|
'''
|
|
MMO Build Sprint 3
|
|
additions : contributions calculated using tuned Mixed LM model
|
|
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
|
|
|
|
MMO Build Sprint 4
|
|
additions : response metrics selection
|
|
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
|
|
'''
|
|
|
|
import streamlit as st
|
|
import pandas as pd
|
|
from sklearn.preprocessing import MinMaxScaler
|
|
import pickle
|
|
|
|
from utilities import load_authenticator
|
|
|
|
from utilities_with_panel import (set_header,
|
|
overview_test_data_prep_panel,
|
|
overview_test_data_prep_nonpanel,
|
|
initialize_data,
|
|
load_local_css,
|
|
create_channel_summary,
|
|
create_contribution_pie,
|
|
create_contribuion_stacked_plot,
|
|
create_channel_spends_sales_plot,
|
|
format_numbers,
|
|
channel_name_formating)
|
|
|
|
import plotly.graph_objects as go
|
|
import streamlit_authenticator as stauth
|
|
import yaml
|
|
from yaml import SafeLoader
|
|
import time
|
|
|
|
st.set_page_config(layout='wide')
|
|
load_local_css('styles.css')
|
|
set_header()
|
|
|
|
|
|
def get_random_effects(media_data, panel_col, mdf):
|
|
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
|
|
|
|
for i, market in enumerate(media_data[panel_col].unique()):
|
|
print(i, end='\r')
|
|
intercept = mdf.random_effects[market].values[0]
|
|
random_eff_df.loc[i, 'random_effect'] = intercept
|
|
random_eff_df.loc[i, panel_col] = market
|
|
|
|
return random_eff_df
|
|
|
|
|
|
def process_train_and_test(train, test, features, panel_col, target_col):
|
|
X1 = train[features]
|
|
|
|
ss = MinMaxScaler()
|
|
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
|
|
|
|
X1[panel_col] = train[panel_col]
|
|
X1[target_col] = train[target_col]
|
|
|
|
if test is not None:
|
|
X2 = test[features]
|
|
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
|
|
X2[panel_col] = test[panel_col]
|
|
X2[target_col] = test[target_col]
|
|
return X1, X2
|
|
return X1
|
|
|
|
def mdf_predict(X_df, mdf, random_eff_df) :
|
|
X=X_df.copy()
|
|
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
|
|
X['pred_fixed_effect'] = mdf.predict(X)
|
|
|
|
X['pred'] = X['pred_fixed_effect'] + X['random_effect']
|
|
X.to_csv('Test/merged_df_contri.csv',index=False)
|
|
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
|
|
|
|
return X
|
|
|
|
|
|
target_col='Revenue'
|
|
target='Revenue'
|
|
|
|
|
|
|
|
|
|
panel_col='Panel'
|
|
date_col = 'date'
|
|
|
|
|
|
|
|
is_panel = True
|
|
|
|
|
|
date_col = 'date'
|
|
for k, v in st.session_state.items():
|
|
|
|
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
|
st.session_state[k] = v
|
|
|
|
authenticator = st.session_state.get('authenticator')
|
|
|
|
if authenticator is None:
|
|
authenticator = load_authenticator()
|
|
|
|
name, authentication_status, username = authenticator.login('Login', 'main')
|
|
auth_status = st.session_state['authentication_status']
|
|
|
|
if auth_status:
|
|
authenticator.logout('Logout', 'main')
|
|
|
|
is_state_initiaized = st.session_state.get('initialized',False)
|
|
if not is_state_initiaized:
|
|
a=1
|
|
|
|
def panel_fetch(file_selected):
|
|
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
|
|
|
|
if "Panel" in raw_data_mmm_df.columns:
|
|
panel = list(set(raw_data_mmm_df["Panel"]))
|
|
else:
|
|
raw_data_mmm_df = None
|
|
panel = None
|
|
|
|
return panel
|
|
|
|
def rerun():
|
|
st.rerun()
|
|
|
|
metrics_selected='revenue'
|
|
|
|
file_selected = (
|
|
f"metrics_level_data\Overview_data_test_panel@#revenue.xlsx"
|
|
)
|
|
panel_list = panel_fetch(file_selected)
|
|
|
|
if "selected_markets" not in st.session_state:
|
|
st.session_state['selected_markets']='DMA1'
|
|
|
|
|
|
st.header('Overview of previous spends')
|
|
|
|
selected_market= st.selectbox(
|
|
"Select Markets",
|
|
["Total Market"] + panel_list
|
|
)
|
|
|
|
|
|
|
|
initialize_data(target_col,selected_market)
|
|
scenario = st.session_state['scenario']
|
|
raw_df = st.session_state['raw_df']
|
|
|
|
|
|
columns = st.columns((1,1,3))
|
|
|
|
with columns[0]:
|
|
st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
|
|
|
|
with columns[1]:
|
|
st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales)))
|
|
|
|
|
|
actual_summary_df = create_channel_summary(scenario)
|
|
actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
|
|
|
|
columns = st.columns((2,1))
|
|
|
|
with st.expander('Channel wise overview'):
|
|
st.markdown(actual_summary_df.style.set_table_styles(
|
|
[{
|
|
'selector': 'th',
|
|
'props': [('background-color', '#FFFFF')]
|
|
},
|
|
{
|
|
'selector' : 'tr:nth-child(even)',
|
|
'props' : [('background-color', '#FFFFF')]
|
|
}]).to_html(), unsafe_allow_html=True)
|
|
|
|
st.markdown("<hr>",unsafe_allow_html=True)
|
|
|
|
|
|
st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
|
|
st.markdown("<hr>",unsafe_allow_html=True)
|
|
|
|
|
|
|
|
st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
|
|
st.markdown("<hr>",unsafe_allow_html=True)
|
|
|
|
|
|
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
|
|
selected_channel = scenario.channels.get(selected_channel_name,None)
|
|
|
|
st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
|
|
|
|
st.markdown("<hr>",unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|