File size: 32,240 Bytes
8e3dd93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
import os
import re
import torch
import warnings
import numpy as np
import faiss
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    BitsAndBytesConfig
)
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Optional
import time
from datetime import datetime

# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')

class ColabBioGPTChatbot:
    def __init__(self, use_gpu=True, use_8bit=True):
        """Initialize BioGPT chatbot optimized for Hugging Face Spaces"""
        print("🏥 Initializing Medical Chatbot...")
        self.use_gpu = use_gpu
        self.use_8bit = use_8bit
        self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
        print(f"🖥️ Using device: {self.device}")
        
        self.tokenizer = None
        self.model = None
        self.knowledge_chunks = []
        self.conversation_history = []
        self.embedding_model = None
        self.faiss_index = None
        self.faiss_ready = False
        self.use_embeddings = True
        
        # Initialize components
        self.setup_biogpt()
        self.load_sentence_transformer()
        
    def setup_biogpt(self):
        """Setup BioGPT model with fallback to base BioGPT if Large fails"""
        print("🧠 Loading BioGPT model...")
        
        try:
            # Try BioGPT-Large first
            model_name = "microsoft/BioGPT-Large"
            print(f"Attempting to load {model_name}...")
            
            if self.use_8bit and self.device == "cuda":
                quantization_config = BitsAndBytesConfig(
                    load_in_8bit=True,
                    llm_int8_threshold=6.0,
                    llm_int8_has_fp16_weight=False,
                )
            else:
                quantization_config = None
            
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
                
            self.model = AutoModelForCausalLM.from_pretrained(
                model_name,
                quantization_config=quantization_config,
                torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
                device_map="auto" if self.device == "cuda" else None,
                trust_remote_code=True,
                low_cpu_mem_usage=True
            )
            
            if self.device == "cuda" and quantization_config is None:
                self.model = self.model.to(self.device)
                
            print("✅ BioGPT-Large loaded successfully!")
            
        except Exception as e:
            print(f"❌ BioGPT-Large loading failed: {e}")
            print("🔁 Falling back to base BioGPT...")
            self.setup_fallback_biogpt()
    
    def setup_fallback_biogpt(self):
        """Fallback to microsoft/BioGPT if BioGPT-Large fails"""
        try:
            model_name = "microsoft/BioGPT"
            print(f"Loading fallback model: {model_name}")
            
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
                
            self.model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float32,
                trust_remote_code=True,
                low_cpu_mem_usage=True
            )
            
            if self.device == "cuda":
                self.model = self.model.to(self.device)
                
            print("✅ Base BioGPT model loaded successfully!")
            
        except Exception as e:
            print(f"❌ Failed to load fallback BioGPT: {e}")
            self.model = None
            self.tokenizer = None
    
    def load_sentence_transformer(self):
        """Load sentence transformer for embeddings"""
        try:
            print("🔮 Loading sentence transformer...")
            self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
            
            # Initialize FAISS index (will be populated when data is loaded)
            embedding_dim = 384  # Dimension for all-MiniLM-L6-v2
            self.faiss_index = faiss.IndexFlatL2(embedding_dim)
            self.faiss_ready = True
            print("✅ Sentence transformer and FAISS index ready!")
            
        except Exception as e:
            print(f"❌ Failed to load sentence transformer: {e}")
            self.use_embeddings = False
            self.faiss_ready = False

    def load_medical_data(self, file_path):
        """Load and process medical data"""
        print(f"📖 Loading medical data from {file_path}...")
        
        try:
            if not os.path.exists(file_path):
                raise FileNotFoundError(f"File {file_path} not found")
                
            with open(file_path, 'r', encoding='utf-8') as f:
                text = f.read()
            print(f"📄 File loaded: {len(text):,} characters")
            
        except Exception as e:
            print(f"❌ Error loading file: {e}")
            raise ValueError(f"Failed to load medical data: {e}")
        
