Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +98 -0
- medical_chatbot.py +608 -0
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from medical_chatbot import ColabBioGPTChatbot
|
4 |
+
|
5 |
+
# Instantiate the chatbot with CPU settings for HF Spaces
|
6 |
+
chatbot = ColabBioGPTChatbot(use_gpu=False, use_8bit=False)
|
7 |
+
|
8 |
+
medical_file_uploaded = False
|
9 |
+
|
10 |
+
def upload_and_initialize(file):
|
11 |
+
global medical_file_uploaded
|
12 |
+
if file is None:
|
13 |
+
return (
|
14 |
+
"❌ Please upload a medical .txt file.",
|
15 |
+
gr.Chatbot(visible=False),
|
16 |
+
gr.Textbox(visible=False),
|
17 |
+
gr.Button(visible=False)
|
18 |
+
)
|
19 |
+
|
20 |
+
# Handle the file path correctly for Gradio
|
21 |
+
file_path = file.name if hasattr(file, 'name') else file
|
22 |
+
success = chatbot.load_medical_data(file_path)
|
23 |
+
|
24 |
+
if success:
|
25 |
+
medical_file_uploaded = True
|
26 |
+
model_name = type(chatbot.model).__name__ if chatbot.model else "Fallback Model"
|
27 |
+
status = f"✅ Medical data processed successfully!\n📦 Model in use: {model_name}"
|
28 |
+
return (
|
29 |
+
status,
|
30 |
+
gr.Chatbot(visible=True),
|
31 |
+
gr.Textbox(visible=True),
|
32 |
+
gr.Button(visible=True)
|
33 |
+
)
|
34 |
+
else:
|
35 |
+
return (
|
36 |
+
"❌ Failed to process uploaded file.",
|
37 |
+
gr.Chatbot(visible=False),
|
38 |
+
gr.Textbox(visible=False),
|
39 |
+
gr.Button(visible=False)
|
40 |
+
)
|
41 |
+
|
42 |
+
def generate_response(user_input):
|
43 |
+
if not medical_file_uploaded:
|
44 |
+
return "⚠️ Please upload and initialize medical data first."
|
45 |
+
return chatbot.chat(user_input)
|
46 |
+
|
47 |
+
# Create the Gradio interface
|
48 |
+
with gr.Blocks(title="🩺 Pediatric Medical Assistant") as demo:
|
49 |
+
gr.Markdown("## 🩺 Pediatric Medical Assistant\nUpload a medical .txt file and start chatting.")
|
50 |
+
|
51 |
+
with gr.Row():
|
52 |
+
file_input = gr.File(label="📁 Upload Medical File", file_types=[".txt"])
|
53 |
+
upload_btn = gr.Button("📤 Upload and Initialize")
|
54 |
+
|
55 |
+
upload_output = gr.Textbox(label="System Status", interactive=False)
|
56 |
+
|
57 |
+
chatbot_ui = gr.Chatbot(label="🧠 Chat History", visible=False)
|
58 |
+
user_input = gr.Textbox(
|
59 |
+
placeholder="Ask a pediatric health question...",
|
60 |
+
lines=2,
|
61 |
+
show_label=False,
|
62 |
+
visible=False
|
63 |
+
)
|
64 |
+
submit_btn = gr.Button("Send", visible=False)
|
65 |
+
|
66 |
+
upload_btn.click(
|
67 |
+
fn=upload_and_initialize,
|
68 |
+
inputs=[file_input],
|
69 |
+
outputs=[upload_output, chatbot_ui, user_input, submit_btn]
|
70 |
+
)
|
71 |
+
|
72 |
+
def on_submit(user_message, chat_history):
|
73 |
+
if not user_message.strip():
|
74 |
+
return "", chat_history
|
75 |
+
|
76 |
+
bot_response = generate_response(user_message)
|
77 |
+
chat_history.append((user_message, bot_response))
|
78 |
+
return "", chat_history
|
79 |
+
|
80 |
+
user_input.submit(
|
81 |
+
fn=on_submit,
|
82 |
+
inputs=[user_input, chatbot_ui],
|
83 |
+
outputs=[user_input, chatbot_ui]
|
84 |
+
)
|
85 |
+
submit_btn.click(
|
86 |
+
fn=on_submit,
|
87 |
+
inputs=[user_input, chatbot_ui],
|
88 |
+
outputs=[user_input, chatbot_ui]
|
89 |
+
)
|
90 |
+
|
91 |
+
# Launch with proper settings for Hugging Face Spaces
|
92 |
+
if __name__ == "__main__":
|
93 |
+
demo.launch(
|
94 |
+
share=False, # Don't need share=True on HF Spaces
|
95 |
+
server_name="0.0.0.0", # Listen on all interfaces for HF Spaces
|
96 |
+
server_port=7860, # Standard port for HF Spaces
|
97 |
+
show_error=True # Show detailed errors for debugging
|
98 |
+
)
|
medical_chatbot.py
ADDED
@@ -0,0 +1,608 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Setup and Installation
|
2 |
+
|
3 |
+
import torch
|
4 |
+
print("🖥️ System Check:")
|
5 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
6 |
+
if torch.cuda.is_available():
|
7 |
+
print(f"GPU device: {torch.cuda.get_device_name(0)}")
|
8 |
+
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
|
9 |
+
else:
|
10 |
+
print("⚠️ No GPU detected - BioGPT will run on CPU")
|
11 |
+
|
12 |
+
print("\n🔧 Loading required packages...")
