File size: 25,862 Bytes
bd80083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
'''
MMO Build Sprint 3
date :
changes : capability to tune MixedLM as well as simple LR in the same page
'''

import streamlit as st
import pandas as pd
from Eda_functions import format_numbers
import pickle
from utilities import set_header, load_local_css
import statsmodels.api as sm
import re
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from statsmodels.stats.outliers_influence import variance_inflation_factor

st.set_option('deprecation.showPyplotGlobalUse', False)
import statsmodels.formula.api as smf
from Data_prep_functions import *

# for i in ["model_tuned", "X_train_tuned", "X_test_tuned", "tuned_model_features", "tuned_model", "tuned_model_dict"] :

st.set_page_config(
    page_title="Model Tuning",
    page_icon=":shark:",
    layout="wide",
    initial_sidebar_state='collapsed'
)
load_local_css('styles.css')
set_header()

# Sprint3
# is_panel = st.session_state['is_panel']
# panel_col = 'markets'  # set the panel column
date_col = 'date'

panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in  st.session_state['bin_dict']['Panel Level 1']  ] [0]# set the panel column
is_panel = True if len(panel_col)>0 else False


# flag indicating there is not tuned model till now

# Sprint4 - model tuned dict
if 'Model_Tuned' not in st.session_state:
    st.session_state['Model_Tuned'] = {}

st.title('1. Model Tuning')
# st.write(st.session_state['base_model_feature_set'])

if "X_train" not in st.session_state:
    st.error(
        "Oops! It seems there are no saved models available. Please build and save a model from the previous page to proceed.")
    st.stop()
# X_train=st.session_state['X_train']
# X_test=st.session_state['X_test']
# y_train=st.session_state['y_train']
# y_test=st.session_state['y_test']
# df=st.session_state['media_data']


# st.write(X_train.columns)
# st.write(X_test.columns)
if "is_tuned_model" not in st.session_state:
        st.session_state["is_tuned_model"] = {}
# Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default
if "used_response_metrics" in st.session_state and st.session_state['used_response_metrics'] != []:
    sel_target_col = st.selectbox("Select the response metric", st.session_state['used_response_metrics'])
    target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")

else:
    sel_target_col = 'Total Approved Accounts - Revenue'
    target_col = 'total_approved_accounts_revenue'

# Sprint4 - Look through all saved models, only show saved models of the sel resp metric (target_col)
saved_models = st.session_state['saved_model_names']
required_saved_models = [m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col]
sel_model = st.selectbox("Select the model to tune", required_saved_models)

with open("best_models.pkl", 'rb') as file:
    model_dict = pickle.load(file)

sel_model_dict = model_dict[sel_model + "__" + target_col]  # Sprint4 - get the model obj of the selected model
# st.write(sel_model_dict)

X_train = sel_model_dict['X_train']
X_test = sel_model_dict['X_test']
y_train = sel_model_dict['y_train']
y_test = sel_model_dict['y_test']
df = st.session_state['media_data']

if 'selected_model' not in st.session_state:
    st.session_state['selected_model'] = 0

# st.write(model_dict[st.session_state["selected_model"]]['X_train'].columns)

st.markdown('### 1.1 Event Flags')
st.markdown('Helps in quantifying the impact of specific occurrences of events')
with st.expander('Apply Event Flags'):
    # st.session_state["selected_model"]=st.selectbox('Select Model to apply flags',model_dict.keys())
    model = sel_model_dict['Model_object']
    date = st.session_state['date']
    date = pd.to_datetime(date)
    X_train = sel_model_dict['X_train']

    # features_set= model_dict[st.session_state["selected_model"]]['feature_set']
    features_set = sel_model_dict["feature_set"]

    col = st.columns(3)
    min_date = min(date)
    max_date = max(date)
    with col[0]:
        start_date = st.date_input('Select Start Date', min_date, min_value=min_date, max_value=max_date)
    with col[1]:
        end_date = st.date_input('Select End Date', max_date, min_value=min_date, max_value=max_date)
    with col[2]:
        repeat = st.selectbox('Repeat Annually', ['Yes', 'No'], index=1)
    if repeat == 'Yes':
        repeat = True
    else:
        repeat = False

    if 'Flags' not in st.session_state:
        st.session_state['Flags'] = {}
    # print("**"*50)
    # print(y_train)
    # print("**"*50)
    # print(model.fittedvalues)
    if is_panel:  # Sprint3
        met, line_values, fig_flag = plot_actual_vs_predicted(X_train[date_col], y_train,
                                                              model.fittedvalues, model,
                                                              target_column=sel_target_col,
                                                              flag=(start_date, end_date),
                                                              repeat_all_years=repeat, is_panel=True)
        st.plotly_chart(fig_flag, use_container_width=True)

