_embedding_normalized)
|
17 |
+
top_indices = torch.topk(similarities, k=5).indices.tolist()
|
18 |
+
return [cleaned_chunks[i] for i in top_indices]
|
19 |
+
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
|
20 |
+
def respond(message, history):
|
21 |
+
response = ""
|
22 |
+
top_chunks = get_top_chunks(message)
|
23 |
+
context = "\n".join(top_chunks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
messages = [
|
25 |
{
|
26 |
"role": "system",
|
27 |
+
"content": f"You are a friendly chatbot that responds to the user with this context {context}"
|
28 |
}
|
29 |
]
|
30 |
if history:
|
|
|
40 |
token = message.choices[0].delta.content
|
41 |
if token is not None:
|
42 |
response += token
|
43 |
+
yield response
|
44 |
+
with gr.Blocks() as chatbot:
|
45 |
+
gr.ChatInterface(
|
46 |
+
fn=respond,
|
47 |
+
type="messages",
|
48 |
+
)
|
49 |
+
chatbot.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|