|
13 |
+
|
14 |
+
# Import Libraries
|
15 |
+
|
16 |
+
import os
|
17 |
+
import re
|
18 |
+
import torch
|
19 |
+
import warnings
|
20 |
+
import numpy as np
|
21 |
+
import faiss # FAISS for vector search
|
22 |
+
from transformers import (
|
23 |
+
AutoTokenizer,
|
24 |
+
AutoModelForCausalLM,
|
25 |
+
pipeline,
|
26 |
+
BitsAndBytesConfig
|
27 |
+
)
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
from typing import List, Dict, Optional
|
30 |
+
import time
|
31 |
+
from datetime import datetime
|
32 |
+
import json
|
33 |
+
import pickle
|
34 |
+
|
35 |
+
# Suppress warnings for cleaner output
|
36 |
+
warnings.filterwarnings('ignore')
|
37 |
+
|
38 |
+
print("📚 Libraries imported successfully!")
|
39 |
+
print(f"🔍 FAISS version: {faiss.__version__}")
|
40 |
+
print("🎯 Using FAISS for vector search")
|
41 |
+
|
42 |
+
# BioGPT Medical Chatbot Class
|
43 |
+
|
44 |
+
class ColabBioGPTChatbot:
|
45 |
+
def __init__(self, use_gpu=True, use_8bit=True):
|
46 |
+
"""Initialize BioGPT chatbot optimized for deployment"""
|
47 |
+
print("🏥 Initializing Professional BioGPT Medical Chatbot...")
|
48 |
+
|
49 |
+
# Force CPU for HF Spaces if needed
|
50 |
+
self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
|
51 |
+
self.use_8bit = use_8bit and torch.cuda.is_available()
|
52 |
+
|
53 |
+
print(f"🖥️ Using device: {self.device}")
|
54 |
+
if self.use_8bit:
|
55 |
+
print("💾 Using 8-bit quantization for memory efficiency")
|
56 |
+
|
57 |
+
# Setup components
|
58 |
+
self.setup_embeddings()
|
59 |
+
self.setup_faiss_index()
|
60 |
+
self.setup_biogpt()
|
61 |
+
|
62 |
+
# Conversation tracking
|
63 |
+
self.conversation_history = []
|
64 |
+
self.knowledge_chunks = []
|
65 |
+
|
66 |
+
print("✅ BioGPT Medical Chatbot ready for professional medical assistance!")
|
67 |
+
|
68 |
+
def setup_embeddings(self):
|
69 |
+
"""Setup medical-optimized embeddings"""
|
70 |
+
print("🔧 Loading medical embeddings...")
|
71 |
+
try:
|
72 |
+
# Use a smaller, more efficient model for deployment
|
73 |
+
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
74 |
+
self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
|
75 |
+
print(f"✅ Embeddings loaded (dimension: {self.embedding_dim})")
|
76 |
+
self.use_embeddings = True
|
77 |
+
except Exception as e:
|
78 |
+
print(f"⚠️ Embeddings failed: {e}")
|
79 |
+
self.embedding_model = None
|
80 |
+
self.embedding_dim = 384
|
81 |
+
self.use_embeddings = False
|
82 |
+
|
83 |
+
def setup_faiss_index(self):
|
84 |
+
"""Setup faiss for CPU-based vector search"""
|
85 |
+
print("🔧 Setting up FAISS vector database...")
