|
import streamlit as st
|
|
from numerize.numerize import numerize
|
|
import numpy as np
|
|
from functools import partial
|
|
from collections import OrderedDict
|
|
from plotly.subplots import make_subplots
|
|
import plotly.graph_objects as go
|
|
from utilities import (
|
|
format_numbers,
|
|
load_local_css,
|
|
set_header,
|
|
initialize_data,
|
|
load_authenticator,
|
|
send_email,
|
|
channel_name_formating,
|
|
)
|
|
from classes import class_from_dict, class_to_dict
|
|
import pickle
|
|
import streamlit_authenticator as stauth
|
|
import yaml
|
|
from yaml import SafeLoader
|
|
import re
|
|
import pandas as pd
|
|
import plotly.express as px
|
|
|
|
|
|
st.set_page_config(layout="wide")
|
|
load_local_css("styles.css")
|
|
set_header()
|
|
|
|
for k, v in st.session_state.items():
|
|
if k not in ["logout", "login", "config"] and not k.startswith("FormSubmitter"):
|
|
st.session_state[k] = v
|
|
|
|
|
|
|
|
|
|
|
|
def optimize(key, status_placeholder):
|
|
"""
|
|
Optimize the spends for the sales
|
|
"""
|
|
|
|
channel_list = [
|
|
key for key, value in st.session_state["optimization_channels"].items() if value
|
|
]
|
|
|
|
if len(channel_list) > 0:
|
|
scenario = st.session_state["scenario"]
|
|
if key.lower() == "media spends":
|
|
with status_placeholder:
|
|
with st.spinner("Optimizing"):
|
|
result = st.session_state["scenario"].optimize(
|
|
st.session_state["total_spends_change"], channel_list
|
|
)
|
|
|
|
else:
|
|
with status_placeholder:
|
|
with st.spinner("Optimizing"):
|
|
|
|
result = st.session_state["scenario"].optimize_spends(
|
|
st.session_state["total_sales_change"], channel_list
|
|
)
|
|
for channel_name, modified_spends in result:
|
|
|
|
st.session_state[channel_name] = numerize(
|
|
modified_spends * scenario.channels[channel_name].conversion_rate,
|
|
1,
|
|
)
|
|
prev_spends = (
|
|
st.session_state["scenario"].channels[channel_name].actual_total_spends
|
|
)
|
|
st.session_state[f"{channel_name}_change"] = round(
|
|
100 * (modified_spends - prev_spends) / prev_spends, 2
|
|
)
|
|
|
|
|
|
def save_scenario(scenario_name):
|
|
"""
|
|
Save the current scenario with the mentioned name in the session state
|
|
|
|
Parameters
|
|
----------
|
|
scenario_name
|
|
Name of the scenario to be saved
|
|
"""
|
|
if "saved_scenarios" not in st.session_state:
|
|
st.session_state = OrderedDict()
|
|
|
|
|
|
st.session_state["saved_scenarios"][scenario_name] = class_to_dict(
|
|
st.session_state["scenario"]
|
|
)
|
|
st.session_state["scenario_input"] = ""
|
|
|
|
with open("../saved_scenarios.pkl", "wb") as f:
|
|
pickle.dump(st.session_state["saved_scenarios"], f)
|
|
|
|
|
|
if "allow_spends_update" not in st.session_state:
|
|
st.session_state["allow_spends_update"] = True
|
|
|
|
if "allow_sales_update" not in st.session_state:
|
|
st.session_state["allow_sales_update"] = True
|
|
|
|
|
|
def update_sales_abs_slider():
|
|
actual_sales = _scenario.actual_total_sales
|
|
if validate_input(st.session_state["total_sales_change_abs_slider"]):
|
|
modified_sales = extract_number_for_string(
|
|
st.session_state["total_sales_change_abs_slider"]
|
|
)
|
|
st.session_state["total_sales_change"] = round(
|
|
((modified_sales / actual_sales) - 1) * 100
|
|
)
|
|
st.session_state["total_sales_change_abs"] = numerize(modified_sales, 1)
|
|
|
|
|
|
def update_sales_abs():
|
|
if (
|
|
st.session_state["total_sales_change_abs"]
|
|
in st.session_state["total_sales_change_abs_slider_options"]
|
|
):
|
|
st.session_state["allow_sales_update"] = True
|
|
else:
|
|
st.session_state["allow_sales_update"] = False
|
|
|
|
actual_sales = _scenario.actual_total_sales
|
|
if (
|
|
validate_input(st.session_state["total_sales_change_abs"])
|
|
and st.session_state["allow_sales_update"]
|
|
):
|
|
modified_sales = extract_number_for_string(
|
|
st.session_state["total_sales_change_abs"]
|
|
)
|
|
st.session_state["total_sales_change"] = round(
|
|
((modified_sales / actual_sales) - 1) * 100
|
|
)
|
|
st.session_state["total_sales_change_abs_slider"] = numerize(modified_sales, 1)
|
|
|
|
|
|
def update_sales():
|
|
st.session_state["total_sales_change_abs"] = numerize(
|
|
(1 + st.session_state["total_sales_change"] / 100)
|
|
* _scenario.actual_total_sales,
|
|
1,
|
|
)
|
|
st.session_state["total_sales_change_abs_slider"] = numerize(
|
|
(1 + st.session_state["total_sales_change"] / 100)
|
|
* _scenario.actual_total_sales,
|
|
1,
|
|
)
|
|
|
|
|
|
def update_all_spends_abs_slider():
|
|
actual_spends = _scenario.actual_total_spends
|
|
if validate_input(st.session_state["total_spends_change_abs_slider"]):
|
|
modified_spends = extract_number_for_string(
