Spaces:
Sleeping
Sleeping
File size: 32,240 Bytes
8e3dd93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
import os
import re
import torch
import warnings
import numpy as np
import faiss
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Optional
import time
from datetime import datetime
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
class ColabBioGPTChatbot:
def __init__(self, use_gpu=True, use_8bit=True):
"""Initialize BioGPT chatbot optimized for Hugging Face Spaces"""
print("🏥 Initializing Medical Chatbot...")
self.use_gpu = use_gpu
self.use_8bit = use_8bit
self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
print(f"🖥️ Using device: {self.device}")
self.tokenizer = None
self.model = None
self.knowledge_chunks = []
self.conversation_history = []
self.embedding_model = None
self.faiss_index = None
self.faiss_ready = False
self.use_embeddings = True
# Initialize components
self.setup_biogpt()
self.load_sentence_transformer()
def setup_biogpt(self):
"""Setup BioGPT model with fallback to base BioGPT if Large fails"""
print("🧠 Loading BioGPT model...")
try:
# Try BioGPT-Large first
model_name = "microsoft/BioGPT-Large"
print(f"Attempting to load {model_name}...")
if self.use_8bit and self.device == "cuda":
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
else:
quantization_config = None
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto" if self.device == "cuda" else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
if self.device == "cuda" and quantization_config is None:
self.model = self.model.to(self.device)
print("✅ BioGPT-Large loaded successfully!")
except Exception as e:
print(f"❌ BioGPT-Large loading failed: {e}")
print("🔁 Falling back to base BioGPT...")
self.setup_fallback_biogpt()
def setup_fallback_biogpt(self):
"""Fallback to microsoft/BioGPT if BioGPT-Large fails"""
try:
model_name = "microsoft/BioGPT"
print(f"Loading fallback model: {model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
)
if self.device == "cuda":
self.model = self.model.to(self.device)
print("✅ Base BioGPT model loaded successfully!")
except Exception as e:
print(f"❌ Failed to load fallback BioGPT: {e}")
self.model = None
self.tokenizer = None
def load_sentence_transformer(self):
"""Load sentence transformer for embeddings"""
try:
print("🔮 Loading sentence transformer...")
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Initialize FAISS index (will be populated when data is loaded)
embedding_dim = 384 # Dimension for all-MiniLM-L6-v2
self.faiss_index = faiss.IndexFlatL2(embedding_dim)
self.faiss_ready = True
print("✅ Sentence transformer and FAISS index ready!")
except Exception as e:
print(f"❌ Failed to load sentence transformer: {e}")
self.use_embeddings = False
self.faiss_ready = False
def load_medical_data(self, file_path):
"""Load and process medical data"""
print(f"📖 Loading medical data from {file_path}...")
try:
if not os.path.exists(file_path):
raise FileNotFoundError(f"File {file_path} not found")
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
print(f"📄 File loaded: {len(text):,} characters")
except Exception as e:
print(f"❌ Error loading file: {e}")
raise ValueError(f"Failed to load medical data: {e}")
# Create chunks
print("📝 Creating medical chunks...")
chunks = self.create_medical_chunks(text)
print(f"📋 Created {len(chunks)} medical chunks")
self.knowledge_chunks = chunks
# Generate embeddings if available
if self.use_embeddings and self.embedding_model and self.faiss_ready:
try:
self.generate_embeddings_with_progress(chunks)
print("✅ Medical data loaded with embeddings!")
except Exception as e:
print(f"⚠️ Embedding generation failed: {e}")
print("✅ Medical data loaded (keyword search mode)")
else:
print("✅ Medical data loaded (keyword search mode)")
def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
"""Create medically-optimized text chunks"""
chunks = []
# Split by paragraphs first
paragraphs = [p.strip() for p in text.split('\n\n') if len(p.strip()) > 50]
chunk_id = 0
for paragraph in paragraphs:
if len(paragraph.split()) <= chunk_size:
chunks.append({
'id': chunk_id,
'text': paragraph,
'medical_focus': self.identify_medical_focus(paragraph)
})
chunk_id += 1
else:
# Split large paragraphs by sentences
sentences = re.split(r'[.!?]+', paragraph)
current_chunk = ""
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
if len(current_chunk.split()) + len(sentence.split()) <= chunk_size:
current_chunk += sentence + ". "
else:
if current_chunk.strip():
chunks.append({
'id': chunk_id,
'text': current_chunk.strip(),
'medical_focus': self.identify_medical_focus(current_chunk)
})
chunk_id += 1
current_chunk = sentence + ". "
if current_chunk.strip():
chunks.append({
'id': chunk_id,
'text': current_chunk.strip(),
'medical_focus': self.identify_medical_focus(current_chunk)
})
chunk_id += 1
return chunks
def identify_medical_focus(self, text: str) -> str:
"""Identify the medical focus of a text chunk"""
text_lower = text.lower()
categories = {
'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
}
for category, keywords in categories.items():
if any(keyword in text_lower for keyword in keywords):
return category
return 'general_medical'
def generate_embeddings_with_progress(self, chunks: List[Dict]):
"""Generate embeddings and add to FAISS index"""
print("🔮 Generating embeddings...")
