import gradio as gr from transformers import pipeline import PyPDF2 # 📌 Load syllabus from PDF def read_pdf(file_path): try: with open(file_path, "rb") as file: reader = PyPDF2.PdfReader(file) text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()]) return text except Exception as e: return f"Error loading syllabus: {str(e)}" syllabus_text = read_pdf("syllabus.pdf") # 📌 Load AI Model chatbot = pipeline("text-generation", model="facebook/blenderbot-400M-distill") # 📌 Define Chat Function def chat_response(message): if "syllabus" in message.lower(): return syllabus_text response = chatbot(message, max_length=100, do_sample=True) return response[0]['generated_text'] # 📌 Create Gradio Interface iface = gr.Interface(fn=chat_response, inputs="text", outputs="text", title="Bit GPT 0.2.8") # 📌 Launch App if __name__ == "__main__": iface.launch()