        # Create chunks
        print("📝 Creating medical chunks...")
        chunks = self.create_medical_chunks(text)
        print(f"📋 Created {len(chunks)} medical chunks")
        
        self.knowledge_chunks = chunks
        
        # Generate embeddings if available
        if self.use_embeddings and self.embedding_model and self.faiss_ready:
            try:
                self.generate_embeddings_with_progress(chunks)
                print("✅ Medical data loaded with embeddings!")
            except Exception as e:
                print(f"⚠️ Embedding generation failed: {e}")
                print("✅ Medical data loaded (keyword search mode)")
        else:
            print("✅ Medical data loaded (keyword search mode)")
    
    def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
        """Create medically-optimized text chunks"""
        chunks = []
        
        # Split by paragraphs first
        paragraphs = [p.strip() for p in text.split('\n\n') if len(p.strip()) > 50]
        
        chunk_id = 0
        for paragraph in paragraphs:
            if len(paragraph.split()) <= chunk_size:
                chunks.append({
                    'id': chunk_id,
                    'text': paragraph,
                    'medical_focus': self.identify_medical_focus(paragraph)
                })
                chunk_id += 1
            else:
                # Split large paragraphs by sentences
                sentences = re.split(r'[.!?]+', paragraph)
                current_chunk = ""
                
                for sentence in sentences:
                    sentence = sentence.strip()
                    if not sentence:
                        continue
                    
                    if len(current_chunk.split()) + len(sentence.split()) <= chunk_size:
                        current_chunk += sentence + ". "
                    else:
                        if current_chunk.strip():
                            chunks.append({
                                'id': chunk_id,
                                'text': current_chunk.strip(),
                                'medical_focus': self.identify_medical_focus(current_chunk)
                            })
                            chunk_id += 1
                        current_chunk = sentence + ". "
                
                if current_chunk.strip():
                    chunks.append({
                        'id': chunk_id,
                        'text': current_chunk.strip(),
                        'medical_focus': self.identify_medical_focus(current_chunk)
                    })
                    chunk_id += 1
        
        return chunks
    
    def identify_medical_focus(self, text: str) -> str:
        """Identify the medical focus of a text chunk"""
        text_lower = text.lower()
        
        categories = {
            'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
            'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
            'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
            'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
            'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
        }
        
        for category, keywords in categories.items():
            if any(keyword in text_lower for keyword in keywords):
                return category
        
        return 'general_medical'
    
    def generate_embeddings_with_progress(self, chunks: List[Dict]):
        """Generate embeddings and add to FAISS index"""
        print("🔮 Generating embeddings...")
        
        try:
            texts = [chunk['text'] for chunk in chunks]
            
            # Generate embeddings in batches
            batch_size = 32
            all_embeddings = []
            
            for i in range(0, len(texts), batch_size):
                batch_texts = texts[i:i+batch_size]
                batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False)
                all_embeddings.extend(batch_embeddings)
                
                progress = min(i + batch_size, len(texts))
                print(f"   Progress: {progress}/{len(texts)} chunks processed", end='\r')
            
            print(f"\n   ✅ Generated embeddings for {len(texts)} chunks")
            
            # Add to FAISS index
            embeddings_array = np.array(all_embeddings).astype('float32')
            self.faiss_index.add(embeddings_array)
            print("✅ Embeddings added to FAISS index!")
            
        except Exception as e:
            print(f"❌ Embedding generation failed: {e}")
            raise
    
    def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
        """Retrieve relevant medical context"""
        if self.use_embeddings and self.embedding_model and self.faiss_ready and self.faiss_index.ntotal > 0:
            try:
                # Generate query embedding
                query_embedding = self.embedding_model.encode([query])
                
                # Search FAISS index
                distances, indices = self.faiss_index.search(
                    np.array(query_embedding).astype('float32'), 
                    min(n_results, self.faiss_index.ntotal)
                )
                