|
|
st.session_state["total_spends_change_abs_slider"]
|
|
)
|
|
st.session_state["total_spends_change"] = round(
|
|
((modified_spends / actual_spends) - 1) * 100
|
|
)
|
|
st.session_state["total_spends_change_abs"] = numerize(modified_spends, 1)
|
|
|
|
update_all_spends()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def update_all_spends_abs():
|
|
if (
|
|
st.session_state["total_spends_change_abs"]
|
|
in st.session_state["total_spends_change_abs_slider_options"]
|
|
):
|
|
st.session_state["allow_spends_update"] = True
|
|
else:
|
|
st.session_state["allow_spends_update"] = False
|
|
|
|
actual_spends = _scenario.actual_total_spends
|
|
if (
|
|
validate_input(st.session_state["total_spends_change_abs"])
|
|
and st.session_state["allow_spends_update"]
|
|
):
|
|
modified_spends = extract_number_for_string(
|
|
st.session_state["total_spends_change_abs"]
|
|
)
|
|
st.session_state["total_spends_change"] = (
|
|
(modified_spends / actual_spends) - 1
|
|
) * 100
|
|
st.session_state["total_spends_change_abs_slider"] = st.session_state[
|
|
"total_spends_change_abs"
|
|
]
|
|
|
|
update_all_spends()
|
|
|
|
|
|
def update_spends():
|
|
st.session_state["total_spends_change_abs"] = numerize(
|
|
(1 + st.session_state["total_spends_change"] / 100)
|
|
* _scenario.actual_total_spends,
|
|
1,
|
|
)
|
|
st.session_state["total_spends_change_abs_slider"] = numerize(
|
|
(1 + st.session_state["total_spends_change"] / 100)
|
|
* _scenario.actual_total_spends,
|
|
1,
|
|
)
|
|
|
|
update_all_spends()
|
|
|
|
|
|
def update_all_spends():
|
|
"""
|
|
Updates spends for all the channels with the given overall spends change
|
|
"""
|
|
percent_change = st.session_state["total_spends_change"]
|
|
|
|
for channel_name in st.session_state["channels_list"]:
|
|
channel = st.session_state["scenario"].channels[channel_name]
|
|
current_spends = channel.actual_total_spends
|
|
modified_spends = (1 + percent_change / 100) * current_spends
|
|
st.session_state["scenario"].update(channel_name, modified_spends)
|
|
st.session_state[channel_name] = numerize(
|
|
modified_spends * channel.conversion_rate, 1
|
|
)
|
|
st.session_state[f"{channel_name}_change"] = percent_change
|
|
|
|
|
|
def extract_number_for_string(string_input):
|
|
string_input = string_input.upper()
|
|
if string_input.endswith("K"):
|
|
return float(string_input[:-1]) * 10**3
|
|
elif string_input.endswith("M"):
|
|
return float(string_input[:-1]) * 10**6
|
|
elif string_input.endswith("B"):
|
|
return float(string_input[:-1]) * 10**9
|
|
|
|
|
|
def validate_input(string_input):
|
|
pattern = r"\d+\.?\d*[K|M|B]$"
|
|
match = re.match(pattern, string_input)
|
|
if match is None:
|
|
return False
|
|
return True
|
|
|
|
|
|
def update_data_by_percent(channel_name):
|
|
prev_spends = (
|
|
st.session_state["scenario"].channels[channel_name].actual_total_spends
|
|
* st.session_state["scenario"].channels[channel_name].conversion_rate
|
|
)
|
|
modified_spends = prev_spends * (
|
|
1 + st.session_state[f"{channel_name}_change"] / 100
|
|
)
|
|
st.session_state[channel_name] = numerize(modified_spends, 1)
|
|
st.session_state["scenario"].update(
|
|
channel_name,
|
|
modified_spends
|
|
/ st.session_state["scenario"].channels[channel_name].conversion_rate,
|
|
)
|
|
|
|
|
|
def update_data(channel_name):
|
|
"""
|
|
Updates the spends for the given channel
|
|
"""
|
|
|
|
if validate_input(st.session_state[channel_name]):
|
|
modified_spends = extract_number_for_string(st.session_state[channel_name])
|
|
prev_spends = (
|
|
st.session_state["scenario"].channels[channel_name].actual_total_spends
|
|
* st.session_state["scenario"].channels[channel_name].conversion_rate
|
|
)
|
|
st.session_state[f"{channel_name}_change"] = round(
|
|
100 * (modified_spends - prev_spends) / prev_spends, 2
|
|
)
|
|
st.session_state["scenario"].update(
|
|
channel_name,
|
|
modified_spends
|
|
/ st.session_state["scenario"].channels[channel_name].conversion_rate,
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def select_channel_for_optimization(channel_name):
|
|
"""
|
|
Marks the given channel for optimization
|
|
"""
|
|
st.session_state["optimization_channels"][channel_name] = st.session_state[
|
|
f"{channel_name}_selected"
|
|
]
|
|
|
|
|
|
def select_all_channels_for_optimization():
|
|
"""
|
|
Marks all the channel for optimization
|
|
"""
|
|
for channel_name in st.session_state["optimization_channels"].keys():
|
|
st.session_state[f"{channel_name}_selected"] = st.session_state[
|
|
"optimze_all_channels"
|
|
]
|
|
st.session_state["optimization_channels"][channel_name] = st.session_state[
