Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
import PyPDF2 | |
import re | |
# Load syllabus from PDF | |
def read_pdf(file_path): | |
try: | |
with open(file_path, "rb") as file: | |
reader = PyPDF2.PdfReader(file) | |
text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()]) | |
return text | |
except Exception as e: | |
return f"Error loading syllabus: {str(e)}" | |
syllabus_text = read_pdf("Syllabus.pdf") | |
# Extract subjects and topics | |
def extract_subjects_and_topics(text): | |
subjects = {} | |
current_subject = None | |
for line in text.split("\n"): | |
line = line.strip() | |
if re.match(r"^[A-Z ]+$", line): # Matches UPPERCASE subject names | |
current_subject = line | |
subjects[current_subject] = [] | |
elif current_subject and line: | |
subjects[current_subject].append(line) | |
return subjects | |
subjects_data = extract_subjects_and_topics(syllabus_text) | |
# Load AI Model for Chatbot | |
chatbot = pipeline("text-generation", model="facebook/blenderbot-400M-distill") | |
# Chat function | |
def chat_response(message): | |
message = message.lower() | |
if "subjects" in message: | |
return "π Available Subjects:\n\n" + "\n".join(subjects_data.keys()) | |
for subject, topics in subjects_data.items(): | |
if subject.lower() in message: | |
return f"π Topics under {subject}:\n\n" + "\n".join(topics) | |
for subject, topics in subjects_data.items(): | |
for topic in topics: | |
if topic.lower() in message: | |
return f"π {topic} is covered under {subject}. Refer to your syllabus for details." | |
return "β Topic not found in syllabus. Please check the spelling or ask about a different topic." | |
# Create Gradio Interface | |
iface = gr.Interface( | |
fn=chat_response, | |
inputs="text", | |
outputs="text", | |
title="Bit GPT 0.2.8", | |
description="Ask me about syllabus subjects, topics, or general questions!" | |
) | |
# Launch App | |
if __name__ == "__main__": | |
iface.launch() |