        # create flag on test
        met, test_line_values, fig_flag = plot_actual_vs_predicted(X_test[date_col], y_test,
                                                                   sel_model_dict['pred_test'], model,
                                                                   target_column=sel_target_col,
                                                                   flag=(start_date, end_date),
                                                                   repeat_all_years=repeat, is_panel=True)

    else:
        pred_train=model.predict(X_train[features_set])
        met, line_values, fig_flag = plot_actual_vs_predicted(X_train[date_col], y_train, pred_train, model,
                                                              flag=(start_date, end_date), repeat_all_years=repeat,is_panel=False)
        st.plotly_chart(fig_flag, use_container_width=True)

        pred_test=model.predict(X_test[features_set])
        met, test_line_values, fig_flag = plot_actual_vs_predicted(X_test[date_col], y_test, pred_test, model,
                                                                   flag=(start_date, end_date), repeat_all_years=repeat,is_panel=False)
    flag_name = 'f1_flag'
    flag_name = st.text_input('Enter Flag Name')
    # Sprint4 - add selected target col to flag name
    if st.button('Update flag'):
        st.session_state['Flags'][flag_name + '__'+ target_col] = {}
        st.session_state['Flags'][flag_name + '__'+ target_col]['train'] = line_values
        st.session_state['Flags'][flag_name + '__'+ target_col]['test'] = test_line_values
        # st.write(st.session_state['Flags'][flag_name])
        st.success(f'{flag_name + "__" + target_col} stored')

    # Sprint4 - only show flag created for the particular target col
    st.write(st.session_state['Flags'].keys() )
    target_model_flags = [f.split("__")[0] for f in st.session_state['Flags'].keys() if f.split("__")[1] == target_col]
    options = list(target_model_flags)
    selected_options = []
    num_columns = 4
    num_rows = -(-len(options) // num_columns)

tick = False
if st.checkbox('Select all'):
    tick = True
selected_options = []
for row in range(num_rows):
    cols = st.columns(num_columns)
    for col in cols:
        if options:
            option = options.pop(0)
            selected = col.checkbox(option, value=tick)
            if selected:
                selected_options.append(option)

st.markdown('### 1.2 Select Parameters to Apply')
parameters = st.columns(3)
with parameters[0]:
    Trend = st.checkbox("**Trend**")
    st.markdown('Helps account for long-term trends or seasonality that could influence advertising effectiveness')
with parameters[1]:
    week_number = st.checkbox('**Week_number**')
    st.markdown('Assists in detecting and incorporating weekly patterns or seasonality')
with parameters[2]:
    sine_cosine = st.checkbox('**Sine and Cosine Waves**')
    st.markdown('Helps in capturing cyclical patterns or seasonality in the data')
#
# def get_tuned_model():
#     st.session_state['build_tuned_model']=True

if st.button('Build model with Selected Parameters and Flags', key='build_tuned_model'):
    new_features = features_set
    st.header('2.1 Results Summary')
    # date=list(df.index)
    # df = df.reset_index(drop=True)
    # st.write(df.head(2))
    # X_train=df[features_set]
    ss = MinMaxScaler()
    if is_panel == True:
        X_train_tuned = X_train[features_set]
        # X_train_tuned = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
        X_train_tuned[target_col] = X_train[target_col]
        X_train_tuned[date_col] = X_train[date_col]
        X_train_tuned[panel_col] = X_train[panel_col]

        X_test_tuned = X_test[features_set]
        # X_test_tuned = pd.DataFrame(ss.transform(X), columns=X.columns)
        X_test_tuned[target_col] = X_test[target_col]
        X_test_tuned[date_col] = X_test[date_col]
        X_test_tuned[panel_col] = X_test[panel_col]

    else:
        X_train_tuned = X_train[features_set]
        # X_train_tuned = pd.DataFrame(ss.fit_transform(X_train_tuned), columns=X_train_tuned.columns)

        X_test_tuned = X_test[features_set]
        # X_test_tuned = pd.DataFrame(ss.transform(X_test_tuned), columns=X_test_tuned.columns)

    for flag in selected_options:
        # Spirnt4 - added target_col in flag name
        X_train_tuned[flag] = st.session_state['Flags'][flag + "__" + target_col]['train']
        X_test_tuned[flag] = st.session_state['Flags'][flag + "__" + target_col]['test']