|
|
"optimze_all_channels"
|
|
]
|
|
|
|
|
|
def update_penalty():
|
|
"""
|
|
Updates the penalty flag for sales calculation
|
|
"""
|
|
st.session_state["scenario"].update_penalty(st.session_state["apply_penalty"])
|
|
|
|
|
|
def reset_scenario(panel_selected, file_selected, updated_rcs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if panel_selected == "Total Market":
|
|
initialize_data(
|
|
panel=panel_selected,
|
|
target_file=file_selected,
|
|
updated_rcs=updated_rcs,
|
|
metrics=metrics_selected,
|
|
)
|
|
panel = None
|
|
else:
|
|
initialize_data(
|
|
panel=panel_selected,
|
|
target_file=file_selected,
|
|
updated_rcs=updated_rcs,
|
|
metrics=metrics_selected,
|
|
)
|
|
|
|
for channel_name in st.session_state["channels_list"]:
|
|
st.session_state[f"{channel_name}_selected"] = False
|
|
st.session_state[f"{channel_name}_change"] = 0
|
|
st.session_state["optimze_all_channels"] = False
|
|
|
|
st.session_state["total_sales_change"] = 0
|
|
|
|
update_spends()
|
|
update_sales()
|
|
|
|
reset_inputs()
|
|
|
|
|
|
|
|
|
|
def format_number(num):
|
|
if num >= 1_000_000:
|
|
return f"{num / 1_000_000:.2f}M"
|
|
elif num >= 1_000:
|
|
return f"{num / 1_000:.0f}K"
|
|
else:
|
|
return f"{num:.2f}"
|
|
|
|
|
|
def summary_plot(data, x, y, title, text_column):
|
|
fig = px.bar(
|
|
data,
|
|
x=x,
|
|
y=y,
|
|
orientation="h",
|
|
title=title,
|
|
text=text_column,
|
|
color="Channel_name",
|
|
)
|
|
|
|
|
|
data[text_column] = pd.to_numeric(data[text_column], errors="coerce")
|
|
|
|
|
|
fig.update_traces(
|
|
texttemplate="%{text:.2s}",
|
|
textposition="outside",
|
|
hovertemplate="%{x:.2s}",
|
|
)
|
|
|
|
fig.update_layout(xaxis_title=x, yaxis_title="Channel Name", showlegend=False)
|
|
return fig
|
|
|
|
|
|
def s_curve(x, K, b, a, x0):
|
|
return K / (1 + b * np.exp(-a * (x - x0)))
|
|
|
|
|
|
def find_segment_value(x, roi, mroi):
|
|
start_value = x[0]
|
|
end_value = x[len(x) - 1]
|
|
|
|
|
|
green_condition = (roi > 1) & (mroi > 1)
|
|
left_indices = np.where(green_condition)[0]
|
|
left_value = x[left_indices[0]] if left_indices.size > 0 else x[0]
|
|
|
|
right_indices = np.where(green_condition)[0]
|
|
right_value = x[right_indices[-1]] if right_indices.size > 0 else x[0]
|
|
|
|
return start_value, end_value, left_value, right_value
|
|
|
|
|
|
def calculate_rgba(
|
|
start_value, end_value, left_value, right_value, current_channel_spends
|
|
):
|
|
|
|
alpha = None
|
|
|
|
|
|
if start_value <= current_channel_spends <= left_value:
|
|
color = "yellow"
|
|
relative_position = (current_channel_spends - start_value) / (
|
|
left_value - start_value
|
|
)
|
|
alpha = 0.8 - (0.6 * relative_position)
|
|
|
|
elif left_value < current_channel_spends <= right_value:
|
|
color = "green"
|
|
relative_position = (current_channel_spends - left_value) / (
|
|
right_value - left_value
|
|
)
|
|
alpha = 0.8 - (0.6 * relative_position)
|
|
|
|
elif right_value < current_channel_spends <= end_value:
|
|
color = "red"
|
|
relative_position = (current_channel_spends - right_value) / (
|
|
end_value - right_value
|
|
)
|
|
alpha = 0.2 + (0.6 * relative_position)
|
|
|
|
else:
|
|
|
|
return "rgba(136, 136, 136, 0.5)"
|
|
|
|
|
|
alpha = max(0.2, min(alpha, 0.8))
|
|
|
|
|
|
color_codes = {
|
|
"yellow": "255, 255, 0",
|
|
"green": "0, 128, 0",
|
|
"red": "255, 0, 0",
|
|
}
|
|
|
|
rgba = f"rgba({color_codes[color]}, {alpha})"
|
|
return rgba
|
|
|
|
|
|
def debug_temp(x_test, power, K, b, a, x0):
|
|
print("*" * 100)
|
|
|
|
count_lower_bin = sum(1 for x in x_test if x <= 2524)
|
|
count_center_bin = sum(1 for x in x_test if x > 2524 and x <= 3377)
|
|
count_ = sum(1 for x in x_test if x > 3377)
|
|
|
|
print(
|
|
f"""
|
|
lower : {count_lower_bin}
|
|
center : {count_center_bin}
|
|
upper : {count_}
|
|
"""
|
|
)
|
|
|
|
|
|
|
|
def plot_response_curves():
|
|
cols = 4
|
|
rows = (
|
|
len(channels_list) // cols
|
|
if len(channels_list) % cols == 0
|
|
else len(channels_list) // cols + 1
|
|
)
|
|
rcs = st.session_state["rcs"]
|
|
shapes = []
|
|
fig = make_subplots(rows=rows, cols=cols, subplot_titles=channels_list)
|
|
for i in range(0, len(channels_list)):
|
|
col = channels_list[i]
|
|
x_actual = st.session_state["scenario"].channels[col].actual_spends
|
|
|
|
|
|
power = np.ceil(np.log(x_actual.max()) / np.log(10)) - 3
|
|
|
|
K = rcs[col]["K"]
|
|
b = rcs[col]["b"]
|
|
a = rcs[col]["a"]
|
|
x0 = rcs[col]["x0"]
|
|
|
|
x_plot = np.linspace(0, 5 * x_actual.sum(), 50)
|
|
|
|
x, y, marginal_roi = [], [], []
|
|
for x_p in x_plot:
|
|
x.append(x_p * x_actual / x_actual.sum())
|
|
|
|
for index in range(len(x_plot)):
|
|