try:
texts = [chunk['text'] for chunk in chunks]
# Generate embeddings in batches
batch_size = 32
all_embeddings = []
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i+batch_size]
batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False)
all_embeddings.extend(batch_embeddings)
progress = min(i + batch_size, len(texts))
print(f" Progress: {progress}/{len(texts)} chunks processed", end='\r')
print(f"\n ✅ Generated embeddings for {len(texts)} chunks")
# Add to FAISS index
embeddings_array = np.array(all_embeddings).astype('float32')
self.faiss_index.add(embeddings_array)
print("✅ Embeddings added to FAISS index!")
except Exception as e:
print(f"❌ Embedding generation failed: {e}")
raise
def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
"""Retrieve relevant medical context"""
if self.use_embeddings and self.embedding_model and self.faiss_ready and self.faiss_index.ntotal > 0:
try:
# Generate query embedding
query_embedding = self.embedding_model.encode([query])
# Search FAISS index
distances, indices = self.faiss_index.search(
np.array(query_embedding).astype('float32'),
min(n_results, self.faiss_index.ntotal)
)
# Get relevant chunks
context_chunks = []
for idx in indices[0]:
if idx != -1 and idx < len(self.knowledge_chunks):
context_chunks.append(self.knowledge_chunks[idx]['text'])
if context_chunks:
return context_chunks
except Exception as e:
print(f"⚠️ Embedding search failed: {e}")
# Fallback to keyword search
return self.keyword_search_medical(query, n_results)
def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
"""Medical-focused keyword search"""
if not self.knowledge_chunks:
return []
query_words = set(query.lower().split())
chunk_scores = []
for chunk_info in self.knowledge_chunks:
chunk_text = chunk_info['text']
chunk_words = set(chunk_text.lower().split())
# Calculate relevance score
word_overlap = len(query_words.intersection(chunk_words))
base_score = word_overlap / len(query_words) if query_words else 0
# Boost medical content
medical_boost = 0
if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
medical_boost = 0.3
final_score = base_score + medical_boost
if final_score > 0:
chunk_scores.append((final_score, chunk_text))
# Return top matches
chunk_scores.sort(reverse=True)
return [chunk for _, chunk in chunk_scores[:n_results]]
def generate_biogpt_response(self, context: str, query: str) -> str:
"""Generate medical response using context directly (BioGPT bypass)"""
# BioGPT is giving poor responses, so use the retrieved context directly
return self.create_context_based_response(context, query)
def create_context_based_response(self, context: str, query: str) -> str:
"""Create response directly from medical context"""
if not context:
return "I don't have specific information about this topic in my medical database."
# Split context into sentences
sentences = [s.strip() + '.' for s in context.split('.') if len(s.strip()) > 15]
# Find sentences most relevant to the query
query_words = set(query.lower().split())
scored_sentences = []
for sentence in sentences[:20]: # Increased from 15 to 20
sentence_words = set(sentence.lower().split())
# Score based on word overlap
score = len(query_words.intersection(sentence_words))
if score > 0:
scored_sentences.append((score, sentence))
# Sort by relevance and take top sentences
scored_sentences.sort(reverse=True)
if scored_sentences:
# Take top 3-4 most relevant sentences for better coverage
response_sentences = [sent for _, sent in scored_sentences[:4]]
response = ' '.join(response_sentences)
else:
# Fallback to first few sentences
response = ' '.join(sentences[:3])
# Clean up the response
response = re.sub(r'\s+', ' ', response).strip()
return response[:500] + '...' if len(response) > 500 else response # Increased from 400
def clean_medical_response(self, response: str) -> str:
"""Clean and format medical response"""
# Remove training artifacts and unwanted symbols
response = re.sub(r'<[^>]*>', '', response) # Remove HTML-like tags
response = re.sub(r'▃+', '', response) # Remove block symbols
response = re.sub(r'FREETEXT|INTRO|/FREETEXT|/INTRO', '', response) # Remove training markers
response = re.sub(r'\s+', ' ', response) # Clean up whitespace
response = response.strip()
# Split into sentences and keep only complete, relevant ones
sentences = re.split(r'[.!?]+', response)
clean_sentences = []
for sentence in sentences:
sentence = sentence.strip()
# Skip very short sentences and those with artifacts
if len(sentence) > 15 and not any(artifact in sentence.lower() for artifact in ['▃', '<', '>', 'freetext']):
clean_sentences.append(sentence)
if len(clean_sentences) >= 2: # Limit to 2 good sentences
break
if clean_sentences:
cleaned = '. '.join(clean_sentences) + '.'
