File size: 20,964 Bytes
bd80083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
import plotly.express as px
import numpy as np
import plotly.graph_objects as go
import streamlit as st
import pandas as pd
import statsmodels.api as sm
from sklearn.metrics import mean_absolute_percentage_error
import sys
import os
from utilities import set_header, load_local_css, load_authenticator
import seaborn as sns
import matplotlib.pyplot as plt
import sweetviz as sv
import tempfile
from sklearn.preprocessing import MinMaxScaler
from st_aggrid import AgGrid
from st_aggrid import GridOptionsBuilder, GridUpdateMode
from st_aggrid import GridOptionsBuilder
import sys
import re

sys.setrecursionlimit(10**6)

original_stdout = sys.stdout
sys.stdout = open("temp_stdout.txt", "w")
sys.stdout.close()
sys.stdout = original_stdout

st.set_page_config(layout="wide")
load_local_css("styles.css")
set_header()

for k, v in st.session_state.items():
    if k not in ["logout", "login", "config"] and not k.startswith("FormSubmitter"):
        st.session_state[k] = v

authenticator = st.session_state.get("authenticator")
if authenticator is None:
    authenticator = load_authenticator()

name, authentication_status, username = authenticator.login("Login", "main")
auth_status = st.session_state.get("authentication_status")

if auth_status == True:
    is_state_initiaized = st.session_state.get("initialized", False)
    if not is_state_initiaized:
        a = 1

    def plot_residual_predicted(actual, predicted, df_):
        df_["Residuals"] = actual - pd.Series(predicted)
        df_["StdResidual"] = (df_["Residuals"] - df_["Residuals"].mean()) / df_[
            "Residuals"
        ].std()

        # Create a Plotly scatter plot
        fig = px.scatter(
            df_,
            x=predicted,
            y="StdResidual",
            opacity=0.5,
            color_discrete_sequence=["#11B6BD"],
        )

        # Add horizontal lines
        fig.add_hline(y=0, line_dash="dash", line_color="darkorange")
        fig.add_hline(y=2, line_color="red")
        fig.add_hline(y=-2, line_color="red")

        fig.update_xaxes(title="Predicted")
        fig.update_yaxes(title="Standardized Residuals (Actual - Predicted)")

        # Set the same width and height for both figures
        fig.update_layout(
            title="Residuals over Predicted Values",
            autosize=False,
            width=600,
            height=400,
        )

        return fig

    def residual_distribution(actual, predicted):
        Residuals = actual - pd.Series(predicted)

        # Create a Seaborn distribution plot
        sns.set(style="whitegrid")
        plt.figure(figsize=(6, 4))
        sns.histplot(Residuals, kde=True, color="#11B6BD")

        plt.title(" Distribution of Residuals")
        plt.xlabel("Residuals")
        plt.ylabel("Probability Density")

        return plt

    def qqplot(actual, predicted):
        Residuals = actual - pd.Series(predicted)
        Residuals = pd.Series(Residuals)
        Resud_std = (Residuals - Residuals.mean()) / Residuals.std()

        # Create a QQ plot using Plotly with custom colors
        fig = go.Figure()
        fig.add_trace(
            go.Scatter(
                x=sm.ProbPlot(Resud_std).theoretical_quantiles,
                y=sm.ProbPlot(Resud_std).sample_quantiles,
                mode="markers",
                marker=dict(size=5, color="#11B6BD"),
                name="QQ Plot",
            )
        )

        # Add the 45-degree reference line
        diagonal_line = go.Scatter(
            x=[-2, 2],  # Adjust the x values as needed to fit the range of your data
            y=[-2, 2],  # Adjust the y values accordingly
            mode="lines",
            line=dict(color="red"),  # Customize the line color and style
            name=" ",
        )
        fig.add_trace(diagonal_line)