        # test
        # X_train_tuned.to_csv("Test/X_train_tuned_flag.csv",index=False)
        # X_test_tuned.to_csv("Test/X_test_tuned_flag.csv",index=False)

    # print("()()"*20,flag, len(st.session_state['Flags'][flag]))
    if Trend:
        # Sprint3 - group by panel, calculate trend of each panel spearately. Add trend to new feature set
        if is_panel:
            newdata = pd.DataFrame()
            panel_wise_end_point_train = {}
            for panel, groupdf in X_train_tuned.groupby(panel_col):
                groupdf.sort_values(date_col, inplace=True)
                groupdf['Trend'] = np.arange(1, len(groupdf) + 1, 1)
                newdata = pd.concat([newdata, groupdf])
                panel_wise_end_point_train[panel] = len(groupdf)
            X_train_tuned = newdata.copy()

            test_newdata = pd.DataFrame()
            for panel, test_groupdf in X_test_tuned.groupby(panel_col):
                test_groupdf.sort_values(date_col, inplace=True)
                start = panel_wise_end_point_train[panel] + 1
                end = start + len(test_groupdf) # should be + 1? - Sprint4
                # print("??"*20, panel, len(test_groupdf), len(np.arange(start, end, 1)), start)
                test_groupdf['Trend'] = np.arange(start, end, 1)
                test_newdata = pd.concat([test_newdata, test_groupdf])
            X_test_tuned = test_newdata.copy()

            new_features = new_features + ['Trend']

        else:
            X_train_tuned['Trend'] = np.arange(1, len(X_train_tuned) + 1, 1)
            X_test_tuned['Trend'] = np.arange(len(X_train_tuned) + 1, len(X_train_tuned) + len(X_test_tuned) + 1, 1)
            new_features = new_features + ['Trend']


    if week_number:
        # Sprint3 - create weeknumber from date column in xtrain tuned. add week num to new feature set
        if is_panel:
            X_train_tuned[date_col] = pd.to_datetime(X_train_tuned[date_col])
            X_train_tuned['Week_number'] = X_train_tuned[date_col].dt.day_of_week
            if X_train_tuned['Week_number'].nunique() == 1:
                st.write("All dates in the data are of the same week day. Hence Week number can't be used.")
            else:
                X_test_tuned[date_col] = pd.to_datetime(X_test_tuned[date_col])
                X_test_tuned['Week_number'] = X_test_tuned[date_col].dt.day_of_week
                new_features = new_features + ['Week_number']

        else:
            date = pd.to_datetime(date.values)
            X_train_tuned['Week_number'] = pd.to_datetime(X_train[date_col]).dt.day_of_week
            X_test_tuned['Week_number'] = pd.to_datetime(X_test[date_col]).dt.day_of_week
            new_features = new_features + ['Week_number']

    if sine_cosine:
        # Sprint3 - create panel wise sine cosine waves in xtrain tuned. add to new feature set
        if is_panel:
            new_features = new_features + ['sine_wave', 'cosine_wave']
            newdata = pd.DataFrame()
            newdata_test = pd.DataFrame()
            groups = X_train_tuned.groupby(panel_col)
            frequency = 2 * np.pi / 365  # Adjust the frequency as needed

            train_panel_wise_end_point = {}
            for panel, groupdf in groups:
                num_samples = len(groupdf)
                train_panel_wise_end_point[panel] = num_samples
                days_since_start = np.arange(num_samples)
                sine_wave = np.sin(frequency * days_since_start)
                cosine_wave = np.cos(frequency * days_since_start)
                sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
                assert len(sine_cosine_df) == len(groupdf)
                # groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
                groupdf['sine_wave'] = sine_wave
                groupdf['cosine_wave'] = cosine_wave
                newdata = pd.concat([newdata, groupdf])

            X_train_tuned = newdata.copy()

            test_groups = X_test_tuned.groupby(panel_col)
            for panel, test_groupdf in test_groups:
                num_samples = len(test_groupdf)
                start = train_panel_wise_end_point[panel]
                days_since_start = np.arange(start, start + num_samples, 1)
                # print("##", panel, num_samples, start, len(np.arange(start, start+num_samples, 1)))
                sine_wave = np.sin(frequency * days_since_start)
                cosine_wave = np.cos(frequency * days_since_start)
                sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
                assert len(sine_cosine_df) == len(test_groupdf)
                # groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
                test_groupdf['sine_wave'] = sine_wave
                test_groupdf['cosine_wave'] = cosine_wave
                newdata_test = pd.concat([newdata_test, test_groupdf])