                # Get relevant chunks
                context_chunks = []
                for idx in indices[0]:
                    if idx != -1 and idx < len(self.knowledge_chunks):
                        context_chunks.append(self.knowledge_chunks[idx]['text'])
                
                if context_chunks:
                    return context_chunks
                    
            except Exception as e:
                print(f"⚠️ Embedding search failed: {e}")
        
        # Fallback to keyword search
        return self.keyword_search_medical(query, n_results)
    
    def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
        """Medical-focused keyword search"""
        if not self.knowledge_chunks:
            return []
        
        query_words = set(query.lower().split())
        chunk_scores = []
        
        for chunk_info in self.knowledge_chunks:
            chunk_text = chunk_info['text']
            chunk_words = set(chunk_text.lower().split())
            
            # Calculate relevance score
            word_overlap = len(query_words.intersection(chunk_words))
            base_score = word_overlap / len(query_words) if query_words else 0
            
            # Boost medical content
            medical_boost = 0
            if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
                medical_boost = 0.3
            
            final_score = base_score + medical_boost
            
            if final_score > 0:
                chunk_scores.append((final_score, chunk_text))
        
        # Return top matches
        chunk_scores.sort(reverse=True)
        return [chunk for _, chunk in chunk_scores[:n_results]]
    
    def generate_biogpt_response(self, context: str, query: str) -> str:
        """Generate medical response using context directly (BioGPT bypass)"""
        # BioGPT is giving poor responses, so use the retrieved context directly
        return self.create_context_based_response(context, query)
    
    def create_context_based_response(self, context: str, query: str) -> str:
        """Create response directly from medical context"""
        if not context:
            return "I don't have specific information about this topic in my medical database."
        
        # Split context into sentences
        sentences = [s.strip() + '.' for s in context.split('.') if len(s.strip()) > 15]
        
        # Find sentences most relevant to the query
        query_words = set(query.lower().split())
        scored_sentences = []
        
        for sentence in sentences[:20]:  # Increased from 15 to 20
            sentence_words = set(sentence.lower().split())
            # Score based on word overlap
            score = len(query_words.intersection(sentence_words))
            if score > 0:
                scored_sentences.append((score, sentence))
        
        # Sort by relevance and take top sentences
        scored_sentences.sort(reverse=True)
        
        if scored_sentences:
            # Take top 3-4 most relevant sentences for better coverage
            response_sentences = [sent for _, sent in scored_sentences[:4]]
            response = ' '.join(response_sentences)
        else:
            # Fallback to first few sentences
            response = ' '.join(sentences[:3])
        
        # Clean up the response
        response = re.sub(r'\s+', ' ', response).strip()
        
        return response[:500] + '...' if len(response) > 500 else response  # Increased from 400
    
    def clean_medical_response(self, response: str) -> str:
        """Clean and format medical response"""
        # Remove training artifacts and unwanted symbols
        response = re.sub(r'<[^>]*>', '', response)  # Remove HTML-like tags
        response = re.sub(r'▃+', '', response)  # Remove block symbols
        response = re.sub(r'FREETEXT|INTRO|/FREETEXT|/INTRO', '', response)  # Remove training markers
        response = re.sub(r'\s+', ' ', response)  # Clean up whitespace
        response = response.strip()
        
        # Split into sentences and keep only complete, relevant ones
        sentences = re.split(r'[.!?]+', response)
        clean_sentences = []
        
        for sentence in sentences:
            sentence = sentence.strip()
            # Skip very short sentences and those with artifacts
            if len(sentence) > 15 and not any(artifact in sentence.lower() for artifact in ['▃', '<', '>', 'freetext']):
                clean_sentences.append(sentence)
            if len(clean_sentences) >= 2:  # Limit to 2 good sentences
                break
        
        if clean_sentences:
            cleaned = '. '.join(clean_sentences) + '.'
        else:
            # Fallback to first 150 characters if no good sentences found
            cleaned = response[:150].strip()
            if cleaned and not cleaned.endswith('.'):
                cleaned += '.'
        