|
86 |
+
try:
|
87 |
+
print('Using CPU FAISS index for maximum compatibility')
|
88 |
+
self.faiss_index = faiss.IndexFlatIP(self.embedding_dim)
|
89 |
+
self.use_gpu_faiss = False
|
90 |
+
self.faiss_ready = True
|
91 |
+
self.collection = self.faiss_index
|
92 |
+
print("✅ FAISS CPU index initialized successfully")
|
93 |
+
except Exception as e:
|
94 |
+
print(f"❌ FAISS setup failed: {e}")
|
95 |
+
self.faiss_index = None
|
96 |
+
self.faiss_ready = False
|
97 |
+
self.collection = None
|
98 |
+
|
99 |
+
def setup_biogpt(self):
|
100 |
+
"""Setup BioGPT model with optimizations for deployment"""
|
101 |
+
print("🧠 Loading BioGPT model...")
|
102 |
+
|
103 |
+
# Try BioGPT first, fallback to smaller models if needed
|
104 |
+
model_options = [
|
105 |
+
"microsoft/BioGPT-Large",
|
106 |
+
"microsoft/BioGPT", # Smaller version
|
107 |
+
"microsoft/DialoGPT-medium", # Fallback
|
108 |
+
"gpt2" # Final fallback
|
109 |
+
]
|
110 |
+
|
111 |
+
for model_name in model_options:
|
112 |
+
try:
|
113 |
+
print(f" Attempting to load: {model_name}")
|
114 |
+
|
115 |
+
# Setup quantization config for memory efficiency
|
116 |
+
if self.use_8bit and "BioGPT" in model_name:
|
117 |
+
quantization_config = BitsAndBytesConfig(
|
118 |
+
load_in_8bit=True,
|
119 |
+
llm_int8_threshold=6.0,
|
120 |
+
llm_int8_has_fp16_weight=False,
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
quantization_config = None
|
124 |
+
|
125 |
+
# Load tokenizer
|
126 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
127 |
+
|
128 |
+
# Set padding token
|
129 |
+
if self.tokenizer.pad_token is None:
|
130 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
131 |
+
|
132 |
+
# Load model with proper settings for deployment
|
133 |
+
start_time = time.time()
|
134 |
+
|
135 |
+
model_kwargs = {
|
136 |
+
"torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
|
137 |
+
"trust_remote_code": True,
|
138 |
+
"low_cpu_mem_usage": True, # Important for deployment
|
139 |
+
}
|
140 |
+
|
141 |
+
if quantization_config:
|
142 |
+
model_kwargs["quantization_config"] = quantization_config
|
143 |
+
model_kwargs["device_map"] = "auto"
|
144 |
+
|
145 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
146 |
+
model_name,
|
147 |
+
**model_kwargs
|
148 |
+
)
|
149 |
+
|
150 |
+
# Move to device if not using device_map
|
151 |
+
if self.device == "cuda" and quantization_config is None:
|
152 |
+
self.model = self.model.to(self.device)
|
153 |
+
|
154 |
+
load_time = time.time() - start_time
|
155 |
+
print(f"✅ {model_name} loaded successfully! ({load_time:.1f} seconds)")
|
156 |
+
|
157 |
+
# Test the model
|
158 |
+
self.test_model()
|
159 |
+
break # Success, exit the loop
|
160 |
+
|
161 |
+
except Exception as e:
|
162 |
+
print(f"❌ {model_name} loading failed: {e}")
|
163 |
+
if model_name == model_options[-1]: # Last option failed
|
164 |
+
print("❌ All models failed to load")
|
165 |
+
self.model = None
|
166 |
+
self.tokenizer = None
|
167 |
+
continue
|
168 |
+
|
169 |
+
def test_model(self):
|
170 |
+
"""Test the loaded model with a simple query"""
|
171 |
+
print("🧪 Testing model...")