else:
# Fallback to first 150 characters if no good sentences found
cleaned = response[:150].strip()
if cleaned and not cleaned.endswith('.'):
cleaned += '.'
return cleaned
def fallback_response(self, context: str, query: str) -> str:
"""Fallback response when BioGPT fails"""
sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
if sentences:
response = sentences[0] + '.'
if len(sentences) > 1:
response += ' ' + sentences[1] + '.'
else:
response = context[:300] + '...'
return response
def handle_conversational_interactions(self, query: str) -> Optional[str]:
"""Handle conversational interactions"""
query_lower = query.lower().strip()
# Only match very specific greeting patterns (must be standalone)
if re.match(r'^\s*(hello|hi|hey)\s*$', query_lower):
return "👋 Hello! I'm your pediatric medical AI assistant. How can I help you with medical questions today?"
if re.match(r'^\s*(good morning|good afternoon|good evening)\s*$', query_lower):
return "👋 Hello! I'm your pediatric medical AI assistant. How can I help you with medical questions today?"
# Only match very specific thanks patterns (must be standalone)
if re.match(r'^\s*(thank you|thanks|thx)\s*$', query_lower):
return "🙏 You're welcome! I'm glad I could help. Remember to consult healthcare professionals for medical decisions. What else can I help you with?"
# Only match very specific goodbye patterns (must be standalone)
if re.match(r'^\s*(bye|goodbye)\s*$', query_lower):
return "👋 Goodbye! Take care and remember to consult healthcare professionals for any medical concerns. Stay healthy!"
return None
def chat(self, query: str) -> str:
"""Main chat function"""
if not query.strip():
return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
return conversational_response
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup and try again."
# Retrieve context
context = self.retrieve_medical_context(query)
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
# Generate response
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
# Format final response
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
return final_response,
r'^\s*(good morning|good afternoon|good evening)\s*$',
def chat(self, query: str) -> str:
"""Main chat function"""
if not query.strip():
return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
return conversational_response
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup and try again."
# Retrieve context
context = self.retrieve_medical_context(query)
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
# Generate response
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
# Format final response
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
return final_response,
r'^\s*(hi there|hello there)\s*$'
def chat(self, query: str) -> str:
"""Main chat function"""
if not query.strip():
return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
return conversational_response
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup and try again."
# Retrieve context
context = self.retrieve_medical_context(query)
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
# Generate response
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
# Format final response
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
return final_response
for pattern in greeting_patterns:
if re.match(pattern, query_lower):
return "👋 Hello! I'm your pediatric medical AI assistant. How can I help you with medical questions today?"
# Only match very specific thanks patterns (must be standalone)
thanks_patterns = [
r'^\s*(thank you|thanks|thx)\s*$'
]
def chat(self, query: str) -> str:
"""Main chat function"""
if not query.strip():
return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
return conversational_response
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup and try again."
# Retrieve context
context = self.retrieve_medical_context(query)
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
# Generate response
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
# Format final response
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
return final_response,
r'^\s*(thank you so much|thanks a lot)\s*$'
def chat(self, query: str) -> str:
"""Main chat function"""
if not query.strip():
return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
return conversational_response
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup and try again."
# Retrieve context
context = self.retrieve_medical_context(query)
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
# Generate response
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
# Format final response
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
return final_response
for pattern in thanks_patterns:
if re.match(pattern, query_lower):
return "🙏 You're welcome! I'm glad I could help. Remember to consult healthcare professionals for medical decisions. What else can I help you with?"
# Only match very specific goodbye patterns (must be standalone)
goodbye_patterns = [
r'^\s*(bye|goodbye)\s*$'
]
def chat(self, query: str) -> str:
"""Main chat function"""
if not query.strip():
return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
return conversational_response
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup and try again."
# Retrieve context
context = self.retrieve_medical_context(query)
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
# Generate response
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
# Format final response
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
return final_response,
r'^\s*(see you later|see ya)\s*$'
def chat(self, query: str) -> str:
"""Main chat function"""
if not query.strip():
return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
return conversational_response
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup and try again."
# Retrieve context
context = self.retrieve_medical_context(query)
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
# Generate response
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
# Format final response
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
return final_response,
r'^\s*(have a good day|take care)\s*$'
def chat(self, query: str) -> str:
"""Main chat function"""
if not query.strip():
return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
return conversational_response
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup and try again."
# Retrieve context
context = self.retrieve_medical_context(query)
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
# Generate response
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
# Format final response
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
return final_response
for pattern in goodbye_patterns:
if re.match(pattern, query_lower):
return "👋 Goodbye! Take care and remember to consult healthcare professionals for any medical concerns. Stay healthy!"
return None
def chat(self, query: str) -> str:
"""Main chat function"""
if not query.strip():
return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
return conversational_response
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup and try again."
# Retrieve context
context = self.retrieve_medical_context(query)
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
# Generate response
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
# Format final response
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
return final_response |