        return cleaned
    
    def fallback_response(self, context: str, query: str) -> str:
        """Fallback response when BioGPT fails"""
        sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
        
        if sentences:
            response = sentences[0] + '.'
            if len(sentences) > 1:
                response += ' ' + sentences[1] + '.'
        else:
            response = context[:300] + '...'
        
        return response
    
    def handle_conversational_interactions(self, query: str) -> Optional[str]:
        """Handle conversational interactions"""
        query_lower = query.lower().strip()
        
        # Only match very specific greeting patterns (must be standalone)
        if re.match(r'^\s*(hello|hi|hey)\s*$', query_lower):
            return "👋 Hello! I'm your pediatric medical AI assistant. How can I help you with medical questions today?"
        
        if re.match(r'^\s*(good morning|good afternoon|good evening)\s*$', query_lower):
            return "👋 Hello! I'm your pediatric medical AI assistant. How can I help you with medical questions today?"
        
        # Only match very specific thanks patterns (must be standalone)
        if re.match(r'^\s*(thank you|thanks|thx)\s*$', query_lower):
            return "🙏 You're welcome! I'm glad I could help. Remember to consult healthcare professionals for medical decisions. What else can I help you with?"
        
        # Only match very specific goodbye patterns (must be standalone)
        if re.match(r'^\s*(bye|goodbye)\s*$', query_lower):
            return "👋 Goodbye! Take care and remember to consult healthcare professionals for any medical concerns. Stay healthy!"
        
        return None
    
    def chat(self, query: str) -> str:
        """Main chat function"""
        if not query.strip():
            return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
        
        # Handle conversational interactions
        conversational_response = self.handle_conversational_interactions(query)
        if conversational_response:
            return conversational_response
        
        if not self.knowledge_chunks:
            return "Please load medical data first to access the medical knowledge base."
        
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup and try again."
        
        # Retrieve context
        context = self.retrieve_medical_context(query)
        
        if not context:
            return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
        
        # Generate response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, query)
        
        # Format final response
        final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
        
        return final_response,
        r'^\s*(good morning|good afternoon|good evening)\s*$',
    
    def chat(self, query: str) -> str:
        """Main chat function"""
        if not query.strip():
            return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
        
        # Handle conversational interactions
        conversational_response = self.handle_conversational_interactions(query)
        if conversational_response:
            return conversational_response
        
        if not self.knowledge_chunks:
            return "Please load medical data first to access the medical knowledge base."
        
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup and try again."
        
        # Retrieve context
        context = self.retrieve_medical_context(query)
        
        if not context:
            return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
        
        # Generate response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, query)
        
        # Format final response
        final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
        
        return final_response,
        r'^\s*(hi there|hello there)\s*$'
    
    def chat(self, query: str) -> str:
        """Main chat function"""
        if not query.strip():
            return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
        
        # Handle conversational interactions
        conversational_response = self.handle_conversational_interactions(query)
        if conversational_response:
            return conversational_response
        
        if not self.knowledge_chunks:
            return "Please load medical data first to access the medical knowledge base."
        
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup and try again."
        
        # Retrieve context
        context = self.retrieve_medical_context(query)
        
        if not context:
            return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
        
        # Generate response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, query)
        
        # Format final response
        final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
        
        return final_response
        
        
        for pattern in greeting_patterns:
            if re.match(pattern, query_lower):
                return "👋 Hello! I'm your pediatric medical AI assistant. How can I help you with medical questions today?"
        
        # Only match very specific thanks patterns (must be standalone)
        thanks_patterns = [
            r'^\s*(thank you|thanks|thx)\s*$'
        ]
    
    def chat(self, query: str) -> str:
        """Main chat function"""
        if not query.strip():
            return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
        
        # Handle conversational interactions
        conversational_response = self.handle_conversational_interactions(query)
        if conversational_response:
            return conversational_response
        
        if not self.knowledge_chunks:
            return "Please load medical data first to access the medical knowledge base."
        