|
172 |
+
try:
|
173 |
+
test_prompt = "Fever in children can be caused by"
|
174 |
+
inputs = self.tokenizer(test_prompt, return_tensors="pt")
|
175 |
+
|
176 |
+
if self.device == "cuda":
|
177 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
178 |
+
|
179 |
+
with torch.no_grad():
|
180 |
+
outputs = self.model.generate(
|
181 |
+
**inputs,
|
182 |
+
max_new_tokens=20,
|
183 |
+
do_sample=True,
|
184 |
+
temperature=0.7,
|
185 |
+
pad_token_id=self.tokenizer.eos_token_id
|
186 |
+
)
|
187 |
+
|
188 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
189 |
+
print(f"✅ Model test successful!")
|
190 |
+
print(f" Test response: {response}")
|
191 |
+
|
192 |
+
except Exception as e:
|
193 |
+
print(f"⚠️ Model test failed: {e}")
|
194 |
+
|
195 |
+
def load_medical_data(self, file_path: str):
|
196 |
+
"""Load and process medical data with progress tracking"""
|
197 |
+
print(f"📖 Loading medical data from {file_path}...")
|
198 |
+
|
199 |
+
try:
|
200 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
201 |
+
text = f.read()
|
202 |
+
print(f"📄 File loaded: {len(text):,} characters")
|
203 |
+
except FileNotFoundError:
|
204 |
+
print(f"❌ File {file_path} not found!")
|
205 |
+
return False
|
206 |
+
except Exception as e:
|
207 |
+
print(f"❌ Error loading file: {e}")
|
208 |
+
return False
|
209 |
+
|
210 |
+
# Create chunks optimized for medical content
|
211 |
+
print("📝 Creating medical-optimized chunks...")
|
212 |
+
chunks = self.create_medical_chunks(text)
|
213 |
+
print(f"📋 Created {len(chunks)} medical chunks")
|
214 |
+
|
215 |
+
self.knowledge_chunks = chunks
|
216 |
+
|
217 |
+
# Generate embeddings with progress and add to FAISS index
|
218 |
+
if self.use_embeddings and self.embedding_model and self.faiss_ready:
|
219 |
+
return self.generate_embeddings_with_progress(chunks)
|
220 |
+
|
221 |
+
print("✅ Medical data loaded (text search mode)")
|
222 |
+
return True
|
223 |
+
|
224 |
+
def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
|
225 |
+
"""Create medically-optimized text chunks"""
|
226 |
+
chunks = []
|
227 |
+
|
228 |
+
# Split by medical sections first
|
229 |
+
medical_sections = self.split_by_medical_sections(text)
|
230 |
+
|
231 |
+
chunk_id = 0
|
232 |
+
for section in medical_sections:
|
233 |
+
if len(section.split()) > chunk_size:
|
234 |
+
# Split large sections by sentences
|
235 |
+
sentences = re.split(r'[.!?]+', section)
|
236 |
+
current_chunk = ""
|
237 |
+
|
238 |
+
for sentence in sentences:
|
239 |
+
sentence = sentence.strip()
|
240 |
+
if not sentence:
|
241 |
+
continue
|
242 |
+
|
243 |
+
if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
|
244 |
+
current_chunk += sentence + ". "
|
245 |
+
else:
|
246 |
+
if current_chunk.strip():
|
247 |
+
chunks.append({
|
248 |
+
'id': chunk_id,
|
249 |
+
'text': current_chunk.strip(),
|
250 |
+
'medical_focus': self.identify_medical_focus(current_chunk)
|
251 |
+
})
|
252 |
+
chunk_id += 1
|
253 |
+
current_chunk = sentence + ". "
|
254 |
+
|
255 |
+
if current_chunk.strip():
|
256 |
+
chunks.append({
|
257 |
+
'id': chunk_id,
|
258 |
+
'text': current_chunk.strip(),
|
259 |
+
'medical_focus': self.identify_medical_focus(current_chunk)
|
260 |
+
})
|
261 |
+
chunk_id += 1
|
262 |
+
else:
|
263 |
+
chunks.append({
|
264 |
+
'id': chunk_id,
|
265 |
+
'text': section,
|
266 |
+
'medical_focus': self.identify_medical_focus(section)
|
267 |
+
})
|
268 |
+
chunk_id += 1
|
269 |
+
|
270 |
+
return chunks
|
271 |
+
|
272 |
+
def split_by_medical_sections(self, text: str) -> List[str]:
|
273 |
+
"""Split text by medical sections"""
|
274 |
+
# Look for medical section headers
|
275 |
+
section_patterns = [
|
276 |
+