        # Customize the layout
        fig.update_layout(
            title="QQ Plot of Residuals",
            title_x=0.5,
            autosize=False,
            width=600,
            height=400,
            xaxis_title="Theoretical Quantiles",
            yaxis_title="Sample Quantiles",
        )

        return fig

    def plot_actual_vs_predicted(date, y, predicted_values, model):

        fig = go.Figure()

        fig.add_trace(
            go.Scatter(
                x=date, y=y, mode="lines", name="Actual", line=dict(color="blue")
            )
        )
        fig.add_trace(
            go.Scatter(
                x=date,
                y=predicted_values,
                mode="lines",
                name="Predicted",
                line=dict(color="orange"),
            )
        )

        # Calculate MAPE
        mape = mean_absolute_percentage_error(y, predicted_values) * 100

        # Calculate R-squared
        rss = np.sum((y - predicted_values) ** 2)
        tss = np.sum((y - np.mean(y)) ** 2)
        r_squared = 1 - (rss / tss)

        # Get the number of predictors
        num_predictors = model.df_model

        # Get the number of samples
        num_samples = len(y)

        # Calculate Adjusted R-squared
        adj_r_squared = 1 - (
            (1 - r_squared) * ((num_samples - 1) / (num_samples - num_predictors - 1))
        )
        metrics_table = pd.DataFrame(
            {
                "Metric": ["MAPE", "R-squared", "AdjR-squared"],
                "Value": [mape, r_squared, adj_r_squared],
            }
        )
        fig.update_layout(
            xaxis=dict(title="Date"),
            yaxis=dict(title="Value"),
            title=f"MAPE : {mape:.2f}%, AdjR2: {adj_r_squared:.2f}",
            xaxis_tickangle=-30,
        )

        return metrics_table, fig

    def contributions(X, model):
        X1 = X.copy()
        for j, col in enumerate(X1.columns):
            X1[col] = X1[col] * model.params.values[j]

        return np.round(
            (X1.sum() / sum(X1.sum()) * 100).sort_values(ascending=False), 2
        )

    transformed_data = pd.read_csv("transformed_data.csv")

    # hard coded for now, need to get features set from model

    feature_set_dct = {
        "app_installs_-_appsflyer": [
            "paid_search_clicks",
            "fb:_level_achieved_-_tier_1_impressions_lag2",
            "fb:_level_achieved_-_tier_2_clicks_lag2",
            "paid_social_others_impressions_adst.1",
            "ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag2",
            "digital_tactic_others_clicks",
            "kwai_clicks_adst.3",
            "programmaticclicks",
            "indicacao_clicks_adst.1",
            "infleux_clicks_adst.4",
            "influencer_clicks",
        ],
        "account_requests_-_appsflyer": [
            "paid_search_impressions",
            "fb:_level_achieved_-_tier_1_clicks_adst.1",
            "fb:_level_achieved_-_tier_2_clicks_adst.1",
            "paid_social_others_clicks_lag2",
            "ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag5_adst.1",
            "digital_tactic_others_clicks_adst.1",
            "kwai_clicks_adst.2",
            "programmaticimpressions_lag4_adst.1",
            "indicacao_clicks",
            "infleux_clicks_adst.2",
            "influencer_clicks",
        ],
        "total_approved_accounts_-_appsflyer": [
            "paid_search_clicks",
            "fb:_level_achieved_-_tier_1_impressions_lag2_adst.1",
            "fb:_level_achieved_-_tier_2_impressions_lag2",
            "paid_social_others_clicks_lag2_adst.2",
            "ga_app:_will_and_cid_pequena_baixo_risco_impressions_lag4",
            "digital_tactic_others_clicks",
            "kwai_impressions_adst.2",
            "programmaticclicks_adst.5",
            "indicacao_clicks_adst.1",
            "infleux_clicks_adst.3",
            "influencer_clicks",
        ],
        "total_approved_accounts_-_revenue": [
            "paid_search_impressions_adst.5",
            "kwai_impressions_lag2_adst.3",
            "indicacao_clicks_adst.3",
            "infleux_clicks_adst.3",
            "programmaticclicks_adst.4",
            "influencer_clicks_adst.3",
            "fb:_level_achieved_-_tier_1_impressions_adst.2",
            "fb:_level_achieved_-_tier_2_impressions_lag3_adst.5",
            "paid_social_others_impressions_adst.3",
            "ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag3_adst.5",
            "digital_tactic_others_clicks_adst.2",
        ],
    }