y.append(s_curve(x[index] / 10**power, K, b, a, x0))
|
|
|
|
for index in range(len(x_plot)):
|
|
marginal_roi.append(
|
|
a * y[index] * (1 - y[index] / np.maximum(K, np.finfo(float).eps))
|
|
)
|
|
|
|
x = (
|
|
np.sum(x, axis=1)
|
|
* st.session_state["scenario"].channels[col].conversion_rate
|
|
)
|
|
y = np.sum(y, axis=1)
|
|
marginal_roi = (
|
|
np.average(marginal_roi, axis=1)
|
|
/ st.session_state["scenario"].channels[col].conversion_rate
|
|
)
|
|
|
|
roi = y / np.maximum(x, np.finfo(float).eps)
|
|
|
|
fig.add_trace(
|
|
go.Scatter(
|
|
x=x,
|
|
y=y,
|
|
name=col,
|
|
customdata=np.stack((roi, marginal_roi), axis=-1),
|
|
hovertemplate="Spend:%{x:$.2s}<br>Sale:%{y:$.2s}<br>ROI:%{customdata[0]:.3f}<br>MROI:%{customdata[1]:.3f}",
|
|
line=dict(color="blue"),
|
|
),
|
|
row=1 + (i) // cols,
|
|
col=i % cols + 1,
|
|
)
|
|
|
|
x_optimal = (
|
|
st.session_state["scenario"].channels[col].modified_total_spends
|
|
* st.session_state["scenario"].channels[col].conversion_rate
|
|
)
|
|
y_optimal = st.session_state["scenario"].channels[col].modified_total_sales
|
|
|
|
|
|
|
|
|
|
fig.add_trace(
|
|
go.Scatter(
|
|
x=[x_optimal],
|
|
y=[y_optimal],
|
|
name=col,
|
|
legendgroup=col,
|
|
showlegend=False,
|
|
marker=dict(color=["black"]),
|
|
),
|
|
row=1 + (i) // cols,
|
|
col=i % cols + 1,
|
|
)
|
|
|
|
shapes.append(
|
|
go.layout.Shape(
|
|
type="line",
|
|
x0=0,
|
|
y0=y_optimal,
|
|
x1=x_optimal,
|
|
y1=y_optimal,
|
|
line_width=1,
|
|
line_dash="dash",
|
|
line_color="black",
|
|
xref=f"x{i+1}",
|
|
yref=f"y{i+1}",
|
|
)
|
|
)
|
|
|
|
shapes.append(
|
|
go.layout.Shape(
|
|
type="line",
|
|
x0=x_optimal,
|
|
y0=0,
|
|
x1=x_optimal,
|
|
y1=y_optimal,
|
|
line_width=1,
|
|
line_dash="dash",
|
|
line_color="black",
|
|
xref=f"x{i+1}",
|
|
yref=f"y{i+1}",
|
|
)
|
|
)
|
|
|
|
start_value, end_value, left_value, right_value = find_segment_value(
|
|
x,
|
|
roi,
|
|
marginal_roi,
|
|
)
|
|
|
|
|
|
y_max = y.max() * 1.3
|
|
|
|
|
|
shapes.append(
|
|
go.layout.Shape(
|
|
type="rect",
|
|
x0=start_value,
|
|
y0=0,
|
|
x1=left_value,
|
|
y1=y_max,
|
|
line=dict(width=0),
|
|
fillcolor="rgba(255, 255, 0, 0.3)",
|
|
layer="below",
|
|
xref=f"x{i+1}",
|
|
yref=f"y{i+1}",
|
|
)
|
|
)
|
|
|
|
|
|
shapes.append(
|
|
go.layout.Shape(
|
|
type="rect",
|
|
x0=left_value,
|
|
y0=0,
|
|
x1=right_value,
|
|
y1=y_max,
|
|
line=dict(width=0),
|
|
fillcolor="rgba(0, 255, 0, 0.3)",
|
|
layer="below",
|
|
xref=f"x{i+1}",
|
|
yref=f"y{i+1}",
|
|
)
|
|
)
|
|
|
|
|
|
shapes.append(
|
|
go.layout.Shape(
|
|
type="rect",
|
|
x0=right_value,
|
|
y0=0,
|
|
x1=end_value,
|
|
y1=y_max,
|
|
line=dict(width=0),
|
|
fillcolor="rgba(255, 0, 0, 0.3)",
|
|
layer="below",
|
|
xref=f"x{i+1}",
|
|
yref=f"y{i+1}",
|
|
)
|
|
)
|
|
|
|
fig.update_layout(
|
|
|
|
|
|
title_text=f"Response Curves (X: Spends Vs Y: {target})",
|
|
showlegend=False,
|
|
shapes=shapes,
|
|
)
|
|
fig.update_annotations(font_size=10)
|
|
|
|
|
|
fig.update_yaxes(
|
|
gridcolor="rgba(136, 136, 136, 0.5)", gridwidth=0.5, griddash="dash"
|
|
)
|
|
|
|
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_spending_header(heading):
|
|
return st.markdown(
|
|
f"""<h2 class="spends-header">{heading}</h2>""", unsafe_allow_html=True
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with open("config.yaml") as file:
|
|
config = yaml.load(file, Loader=SafeLoader)
|
|
st.session_state["config"] = config
|
|
|
|
authenticator = stauth.Authenticate(
|
|
config["credentials"],
|
|
config["cookie"]["name"],
|
|
config["cookie"]["key"],
|
|
config["cookie"]["expiry_days"],
|
|
config["preauthorized"],
|
|
)
|
|
st.session_state["authenticator"] = authenticator
|
|
name, authentication_status, username = authenticator.login("Login", "main")
|
|
auth_status = st.session_state.get("authentication_status")
|
|
|
|
import os
|
|
import glob
|
|
|
|
|
|
def get_excel_names(directory):
|
|
|
|
last_portions = []
|
|
|
|
|
|
patterns = [
|
|
os.path.join(directory, "*@#*.xlsx"),
|
|
os.path.join(directory, "*@#*.xls"),
|
|
]
|
|
|
|
|
|
for pattern in patterns:
|
|
files = glob.glob(pattern)
|
|
|
|
|
|
for file in files:
|
|
base_name = os.path.basename(file)
|
|
last_portion = base_name.split("@#")[-1]
|
|
last_portion = last_portion.replace(".xlsx", "").replace(
|
|
".xls", ""
|
|
)
|
|
last_portions.append(last_portion)
|
|
|
|
return last_portions
|
|
|
|
|
|
def name_formating(channel_name):
|
|
|
|
name_mod = channel_name.replace("_", " ")
|
|
|
|
|
|
name_mod = name_mod.title()
|
|
|
|
return name_mod
|
|
|
|
|
|
@st.cache_resource(show_spinner=False)
|
|
def panel_fetch(file_selected):
|
|
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