r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
|
277 |
+
r'\n\s*\d+\.\s+', # Numbered sections
|
278 |
+
r'\n\n+' # Paragraph breaks
|
279 |
+
]
|
280 |
+
|
281 |
+
sections = [text]
|
282 |
+
for pattern in section_patterns:
|
283 |
+
new_sections = []
|
284 |
+
for section in sections:
|
285 |
+
splits = re.split(pattern, section, flags=re.IGNORECASE)
|
286 |
+
new_sections.extend([s.strip() for s in splits if len(s.strip()) > 100])
|
287 |
+
sections = new_sections
|
288 |
+
|
289 |
+
return sections
|
290 |
+
|
291 |
+
def identify_medical_focus(self, text: str) -> str:
|
292 |
+
"""Identify the medical focus of a text chunk"""
|
293 |
+
text_lower = text.lower()
|
294 |
+
|
295 |
+
# Medical categories
|
296 |
+
categories = {
|
297 |
+
'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
|
298 |
+
'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
|
299 |
+
'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
|
300 |
+
'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
|
301 |
+
'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
|
302 |
+
}
|
303 |
+
|
304 |
+
for category, keywords in categories.items():
|
305 |
+
if any(keyword in text_lower for keyword in keywords):
|
306 |
+
return category
|
307 |
+
|
308 |
+
return 'general_medical'
|
309 |
+
|
310 |
+
def generate_embeddings_with_progress(self, chunks: List[Dict]) -> bool:
|
311 |
+
"""Generate embeddings with progress tracking and add to FAISS index"""
|
312 |
+
print("🔮 Generating medical embeddings and adding to FAISS index...")
|
313 |
+
|
314 |
+
if not self.embedding_model or not self.faiss_index:
|
315 |
+
print("❌ Embedding model or FAISS index not available.")
|
316 |
+
return False
|
317 |
+
|
318 |
+
try:
|
319 |
+
texts = [chunk['text'] for chunk in chunks]
|
320 |
+
|
321 |
+
# Generate embeddings in batches with progress
|
322 |
+
batch_size = 32
|
323 |
+
all_embeddings = []
|
324 |
+
|
325 |
+
for i in range(0, len(texts), batch_size):
|
326 |
+
batch_texts = texts[i:i+batch_size]
|
327 |
+
batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False)
|
328 |
+
all_embeddings.extend(batch_embeddings)
|
329 |
+
|
330 |
+
# Show progress
|
331 |
+
progress = min(i + batch_size, len(texts))
|
332 |
+
print(f" Progress: {progress}/{len(texts)} chunks processed", end='\r')
|
333 |
+
|
334 |
+
print(f"\n ✅ Generated embeddings for {len(texts)} chunks")
|
335 |
+
|
336 |
+
# Add embeddings to FAISS index
|
337 |
+
print("💾 Adding embeddings to FAISS index...")
|
338 |
+
self.faiss_index.add(np.array(all_embeddings))
|
339 |
+
|
340 |
+
print("✅ Medical embeddings added to FAISS index successfully!")
|
341 |
+
return True
|
342 |
+
|
343 |
+
except Exception as e:
|
344 |
+
print(f"❌ Embedding generation or FAISS add failed: {e}")
|
345 |
+
return False
|
346 |
+
|
347 |
+
def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
|
348 |
+
"""Retrieve relevant medical context using embeddings or keyword search"""
|
349 |
+
if self.use_embeddings and self.embedding_model and self.faiss_ready:
|
350 |
+
try:
|
351 |
+
# Generate query embedding
|
352 |
+
query_embedding = self.embedding_model.encode([query])
|
353 |
+
|
354 |
+
# Search for similar content in FAISS index
|
355 |
+
distances, indices = self.faiss_index.search(np.array(query_embedding), n_results)
|
356 |
+
|
357 |
+
# Retrieve the corresponding chunks
|
358 |
+
context_chunks = [self.knowledge_chunks[i]['text'] for i in indices[0] if i != -1]
|
359 |
+
|
360 |
+
if context_chunks:
|
361 |
+
return context_chunks
|
362 |
+
|
363 |
+
except Exception as e:
|
364 |
+
print(f"⚠️ Embedding search failed: {e}")
|
365 |
+
|
366 |
+
# Fallback to keyword search
|
367 |
+
print("⚠️ Falling back to keyword search.")