    # """ the above part should be modified so that we are fetching features set from the saved model"""

    def contributions(X, model, target):
        X1 = X.copy()
        for j, col in enumerate(X1.columns):
            X1[col] = X1[col] * model.params.values[j]

        contributions = np.round(
            (X1.sum() / sum(X1.sum()) * 100).sort_values(ascending=False), 2
        )
        contributions = (
            pd.DataFrame(contributions, columns=target)
            .reset_index()
            .rename(columns={"index": "Channel"})
        )
        contributions["Channel"] = [
            re.split(r"_imp|_cli", col)[0] for col in contributions["Channel"]
        ]

        return contributions

    def model_fit(features_set, target):
        X = transformed_data[features_set]
        y = transformed_data[target]
        ss = MinMaxScaler()
        X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
        X = sm.add_constant(X)
        X_train = X.iloc[:150]
        X_test = X.iloc[150:]
        y_train = y.iloc[:150]
        y_test = y.iloc[150:]
        model = sm.OLS(y_train, X_train).fit()
        predicted_values_train = model.predict(X_train)
        r2 = model.rsquared
        adjr2 = model.rsquared_adj
        train_mape = mean_absolute_percentage_error(y_train, predicted_values_train)
        test_mape = mean_absolute_percentage_error(y_test, model.predict(X_test))
        summary = model.summary()
        train_contributions = contributions(X_train, model, [target])
        return (
            pd.DataFrame(
                {
                    "Model": target,
                    "R2": np.round(r2, 2),
                    "ADJr2": np.round(adjr2, 2),
                    "Train Mape": np.round(train_mape, 2),
                    "Test Mape": np.round(test_mape, 2),
                    "Summary": summary,
                    "Model_object": model,
                },
                index=[0],
            ),
            train_contributions,
        )

    metrics_table = pd.DataFrame()

    if "contribution_df" not in st.session_state:
        st.session_state["contribution_df"] = pd.DataFrame()

    for target, feature_set in feature_set_dct.items():
        metrics_table = pd.concat(
            [metrics_table, model_fit(features_set=feature_set, target=target)[0]]
        )
        if st.session_state["contribution_df"].empty:
            st.session_state["contribution_df"] = model_fit(
                features_set=feature_set, target=target
            )[1]
        else:
            st.session_state["contribution_df"] = pd.merge(
                st.session_state["contribution_df"],
                model_fit(features_set=feature_set, target=target)[1],
            )

    # st.write(st.session_state["contribution_df"])

    metrics_table.reset_index(drop=True, inplace=True)

    eda_columns = st.columns(2)
    with eda_columns[1]:
        eda = st.button(
            "Generate EDA Report",
            help="Click to generate a bivariate report for the selected response metric from the table below.",
        )

    # st.markdown('Model Metrics')

    st.title("Contribution Overview")

    contribution_selections = st.multiselect(
        "Select the models to compare contributions",
        [
            col
            for col in st.session_state["contribution_df"].columns
            if col.lower() != "channel"
        ],
        default=[
            col
            for col in st.session_state["contribution_df"].columns
            if col.lower() != "channel"
        ][-1],
    )
    trace_data = []

    for selection in contribution_selections:

        trace = go.Bar(
            x=st.session_state["contribution_df"]["Channel"],
            y=st.session_state["contribution_df"][selection],
            name=selection,
            text=np.round(st.session_state["contribution_df"][selection], 0)
            .astype(int)
            .astype(str)
            + "%",
            textposition="outside",
        )
        trace_data.append(trace)

    layout = go.Layout(
        title="Metrics Contribution by Channel",
        xaxis=dict(title="Channel Name"),
        yaxis=dict(title="Metrics Contribution"),
        barmode="group",
    )
    fig = go.Figure(data=trace_data, layout=layout)
    st.plotly_chart(fig, use_container_width=True)