|
|
|
|
if "Panel" in raw_data_mmm_df.columns:
|
|
panel = list(set(raw_data_mmm_df["Panel"]))
|
|
else:
|
|
raw_data_mmm_df = None
|
|
panel = None
|
|
|
|
return panel
|
|
|
|
|
|
def reset_inputs():
|
|
if "total_spends_change_abs" in st.session_state:
|
|
del st.session_state.total_spends_change_abs
|
|
if "total_spends_change" in st.session_state:
|
|
del st.session_state.total_spends_change
|
|
if "total_spends_change_abs_slider" in st.session_state:
|
|
del st.session_state.total_spends_change_abs_slider
|
|
|
|
if "total_sales_change_abs" in st.session_state:
|
|
del st.session_state.total_sales_change_abs
|
|
if "total_sales_change" in st.session_state:
|
|
del st.session_state.total_sales_change
|
|
if "total_sales_change_abs_slider" in st.session_state:
|
|
del st.session_state.total_sales_change_abs_slider
|
|
|
|
st.session_state["initialized"] = False
|
|
|
|
|
|
if auth_status == True:
|
|
authenticator.logout("Logout", "main")
|
|
|
|
st.header("Simulation")
|
|
with st.expander('Optimized Spends Overview'):
|
|
if st.button('Refresh'):
|
|
st.rerun()
|
|
|
|
import plotly.graph_objects as go
|
|
from plotly.subplots import make_subplots
|
|
|
|
|
|
import plotly.graph_objects as go
|
|
from plotly.subplots import make_subplots
|
|
|
|
st.empty()
|
|
|
|
spends_data=pd.read_excel('Overview_data_test.xlsx')
|
|
|
|
with open('summary_df.pkl', 'rb') as file:
|
|
summary_df_sorted = pickle.load(file)
|
|
|
|
|
|
|
|
summary_df_sorted=summary_df_sorted.sort_values(by=['Optimized_spend'],ascending=False)
|
|
summary_df_sorted['old_roi']=summary_df_sorted['Old_sales']/summary_df_sorted['Actual_spend']
|
|
summary_df_sorted['new_roi']=summary_df_sorted['New_sales']/summary_df_sorted['Optimized_spend']
|
|
|
|
total_actual_spend = summary_df_sorted['Actual_spend'].sum()
|
|
total_optimized_spend = summary_df_sorted['Optimized_spend'].sum()
|
|
|
|
actual_spend_percentage = (summary_df_sorted['Actual_spend'] / total_actual_spend) * 100
|
|
optimized_spend_percentage = (summary_df_sorted['Optimized_spend'] / total_optimized_spend) * 100
|
|
|
|
|
|
|
|
light_blue = 'rgba(0, 31, 120, 0.7)'
|
|
light_orange = 'rgba(0, 181, 219, 0.7)'
|
|
light_green = 'rgba(240, 61, 20, 0.7)'
|
|
light_red = 'rgba(250, 110, 10, 0.7)'
|
|
light_purple = 'rgba(255, 191, 69, 0.7)'
|
|
|
|
|
|
|
|
fig = make_subplots(rows=1, cols=3, subplot_titles=("Actual vs. Optimized Spend", "Actual vs. Optimized Contribution", "Actual vs. Optimized ROI"))
|
|
|
|
|
|
|
|
|
|
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['Actual_spend'], name='Actual',
|
|
text=summary_df_sorted['Actual_spend'].apply(format_number) + ' '+' (' + actual_spend_percentage.round(2).astype(str) + '%)',
|
|
marker_color=light_blue, orientation='h'),
|
|
row=1,
|
|
col=1)
|
|
|
|
|
|
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['Optimized_spend'], name='Optimized',
|
|
text=summary_df_sorted['Optimized_spend'].apply(format_number) + ' (' + optimized_spend_percentage.round(2).astype(str) + '%)',
|
|
marker_color=light_orange,
|
|
orientation='h'),
|
|
row=1,
|
|
col=1)
|
|
|
|
fig.update_xaxes(title_text="Amount", row=1, col=1)
|
|
|
|
|
|
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['New_sales'],
|
|
name='Optimized Contribution',text=summary_df_sorted['New_sales'].apply(format_number),
|
|
marker_color=light_orange, orientation='h',showlegend=False), row=1, col=2)
|
|
|
|
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['Old_sales'],
|
|
name='Actual Contribution',text=summary_df_sorted['Old_sales'].apply(format_number),
|
|
marker_color=light_blue, orientation='h',showlegend=False), row=1, col=2)
|
|
|
|
|
|
fig.update_xaxes(title_text="Contribution", row=1, col=2)
|
|
|
|
|
|
|
|
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['new_roi'],
|
|
name='Optimized ROI',text=summary_df_sorted['new_roi'].apply(format_number) ,
|
|
marker_color=light_orange, orientation='h',showlegend=False), row=1, col=3)
|
|
|
|
fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['old_roi'],
|
|
name='Actual ROI', text=summary_df_sorted['old_roi'].apply(format_number) ,
|
|
marker_color=light_blue, orientation='h',showlegend=False), row=1, col=3)
|
|
|
|
fig.update_xaxes(title_text="ROI", row=1, col=3)
|
|
|
|
|
|
fig.update_layout(title_text="Actual vs. Optimized Metrics for Media Channels",
|
|
showlegend=True, yaxis=dict(title='Media Channels', autorange="reversed"))
|
|
|
|
st.plotly_chart(fig,use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
directory = "metrics_level_data"
|
|
metrics_list = get_excel_names(directory)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