            X_test_tuned = newdata_test.copy()


        else:
            new_features = new_features + ['sine_wave', 'cosine_wave']

            num_samples = len(X_train_tuned)
            frequency = 2 * np.pi / 365  # Adjust the frequency as needed
            days_since_start = np.arange(num_samples)
            sine_wave = np.sin(frequency * days_since_start)
            cosine_wave = np.cos(frequency * days_since_start)
            sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
            # Concatenate the sine and cosine waves with the scaled X DataFrame
            X_train_tuned = pd.concat([X_train_tuned, sine_cosine_df], axis=1)

            test_num_samples = len(X_test_tuned)
            start = num_samples
            days_since_start = np.arange(start, start + test_num_samples, 1)
            sine_wave = np.sin(frequency * days_since_start)
            cosine_wave = np.cos(frequency * days_since_start)
            sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
            # Concatenate the sine and cosine waves with the scaled X DataFrame
            X_test_tuned = pd.concat([X_test_tuned, sine_cosine_df], axis=1)

    # model
    if selected_options:
        new_features = new_features + selected_options
    if is_panel:
        inp_vars_str = " + ".join(new_features)
        new_features=list(set(new_features))
        # X_train_tuned.to_csv("Test/X_train_tuned.csv",index=False)
        # st.write(X_train_tuned[['total_approved_accounts_revenue'] + new_features].dtypes)
        # st.write(X_train_tuned[['total_approved_accounts_revenue', panel_col] + new_features].isna().sum())
        md_str = target_col + " ~ " + inp_vars_str
        md_tuned = smf.mixedlm(md_str,
                               data=X_train_tuned[[target_col] + new_features],
                               groups=X_train_tuned[panel_col])
        model_tuned = md_tuned.fit()

        # plot act v pred for original model and tuned model
        metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train[date_col], y_train,
                                                                                 model.fittedvalues, model,
                                                                                 target_column=sel_target_col,
                                                                                 is_panel=True)
        metrics_table_tuned, line, actual_vs_predicted_plot_tuned = plot_actual_vs_predicted(X_train_tuned[date_col],
                                                                                             X_train_tuned[target_col],
                                                                                             model_tuned.fittedvalues,
                                                                                             model_tuned,
                                                                                             target_column=sel_target_col,
                                                                                             is_panel=True)

    else:
        new_features=list(set(new_features))
        # st.write(new_features)
        model_tuned = sm.OLS(y_train, X_train_tuned[new_features]).fit()
        # st.write(X_train_tuned.columns)
        metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(date[:130], y_train,
                                                                                 model.predict(X_train[features_set]), model,
                                                                                 target_column=sel_target_col)
        metrics_table_tuned, line, actual_vs_predicted_plot_tuned = plot_actual_vs_predicted(date[:130], y_train,
                                                                                             model_tuned.predict(
                                                                                                 X_train_tuned),
                                                                                             model_tuned,
                                                                                             target_column=sel_target_col)

    # st.write(metrics_table_tuned)
    mape = np.round(metrics_table.iloc[0, 1], 2)
    r2 = np.round(metrics_table.iloc[1, 1], 2)
    adjr2 = np.round(metrics_table.iloc[2, 1], 2)

    mape_tuned = np.round(metrics_table_tuned.iloc[0, 1], 2)
    r2_tuned = np.round(metrics_table_tuned.iloc[1, 1], 2)
    adjr2_tuned = np.round(metrics_table_tuned.iloc[2, 1], 2)

    parameters_ = st.columns(3)
    with parameters_[0]:
        st.metric('R2', r2_tuned, np.round(r2_tuned - r2, 2))
    with parameters_[1]:
        st.metric('Adjusted R2', adjr2_tuned, np.round(adjr2_tuned - adjr2, 2))
    with parameters_[2]:
        st.metric('MAPE', mape_tuned, np.round(mape_tuned - mape, 2), 'inverse')
    st.write(model_tuned.summary())