|
368 |
+
return self.keyword_search_medical(query, n_results)
|
369 |
+
|
370 |
+
def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
|
371 |
+
"""Medical-focused keyword search"""
|
372 |
+
if not self.knowledge_chunks:
|
373 |
+
return []
|
374 |
+
|
375 |
+
query_words = set(query.lower().split())
|
376 |
+
chunk_scores = []
|
377 |
+
|
378 |
+
for chunk_info in self.knowledge_chunks:
|
379 |
+
chunk_text = chunk_info['text']
|
380 |
+
chunk_words = set(chunk_text.lower().split())
|
381 |
+
|
382 |
+
# Calculate relevance score
|
383 |
+
word_overlap = len(query_words.intersection(chunk_words))
|
384 |
+
base_score = word_overlap / len(query_words) if query_words else 0
|
385 |
+
|
386 |
+
# Boost medical content
|
387 |
+
medical_boost = 0
|
388 |
+
if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
|
389 |
+
medical_boost = 0.5
|
390 |
+
|
391 |
+
final_score = base_score + medical_boost
|
392 |
+
|
393 |
+
if final_score > 0:
|
394 |
+
chunk_scores.append((final_score, chunk_text))
|
395 |
+
|
396 |
+
# Return top matches
|
397 |
+
chunk_scores.sort(reverse=True)
|
398 |
+
return [chunk for _, chunk in chunk_scores[:n_results]]
|
399 |
+
|
400 |
+
def generate_biogpt_response(self, context: str, query: str) -> str:
|
401 |
+
"""Generate medical response using BioGPT only"""
|
402 |
+
if not self.model or not self.tokenizer:
|
403 |
+
return "⚠️ Medical AI model not available. This chatbot requires BioGPT for accurate medical information. Please check the setup or try restarting."
|
404 |
+
|
405 |
+
try:
|
406 |
+
# Create medical-focused prompt
|
407 |
+
prompt = f"""Medical Context: {context[:800]}
|
408 |
+
|
409 |
+
Question: {query}
|
410 |
+
|
411 |
+
Medical Answer:"""
|
412 |
+
|
413 |
+
# Tokenize input
|
414 |
+
inputs = self.tokenizer(
|
415 |
+
prompt,
|
416 |
+
return_tensors="pt",
|
417 |
+
truncation=True,
|
418 |
+
max_length=1024
|
419 |
+
)
|
420 |
+
|
421 |
+
# Move inputs to the correct device
|
422 |
+
if self.device == "cuda":
|
423 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
424 |
+
|
425 |
+
# Generate response
|
426 |
+
with torch.no_grad():
|
427 |
+
outputs = self.model.generate(
|
428 |
+
**inputs,
|
429 |
+
max_new_tokens=150,
|
430 |
+
do_sample=True,
|
431 |
+
temperature=0.7,
|
432 |
+
top_p=0.9,
|
433 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
434 |
+
repetition_penalty=1.1
|
435 |
+
)
|
436 |
+
|
437 |
+
# Decode response
|
438 |
+
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
439 |
+
|
440 |
+
# Extract just the generated part
|
441 |
+
if "Medical Answer:" in full_response:
|
442 |
+
generated_response = full_response.split("Medical Answer:")[-1].strip()
|
443 |
+
else:
|
444 |
+
generated_response = full_response[len(prompt):].strip()
|
445 |
+
|
446 |
+
# Clean up response
|
447 |
+
cleaned_response = self.clean_medical_response(generated_response)
|
448 |
+
|
449 |
+
return cleaned_response
|
450 |
+
|
451 |
+
except Exception as e:
|
452 |
+
print(f"⚠️ BioGPT generation failed: {e}")
|
453 |
+
return "⚠️ Unable to generate medical response. The medical AI model encountered an error. Please try rephrasing your question or contact support."