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup and try again."
        
        # Retrieve context
        context = self.retrieve_medical_context(query)
        
        if not context:
            return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
        
        # Generate response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, query)
        
        # Format final response
        final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
        
        return final_response,
        r'^\s*(thank you so much|thanks a lot)\s*$'
    
    def chat(self, query: str) -> str:
        """Main chat function"""
        if not query.strip():
            return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
        
        # Handle conversational interactions
        conversational_response = self.handle_conversational_interactions(query)
        if conversational_response:
            return conversational_response
        
        if not self.knowledge_chunks:
            return "Please load medical data first to access the medical knowledge base."
        
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup and try again."
        
        # Retrieve context
        context = self.retrieve_medical_context(query)
        
        if not context:
            return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
        
        # Generate response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, query)
        
        # Format final response
        final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
        
        return final_response
        
        
        for pattern in thanks_patterns:
            if re.match(pattern, query_lower):
                return "🙏 You're welcome! I'm glad I could help. Remember to consult healthcare professionals for medical decisions. What else can I help you with?"
        
        # Only match very specific goodbye patterns (must be standalone)
        goodbye_patterns = [
        r'^\s*(bye|goodbye)\s*$'
        ]

    def chat(self, query: str) -> str:
        """Main chat function"""
        if not query.strip():
            return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
        
        # Handle conversational interactions
        conversational_response = self.handle_conversational_interactions(query)
        if conversational_response:
            return conversational_response
        
        if not self.knowledge_chunks:
            return "Please load medical data first to access the medical knowledge base."
        
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup and try again."
        
        # Retrieve context
        context = self.retrieve_medical_context(query)
        
        if not context:
            return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
        
        # Generate response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, query)
        
        # Format final response
        final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
        
        return final_response,
        r'^\s*(see you later|see ya)\s*$'
    
    def chat(self, query: str) -> str:
        """Main chat function"""
        if not query.strip():
            return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
        
        # Handle conversational interactions
        conversational_response = self.handle_conversational_interactions(query)
        if conversational_response:
            return conversational_response
        
        if not self.knowledge_chunks:
            return "Please load medical data first to access the medical knowledge base."
        
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup and try again."
        
        # Retrieve context
        context = self.retrieve_medical_context(query)
        
        if not context:
            return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
        
        # Generate response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, query)
        
        # Format final response
        final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
        
        return final_response,
        r'^\s*(have a good day|take care)\s*$'
    
    def chat(self, query: str) -> str:
        """Main chat function"""
        if not query.strip():
            return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
        
        # Handle conversational interactions
        conversational_response = self.handle_conversational_interactions(query)
        if conversational_response:
            return conversational_response
        
        if not self.knowledge_chunks:
            return "Please load medical data first to access the medical knowledge base."
        
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup and try again."
        
        # Retrieve context
        context = self.retrieve_medical_context(query)
        
        if not context:
            return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
        
        # Generate response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, query)
        
        # Format final response
        final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
        
        return final_response
        
        
        for pattern in goodbye_patterns:
            if re.match(pattern, query_lower):
                return "👋 Goodbye! Take care and remember to consult healthcare professionals for any medical concerns. Stay healthy!"
        
        return None
        
    
    def chat(self, query: str) -> str:
        """Main chat function"""
        if not query.strip():
            return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
        
        # Handle conversational interactions
        conversational_response = self.handle_conversational_interactions(query)
        if conversational_response:
            return conversational_response
        
        if not self.knowledge_chunks:
            return "Please load medical data first to access the medical knowledge base."
        
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup and try again."
        
        # Retrieve context
        context = self.retrieve_medical_context(query)
        
        if not context:
            return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
        
        # Generate response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, query)
        
        # Format final response
        final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
        
        return final_response