    ############################################ Waterfall Chart ############################################
    # import plotly.graph_objects as go

    # # Initialize a Plotly figure
    # fig = go.Figure()

    # for selection in contribution_selections:
    #     # Ensure y_values are numeric
    #     y_values = st.session_state["contribution_df"][selection].values.astype(float)

    #     # Generating text labels for each bar, ensuring operations are compatible with string formats
    #     text_values = [f"{val}%" for val in np.round(y_values, 0).astype(int)]

    #     fig.add_trace(
    #         go.Waterfall(
    #             name=selection,
    #             orientation="v",
    #             measure=["relative"]
    #             * len(y_values),  # Adjust if you have absolute values at certain points
    #             x=st.session_state["contribution_df"]["Channel"].tolist(),
    #             text=text_values,
    #             textposition="outside",
    #             y=y_values,
    #             increasing={"marker": {"color": "green"}},
    #             decreasing={"marker": {"color": "red"}},
    #             totals={"marker": {"color": "blue"}},
    #         )
    #     )

    # fig.update_layout(
    #     title="Metrics Contribution by Channel",
    #     xaxis={"title": "Channel Name"},
    #     yaxis={"title": "Metrics Contribution"},
    #     height=600,
    # )

    # # Displaying the waterfall chart in Streamlit
    # st.plotly_chart(fig, use_container_width=True)

    import plotly.graph_objects as go

    # Initialize a Plotly figure
    fig = go.Figure()

    for selection in contribution_selections:
        # Ensure contributions are numeric
        contributions = (
            st.session_state["contribution_df"][selection].values.astype(float).tolist()
        )
        channel_names = st.session_state["contribution_df"]["Channel"].tolist()

        display_name, display_contribution, base_contribution = [], [], 0
        for channel_name, contribution in zip(channel_names, contributions):
            if channel_name != "const":
                display_name.append(channel_name)
                display_contribution.append(contribution)
            else:
                base_contribution = contribution

        display_name = ["Base Sales"] + display_name
        display_contribution = [base_contribution] + display_contribution

        # Generating text labels for each bar, ensuring operations are compatible with string formats
        text_values = [
            f"{val}%" for val in np.round(display_contribution, 0).astype(int)
        ]

        fig.add_trace(
            go.Waterfall(
                orientation="v",
                measure=["relative"]
                * len(
                    display_contribution
                ),  # Adjust if you have absolute values at certain points
                x=display_name,
                text=text_values,
                textposition="outside",
                y=display_contribution,
                increasing={"marker": {"color": "green"}},
                decreasing={"marker": {"color": "red"}},
                totals={"marker": {"color": "blue"}},
            )
        )

    fig.update_layout(
        title="Metrics Contribution by Channel",
        xaxis={"title": "Channel Name"},
        yaxis={"title": "Metrics Contribution"},
        height=600,
    )

    # Displaying the waterfall chart in Streamlit
    st.plotly_chart(fig, use_container_width=True)

    ############################################ Waterfall Chart ############################################

    st.title("Analysis of Models Result")
    # st.markdown()
    gd_table = metrics_table.iloc[:, :-2]

    gd = GridOptionsBuilder.from_dataframe(gd_table)
    # gd.configure_pagination(enabled=True)
    gd.configure_selection(
        use_checkbox=True,
        selection_mode="single",
        pre_select_all_rows=False,
        pre_selected_rows=[1],
    )