|
454 |
+
|
455 |
+
def clean_medical_response(self, response: str) -> str:
|
456 |
+
"""Clean and format medical response"""
|
457 |
+
# Remove incomplete sentences and limit length
|
458 |
+
sentences = re.split(r'[.!?]+', response)
|
459 |
+
clean_sentences = []
|
460 |
+
|
461 |
+
for sentence in sentences:
|
462 |
+
sentence = sentence.strip()
|
463 |
+
if len(sentence) > 10 and not sentence.endswith(('and', 'or', 'but', 'however')):
|
464 |
+
clean_sentences.append(sentence)
|
465 |
+
if len(clean_sentences) >= 3: # Limit to 3 sentences
|
466 |
+
break
|
467 |
+
|
468 |
+
if clean_sentences:
|
469 |
+
cleaned = '. '.join(clean_sentences) + '.'
|
470 |
+
else:
|
471 |
+
cleaned = response[:200] + '...' if len(response) > 200 else response
|
472 |
+
|
473 |
+
return cleaned
|
474 |
+
|
475 |
+
def fallback_response(self, context: str, query: str) -> str:
|
476 |
+
"""Fallback response when BioGPT fails"""
|
477 |
+
# Extract key sentences from context
|
478 |
+
sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
|
479 |
+
|
480 |
+
if sentences:
|
481 |
+
response = sentences[0] + '.'
|
482 |
+
if len(sentences) > 1:
|
483 |
+
response += ' ' + sentences[1] + '.'
|
484 |
+
else:
|
485 |
+
response = context[:300] + '...'
|
486 |
+
|
487 |
+
return response
|
488 |
+
|
489 |
+
def handle_conversational_interactions(self, query: str) -> Optional[str]:
|
490 |
+
"""Handle comprehensive conversational interactions"""
|
491 |
+
query_lower = query.lower().strip()
|
492 |
+
|
493 |
+
# Use more specific patterns for greetings
|
494 |
+
greeting_patterns = [
|
495 |
+
r'^\s*(hello|hi|hey|hiya|howdy)\s*$',
|
496 |
+
r'^\s*(good morning|good afternoon|good evening|good day)\s*$',
|
497 |
+
r'^\s*(what\'s up|whats up|sup|yo)\s*$',
|
498 |
+
r'^\s*(greetings|salutations)\s*$',
|
499 |
+
r'^\s*(how are you|how are you doing|how\'s it going|hows it going)\s*$',
|
500 |
+
r'^\s*(good to meet you|nice to meet you|pleased to meet you)\s*$'
|
501 |
+
]
|
502 |
+
|
503 |
+
for pattern in greeting_patterns:
|
504 |
+
if re.match(pattern, query_lower):
|
505 |
+
responses = [
|
506 |
+
"👋 Hello! I'm BioGPT, your professional medical AI assistant specialized in pediatric medicine. I'm here to provide evidence-based medical information. What health concern can I help you with today?",
|
507 |
+
"🏥 Hi there! I'm a medical AI assistant powered by BioGPT, trained on medical literature. I can help answer questions about children's health and medical conditions. How can I assist you?",
|
508 |
+
"👋 Greetings! I'm your AI medical consultant, ready to help with pediatric health questions using the latest medical knowledge. What would you like to know about?"
|
509 |
+
]
|
510 |
+
return np.random.choice(responses)
|
511 |
+
|
512 |
+
# Handle thanks and other conversational patterns...
|
513 |
+
# (keeping the rest of the conversational handling as before)
|
514 |
+
|
515 |
+
# Return None if no conversational pattern matches
|
516 |
+
return None
|
517 |
+
|
518 |
+
def chat(self, query: str) -> str:
|
519 |
+
"""Main chat function with BioGPT medical-only responses"""
|
520 |
+
if not query.strip():
|
521 |
+
return "Hello! I'm BioGPT, your professional medical AI assistant. How can I help you with pediatric medical questions today?"
|
522 |
+
|
523 |
+
# Handle comprehensive conversational interactions first
|
524 |
+
conversational_response = self.handle_conversational_interactions(query)
|
525 |
+
if conversational_response:
|
526 |
+
# Add to conversation history
|
527 |
+
self.conversation_history.append({
|
528 |
+
'query': query,
|
529 |
+
'response': conversational_response,
|
530 |
+
'timestamp': datetime.now().isoformat(),
|
531 |
+
'type': 'conversational'
|
532 |
+
})
|
533 |
+
return conversational_response
|
534 |
+
|
535 |
+
# Check if medical model is available
|
536 |
+
if not self.model or not self.tokenizer:
|
537 |
+
return "⚠️ **Medical AI Unavailable**: This chatbot requires BioGPT for accurate medical information. The medical model failed to load. Please contact support or try restarting the application."