metrics_selected='Revenue'
|
|
|
|
target = name_formating(metrics_selected)
|
|
|
|
file_selected = (
|
|
f".\metrics_level_data\Overview_data_test_panel@#{metrics_selected}.xlsx"
|
|
)
|
|
|
|
|
|
panel_list = panel_fetch(file_selected)
|
|
|
|
panel_list=[val for val in panel_list if str(val) !='nan']
|
|
|
|
|
|
|
|
panel_selected = st.selectbox(
|
|
"Markets",
|
|
["Total Market"] + panel_list,
|
|
index=0,
|
|
on_change=reset_inputs,
|
|
)
|
|
|
|
st.session_state['selected_markets']=panel_selected
|
|
|
|
if "update_rcs" in st.session_state:
|
|
updated_rcs = st.session_state["update_rcs"]
|
|
else:
|
|
updated_rcs = None
|
|
|
|
if "first_time" not in st.session_state:
|
|
st.session_state["first_time"] = True
|
|
|
|
|
|
is_state_initiaized = st.session_state.get("initialized", False)
|
|
if not is_state_initiaized or st.session_state["first_time"]:
|
|
|
|
if panel_selected == "Total Market":
|
|
initialize_data(
|
|
panel=panel_selected,
|
|
target_file=file_selected,
|
|
updated_rcs=updated_rcs,
|
|
metrics=metrics_selected,
|
|
)
|
|
panel = None
|
|
else:
|
|
initialize_data(
|
|
panel=panel_selected,
|
|
target_file=file_selected,
|
|
updated_rcs=updated_rcs,
|
|
metrics=metrics_selected,
|
|
)
|
|
st.session_state["initialized"] = True
|
|
st.session_state["first_time"] = False
|
|
|
|
|
|
channels_list = st.session_state["channels_list"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main_header = st.columns((2, 2))
|
|
sub_header = st.columns((1, 1, 1, 1))
|
|
_scenario = st.session_state["scenario"]
|
|
|
|
if "total_spends_change" not in st.session_state:
|
|
st.session_state.total_spends_change = 0
|
|
|
|
if "total_sales_change" not in st.session_state:
|
|
st.session_state.total_sales_change = 0
|
|
|
|
if "total_spends_change_abs" not in st.session_state:
|
|
st.session_state["total_spends_change_abs"] = numerize(
|
|
_scenario.actual_total_spends, 1
|
|
)
|
|
|
|
if "total_sales_change_abs" not in st.session_state:
|
|
st.session_state["total_sales_change_abs"] = numerize(
|
|
_scenario.actual_total_sales, 1
|
|
)
|
|
|
|
if "total_spends_change_abs_slider" not in st.session_state:
|
|
st.session_state.total_spends_change_abs_slider = numerize(
|
|
_scenario.actual_total_spends, 1
|
|
)
|
|
|
|
if "total_sales_change_abs_slider" not in st.session_state:
|
|
st.session_state.total_sales_change_abs_slider = numerize(
|
|
_scenario.actual_total_sales, 1
|
|
)
|
|
|
|
with main_header[0]:
|
|
st.subheader("Actual")
|
|
|
|
with main_header[-1]:
|
|
st.subheader("Simulated")
|
|
|
|
with sub_header[0]:
|
|
st.metric(label="Spends", value=format_numbers(_scenario.actual_total_spends))
|
|
|
|
with sub_header[1]:
|
|
st.metric(
|
|
label=target,
|
|
value=format_numbers(
|
|
float(_scenario.actual_total_sales)
|
|
),
|
|
)
|
|
|
|
with sub_header[2]:
|
|
st.metric(
|
|
label="Spends",
|
|
value=format_numbers(_scenario.modified_total_spends),
|
|
delta=numerize(_scenario.delta_spends, 1),
|
|
)
|
|
|
|
with sub_header[3]:
|
|
st.metric(
|
|
label=target,
|
|
value=format_numbers(
|
|
float(_scenario.modified_total_sales)
|
|
),
|
|
delta=numerize(_scenario.delta_sales, 1),
|
|
)
|
|
|
|
with st.expander("Channel Spends Simulator", expanded=True):
|
|
_columns1 = st.columns((2, 2, 1, 1))
|
|
with _columns1[0]:
|
|
optimization_selection = st.selectbox(
|
|
"Optimize", options=["Media Spends", target], key="optimization_key"
|
|
)
|
|
|
|
with _columns1[1]:
|
|
st.markdown("#")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.checkbox(
|
|
label="Optimize all Channels",
|
|
key="optimze_all_channels",
|
|
value=False,
|
|
on_change=select_all_channels_for_optimization,
|
|
)
|
|
|
|
with _columns1[2]:
|
|
st.markdown("#")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
optimize_placeholder = st.empty()
|
|
|
|
with _columns1[3]:
|
|
st.markdown("#")
|
|
st.button(
|
|
"Reset",
|
|
on_click=reset_scenario,
|
|
args=(panel_selected, file_selected, updated_rcs),
|
|
use_container_width=True,
|
|
)
|
|
|
|
_columns2 = st.columns((2, 2, 2))
|
|
if st.session_state["optimization_key"] == "Media Spends":
|
|
with _columns2[0]:
|
|
spend_input = st.text_input(
|
|
"Absolute",
|
|
key="total_spends_change_abs",
|
|
|
|
on_change=update_all_spends_abs,
|
|
)
|
|
|
|
with _columns2[1]:
|
|
st.number_input(
|
|
"Percent Change",
|
|
key="total_spends_change",
|
|
min_value=-50,
|
|
max_value=50,
|
|
step=1,
|
|
on_change=update_spends,
|
|
)
|
|
|
|
with _columns2[2]:
|
|
min_value = round(_scenario.actual_total_spends * 0.5)
|
|
max_value = round(_scenario.actual_total_spends * 1.5)
|
|
st.session_state["total_spends_change_abs_slider_options"] = [