    gridoptions = gd.build()
    table = AgGrid(
        gd_table, gridOptions=gridoptions, fit_columns_on_grid_load=True, height=200
    )
    # table=metrics_table.iloc[:,:-2]
    # table.insert(0, "Select", False)
    # selection_table=st.data_editor(table,column_config={"Select": st.column_config.CheckboxColumn(required=True)})

    if len(table.selected_rows) == 0:
        st.warning(
            "Click on the checkbox to view comprehensive results of the selected model."
        )
        st.stop()
    else:
        target_column = table.selected_rows[0]["Model"]
        feature_set = feature_set_dct[target_column]

    with eda_columns[1]:
        if eda:

            def generate_report_with_target(channel_data, target_feature):
                report = sv.analyze(
                    [channel_data, "Dataset"], target_feat=target_feature, verbose=False
                )
                temp_dir = tempfile.mkdtemp()
                report_path = os.path.join(temp_dir, "report.html")
                report.show_html(
                    filepath=report_path, open_browser=False
                )  # Generate the report as an HTML file
                return report_path

            report_data = transformed_data[feature_set]
            report_data[target_column] = transformed_data[target_column]
            report_file = generate_report_with_target(report_data, target_column)

            if os.path.exists(report_file):
                with open(report_file, "rb") as f:
                    st.download_button(
                        label="Download EDA Report",
                        data=f.read(),
                        file_name="report.html",
                        mime="text/html",
                    )
            else:
                st.warning("Report generation failed. Unable to find the report file.")

    model = metrics_table[metrics_table["Model"] == target_column]["Model_object"].iloc[
        0
    ]
    st.header("Model Summary")
    st.write(model.summary())
    X = transformed_data[feature_set]
    ss = MinMaxScaler()
    X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
    X = sm.add_constant(X)
    y = transformed_data[target_column]
    X_train = X.iloc[:150]
    X_test = X.iloc[150:]
    y_train = y.iloc[:150]
    y_test = y.iloc[150:]
    X.index = transformed_data["date"]
    y.index = transformed_data["date"]

    metrics_table_train, fig_train = plot_actual_vs_predicted(
        X_train.index, y_train, model.predict(X_train), model
    )
    metrics_table_test, fig_test = plot_actual_vs_predicted(
        X_test.index, y_test, model.predict(X_test), model
    )

    metrics_table_train = metrics_table_train.set_index("Metric").transpose()
    metrics_table_train.index = ["Train"]
    metrics_table_test = metrics_table_test.set_index("Metric").transpose()
    metrics_table_test.index = ["test"]
    metrics_table = np.round(pd.concat([metrics_table_train, metrics_table_test]), 2)

    st.markdown("Result Overview")
    st.dataframe(np.round(metrics_table, 2), use_container_width=True)

    st.subheader("Actual vs Predicted Plot Train")

    st.plotly_chart(fig_train, use_container_width=True)
    st.subheader("Actual vs Predicted Plot Test")
    st.plotly_chart(fig_test, use_container_width=True)

    st.markdown("## Residual Analysis")
    columns = st.columns(2)

    Xtrain1 = X_train.copy()
    with columns[0]:
        fig = plot_residual_predicted(y_train, model.predict(Xtrain1), Xtrain1)
        st.plotly_chart(fig)

    with columns[1]:
        st.empty()
        fig = qqplot(y_train, model.predict(X_train))
        st.plotly_chart(fig)

    with columns[0]:
        fig = residual_distribution(y_train, model.predict(X_train))
        st.pyplot(fig)


elif auth_status == False:
    st.error("Username/Password is incorrect")
    try:
        username_forgot_pw, email_forgot_password, random_password = (
            authenticator.forgot_password("Forgot password")
        )
        if username_forgot_pw:
            st.success("New password sent securely")
            # Random password to be transferred to the user securely
        elif username_forgot_pw == False:
            st.error("Username not found")
    except Exception as e:
        st.error(e)