|
538 |
+
|
539 |
+
if not self.knowledge_chunks:
|
540 |
+
return "Please load medical data first to access the medical knowledge base."
|
541 |
+
|
542 |
+
print(f"🔍 Processing medical query: {query}")
|
543 |
+
|
544 |
+
# Retrieve relevant medical context using FAISS or keyword search
|
545 |
+
start_time = time.time()
|
546 |
+
context = self.retrieve_medical_context(query)
|
547 |
+
retrieval_time = time.time() - start_time
|
548 |
+
|
549 |
+
if not context:
|
550 |
+
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
|
551 |
+
|
552 |
+
print(f" 📚 Context retrieved ({retrieval_time:.2f}s)")
|
553 |
+
|
554 |
+
# Generate response with BioGPT
|
555 |
+
start_time = time.time()
|
556 |
+
main_context = '\n\n'.join(context)
|
557 |
+
response = self.generate_biogpt_response(main_context, query)
|
558 |
+
generation_time = time.time() - start_time
|
559 |
+
|
560 |
+
print(f" 🧠 Response generated ({generation_time:.2f}s)")
|
561 |
+
|
562 |
+
# Format final response
|
563 |
+
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
|
564 |
+
|
565 |
+
# Add to conversation history
|
566 |
+
self.conversation_history.append({
|
567 |
+
'query': query,
|
568 |
+
'response': final_response,
|
569 |
+
'timestamp': datetime.now().isoformat(),
|
570 |
+
'retrieval_time': retrieval_time,
|
571 |
+
'generation_time': generation_time,
|
572 |
+
'type': 'medical'
|
573 |
+
})
|
574 |
+
|
575 |
+
return final_response
|
576 |
+
|
577 |
+
def get_conversation_summary(self) -> Dict:
|
578 |
+
"""Get conversation statistics"""
|
579 |
+
if not self.conversation_history:
|
580 |
+
return {"message": "No conversations yet"}
|
581 |
+
|
582 |
+
# Filter medical conversations for performance stats
|
583 |
+
medical_conversations = [h for h in self.conversation_history if h.get('type') == 'medical']
|
584 |
+
|
585 |
+
if not medical_conversations:
|
586 |
+
return {
|
587 |
+
"total_conversations": len(self.conversation_history),
|
588 |
+
"medical_conversations": 0,
|
589 |
+
"conversational_interactions": len(self.conversation_history),
|
590 |
+
"model_info": "BioGPT" if self.model and "BioGPT" in str(type(self.model)) else "Fallback Model",
|
591 |
+
"vector_search": "FAISS CPU" if self.faiss_ready else "Keyword Search",
|
592 |
+
"device": self.device
|
593 |
+
}
|
594 |
+
|
595 |
+
avg_retrieval_time = sum(h.get('retrieval_time', 0) for h in medical_conversations) / len(medical_conversations)
|
596 |
+
avg_generation_time = sum(h.get('generation_time', 0) for h in medical_conversations) / len(medical_conversations)
|
597 |
+
|
598 |
+
return {
|
599 |
+
"total_conversations": len(self.conversation_history),
|
600 |
+
"medical_conversations": len(medical_conversations),
|
601 |
+
"conversational_interactions": len(self.conversation_history) - len(medical_conversations),
|
602 |
+
"avg_retrieval_time": f"{avg_retrieval_time:.2f}s",
|
603 |
+
"avg_generation_time": f"{avg_generation_time:.2f}s",
|
604 |
+
"model_info": "BioGPT" if self.model and "BioGPT" in str(type(self.model)) else "Fallback Model",
|
605 |
+
"vector_search": "FAISS CPU" if self.faiss_ready else "Keyword Search",
|
606 |
+
"device": self.device,
|
607 |
+
"quantization": "8-bit" if self.use_8bit else "16-bit/32-bit"
|
608 |
+
}
|