|
|
numerize(value, 1)
|
|
for value in range(min_value, max_value + 1, int(1e4))
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif st.session_state["optimization_key"] == target:
|
|
with _columns2[0]:
|
|
sales_input = st.text_input(
|
|
"Absolute",
|
|
key="total_sales_change_abs",
|
|
on_change=update_sales_abs,
|
|
)
|
|
|
|
with _columns2[1]:
|
|
st.number_input(
|
|
"Percent Change",
|
|
key="total_sales_change",
|
|
min_value=-50,
|
|
max_value=50,
|
|
step=1,
|
|
on_change=update_sales,
|
|
)
|
|
with _columns2[2]:
|
|
min_value = round(_scenario.actual_total_sales * 0.5)
|
|
max_value = round(_scenario.actual_total_sales * 1.5)
|
|
st.session_state["total_sales_change_abs_slider_options"] = [
|
|
numerize(value, 1)
|
|
for value in range(min_value, max_value + 1, int(1e5))
|
|
]
|
|
|
|
st.select_slider(
|
|
"Absolute Slider",
|
|
options=st.session_state["total_sales_change_abs_slider_options"],
|
|
key="total_sales_change_abs_slider",
|
|
on_change=update_sales_abs_slider,
|
|
)
|
|
|
|
if (
|
|
not st.session_state["allow_sales_update"]
|
|
and optimization_selection == target
|
|
):
|
|
st.warning("Invalid Input")
|
|
|
|
if (
|
|
not st.session_state["allow_spends_update"]
|
|
and optimization_selection == "Media Spends"
|
|
):
|
|
st.warning("Invalid Input")
|
|
|
|
status_placeholder = st.empty()
|
|
|
|
|
|
|
|
|
|
|
|
optimize_placeholder.button(
|
|
"Optimize",
|
|
on_click=optimize,
|
|
args=(st.session_state["optimization_key"], status_placeholder),
|
|
use_container_width=True,
|
|
)
|
|
|
|
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
|
|
_columns = st.columns((2.5, 2, 1.5, 1.5, 1))
|
|
with _columns[0]:
|
|
generate_spending_header("Channel")
|
|
with _columns[1]:
|
|
generate_spending_header("Spends Input")
|
|
with _columns[2]:
|
|
generate_spending_header("Spends")
|
|
with _columns[3]:
|
|
generate_spending_header(target)
|
|
with _columns[4]:
|
|
generate_spending_header("Optimize")
|
|
|
|
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
|
|
|
|
if "acutual_predicted" not in st.session_state:
|
|
st.session_state["acutual_predicted"] = {
|
|
"Channel_name": [],
|
|
"Actual_spend": [],
|
|
"Optimized_spend": [],
|
|
"Delta": [],
|
|
"New_sales":[],
|
|
"Old_sales":[]
|
|
}
|
|
for i, channel_name in enumerate(channels_list):
|
|
_channel_class = st.session_state["scenario"].channels[channel_name]
|
|
_columns = st.columns((2.5, 1.5, 1.5, 1.5, 1))
|
|
with _columns[0]:
|
|
st.write(channel_name_formating(channel_name))
|
|
bin_placeholder = st.container()
|
|
|
|
with _columns[1]:
|
|
channel_bounds = _channel_class.bounds
|
|
channel_spends = float(_channel_class.actual_total_spends)
|
|
min_value = float((1 + channel_bounds[0] / 100) * channel_spends)
|
|
max_value = float((1 + channel_bounds[1] / 100) * channel_spends)
|
|
|
|
spend_input = st.text_input(
|
|
channel_name,
|
|
key=channel_name,
|
|
label_visibility="collapsed",
|
|
on_change=partial(update_data, channel_name),
|
|
)
|
|
if not validate_input(spend_input):
|
|
st.error("Invalid input")
|
|
|
|
channel_name_current = f"{channel_name}_change"
|
|
|
|
st.number_input(
|
|
"Percent Change",
|
|
key=channel_name_current,
|
|
step=1,
|
|
on_change=partial(update_data_by_percent, channel_name),
|
|
)
|
|
|
|
with _columns[2]:
|
|
|
|
current_channel_spends = float(
|
|
_channel_class.modified_total_spends
|
|
* _channel_class.conversion_rate
|
|
)
|
|
actual_channel_spends = float(
|
|
_channel_class.actual_total_spends * _channel_class.conversion_rate
|
|
)
|
|
spends_delta = float(
|
|
_channel_class.delta_spends * _channel_class.conversion_rate
|
|
)
|
|
st.session_state["acutual_predicted"]["Channel_name"].append(
|
|
channel_name
|
|
)
|
|
st.session_state["acutual_predicted"]["Actual_spend"].append(
|
|
actual_channel_spends
|
|
)
|
|
st.session_state["acutual_predicted"]["Optimized_spend"].append(
|
|
current_channel_spends
|
|
)
|
|
st.session_state["acutual_predicted"]["Delta"].append(spends_delta)
|
|
|
|
st.metric(
|
|
"Spends",
|
|
format_numbers(current_channel_spends),
|
|
delta=numerize(spends_delta, 1),
|
|
label_visibility="collapsed",
|
|
)
|
|
|
|
with _columns[3]:
|
|
|
|
current_channel_sales = float(_channel_class.modified_total_sales)
|
|
actual_channel_sales = float(_channel_class.actual_total_sales)
|
|
sales_delta = float(_channel_class.delta_sales)
|
|
st.session_state["acutual_predicted"]["Old_sales"].append(actual_channel_sales)
|
|
st.session_state["acutual_predicted"]["New_sales"].append(current_channel_sales)
|
|
|
|
|
|
st.metric(
|
|
target,
|
|
format_numbers(current_channel_sales, include_indicator=False),
|
|
delta=numerize(sales_delta, 1),
|
|
label_visibility="collapsed",
|
|
)
|
|
|
|
with _columns[4]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.checkbox(
|
|
label="select for optimization",
|
|
key=f"{channel_name}_selected",
|
|
value=False,
|
|
on_change=partial(select_channel_for_optimization, channel_name),
|
|
label_visibility="collapsed",
|
|
)
|
|
|
|
st.markdown(
|
|
"""<hr class="spends-child-seperator">""",
|
|
unsafe_allow_html=True,
|
|
)
|
|
|
|
|
|
col = channels_list[i]
|
|
x_actual = st.session_state["scenario"].channels[col].actual_spends
|
|
x_modified = st.session_state["scenario"].channels[col].modified_spends
|
|
|
|
x_total = x_modified.sum()
|
|
power = np.ceil(np.log(x_actual.max()) / np.log(10)) - 3
|
|
|
|
updated_rcs_key = f"{metrics_selected}#@{panel_selected}#@{channel_name}"
|
|
|
|
if updated_rcs and updated_rcs_key in list(updated_rcs.keys()):
|
|
K = updated_rcs[updated_rcs_key]["K"]
|
|
b = updated_rcs[updated_rcs_key]["b"]
|
|
a = updated_rcs[updated_rcs_key]["a"]
|
|
x0 = updated_rcs[updated_rcs_key]["x0"]
|
|
else:
|
|
K = st.session_state["rcs"][col]["K"]
|
|
b = st.session_state["rcs"][col]["b"]
|
|
a = st.session_state["rcs"][col]["a"]
|
|
x0 = st.session_state["rcs"][col]["x0"]
|
|
|
|
x_plot = np.linspace(0, 5 * x_actual.sum(), 200)
|
|
|
|
|
|
x_plot = np.append(x_plot, current_channel_spends)
|
|
|
|
x, y, marginal_roi = [], [], []
|
|
for x_p in x_plot:
|
|
x.append(x_p * x_actual / x_actual.sum())
|
|
|
|
for index in range(len(x_plot)):
|
|
y.append(s_curve(x[index] / 10**power, K, b, a, x0))
|
|
|
|
for index in range(len(x_plot)):
|
|
marginal_roi.append(
|
|
a * y[index] * (1 - y[index] / np.maximum(K, np.finfo(float).eps))
|
|
)
|
|
|
|
x = (
|
|
np.sum(x, axis=1)
|
|
* st.session_state["scenario"].channels[col].conversion_rate
|
|
)
|
|
y = np.sum(y, axis=1)
|
|
marginal_roi = (
|
|
np.average(marginal_roi, axis=1)
|
|
/ st.session_state["scenario"].channels[col].conversion_rate
|
|
)
|
|
|
|
roi = y / np.maximum(x, np.finfo(float).eps)
|
|
|
|
|
|
|
|
roi_current, marginal_roi_current = roi[-1], marginal_roi[-1]
|
|
x, y, roi, marginal_roi = (
|
|
x[:-1],
|
|
y[:-1],
|
|
roi[:-1],
|
|
marginal_roi[:-1],
|
|
)
|
|
|
|
start_value, end_value, left_value, right_value = find_segment_value(
|
|
x,
|
|
roi,
|
|
marginal_roi,
|
|
)
|
|
|
|
|
|
|
|
rgba = calculate_rgba(
|
|
start_value,
|
|
end_value,
|
|
left_value,
|
|
right_value,
|
|
current_channel_spends,
|
|
)
|
|
|
|
with bin_placeholder:
|
|
st.markdown(
|
|
f"""
|
|
<div style="
|
|
border-radius: 12px;
|
|
background-color: {rgba};
|
|
padding: 10px;
|
|
text-align: center;
|
|
color: #006EC0;
|
|
">
|
|
<p style="margin: 0; font-size: 20px;">ROI: {round(roi_current,1)}</p>
|
|
<p style="margin: 0; font-size: 20px;">Marginal ROI: {round(marginal_roi_current,1)}</p>
|
|
</div>
|
|
""",
|
|
unsafe_allow_html=True,
|
|
)
|
|
|
|
with st.expander("See Response Curves", expanded=True):
|
|
fig = plot_response_curves()
|
|
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
_columns = st.columns(2)
|
|
|
|
st.subheader("Save Scenario")
|
|
scenario_name = st.text_input(
|
|
"Scenario name",
|
|
key="scenario_input",
|
|
placeholder="Scenario name",
|
|
label_visibility="collapsed",
|
|
)
|
|
st.button(
|
|
"Save",
|
|
on_click=lambda: save_scenario(scenario_name),
|
|
disabled=len(st.session_state["scenario_input"]) == 0,use_container_width=True
|
|
)
|
|
|
|
summary_df = pd.DataFrame(st.session_state["acutual_predicted"])
|
|
summary_df.drop_duplicates(subset="Channel_name", keep="last", inplace=True)
|
|
|
|
summary_df_sorted = summary_df.sort_values(by="Delta", ascending=False)
|
|
summary_df_sorted["Delta_percent"] = np.round(
|
|
((summary_df_sorted["Optimized_spend"] / summary_df_sorted["Actual_spend"]) - 1)
|
|
* 100,
|
|
2,
|
|
)
|
|
|
|
with open("summary_df.pkl", "wb") as f:
|
|
pickle.dump(summary_df_sorted, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif auth_status == False:
|
|
st.error("Username/Password is incorrect")
|
|
|
|
if auth_status != True:
|
|
try:
|
|
username_forgot_pw, email_forgot_password, random_password = (
|
|
authenticator.forgot_password("Forgot password")
|
|
)
|
|
if username_forgot_pw:
|
|
st.session_state["config"]["credentials"]["usernames"][username_forgot_pw][
|
|
"password"
|
|
] = stauth.Hasher([random_password]).generate()[0]
|
|
send_email(email_forgot_password, random_password)
|
|
st.success("New password sent securely")
|
|
|
|
elif username_forgot_pw == False:
|
|
st.error("Username not found")
|
|
except Exception as e:
|
|
st.error(e)
|
|
|