    X_train_tuned[date_col] = X_train[date_col]
    X_test_tuned[date_col] = X_test[date_col]
    X_train_tuned[target_col] = y_train
    X_test_tuned[target_col] = y_test

    st.header('2.2 Actual vs. Predicted Plot')
    # if is_panel:
    #   metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(date, y_train, model.predict(X_train),
    #                                                                              model, target_column='Revenue',is_panel=True)
    # else:
    #   metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date, y_train, model.predict(X_train), model,target_column='Revenue')
    if is_panel :
        metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train_tuned[date_col],
                                                                                 X_train_tuned[target_col],
                                                                                 model_tuned.fittedvalues, model_tuned,
                                                                                 target_column=sel_target_col,
                                                                                 is_panel=True)
    else :
        metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train_tuned[date_col],
                                                                                 X_train_tuned[target_col],
                                                                                 model_tuned.predict(X_train_tuned[new_features]),
                                                                                 model_tuned,
                                                                                 target_column=sel_target_col,
                                                                                 is_panel=False)
    # plot_actual_vs_predicted(X_train[date_col], y_train,
    #                                                                             model.fittedvalues, model,
    #                                                                             target_column='Revenue',
    #                                                                             is_panel=is_panel)

    st.plotly_chart(actual_vs_predicted_plot, use_container_width=True)

    st.markdown('## 2.3 Residual Analysis')
    if is_panel :
        columns = st.columns(2)
        with columns[0]:
            fig = plot_residual_predicted(y_train, model_tuned.fittedvalues, X_train_tuned)
            st.plotly_chart(fig)

        with columns[1]:
            st.empty()
            fig = qqplot(y_train, model_tuned.fittedvalues)
            st.plotly_chart(fig)

        with columns[0]:
            fig = residual_distribution(y_train, model_tuned.fittedvalues)
            st.pyplot(fig)
    else:
        columns = st.columns(2)
        with columns[0]:
            fig = plot_residual_predicted(y_train, model_tuned.predict(X_train_tuned[new_features]), X_train)
            st.plotly_chart(fig)

        with columns[1]:
            st.empty()
            fig = qqplot(y_train, model_tuned.predict(X_train_tuned[new_features]))
            st.plotly_chart(fig)

        with columns[0]:
            fig = residual_distribution(y_train, model_tuned.predict(X_train_tuned[new_features]))
            st.pyplot(fig)

    st.session_state['is_tuned_model'][target_col] = True
    # Sprint4 - saved tuned model in a dict
    st.session_state['Model_Tuned'][sel_model + "__" + target_col] = {
                                                                      "Model_object": model_tuned,
                                                                      'feature_set': new_features,
                                                                      'X_train_tuned': X_train_tuned,
                                                                      'X_test_tuned': X_test_tuned
                                                                      }

# Pending
# if st.session_state['build_tuned_model']==True:
if st.session_state['Model_Tuned'] is not None :
    if st.checkbox('Use this model to build response curves', key='save_model'):
        #   save_model = st.button('Use this model to build response curves', key='saved_tuned_model')
        #   if save_model:
        st.session_state["is_tuned_model"][target_col]=True
        with open("tuned_model.pkl", "wb") as f:
            # pickle.dump(st.session_state['tuned_model'], f)
            pickle.dump(st.session_state['Model_Tuned'], f)  # Sprint4

        # X_test_tuned.to_csv("Test/X_test_tuned_final.csv", index=False)
        # X_train_tuned.to_csv("Test/X_train_tuned.csv", index=False)
        st.success(sel_model + "__" + target_col + ' Tuned saved!')


    # if is_panel:
    #     # st.session_state["tuned_model_features"] = new_features
    #     with open("tuned_model.pkl", "wb") as f:
    #         # pickle.dump(st.session_state['tuned_model'], f)
    #         pickle.dump(st.session_state['Model_Tuned'], f)  # Sprint4
    #     st.success(sel_model + "__" + target_col + ' Tuned saved!')

#   raw_data=df[features_set]
#   columns_raw=[re.split(r"(_lag|_adst)",col)[0] for col in raw_data.columns]
#   raw_data.columns=columns_raw
#   columns_media=[col for col in columns_raw if Categorised_data[col]['BB']=='Media']
#   raw_data=raw_data[columns_media]

#   raw_data['Date']=list(df.index)

#   spends_var=[col for col in df.columns if "spends" in col.lower() and 'adst' not in col.lower() and 'lag' not in col.lower()]
#   spends_df=df[spends_var]
#   spends_df['Week']=list(df.index)


#   j=0
#   X1=X.copy()
#   col=X1.columns
#   for i in model.params.values:
#       X1[col[j]]=X1.iloc[:,j]*i
#       j+=1
#   contribution_df=X1
#   contribution_df['Date']=list(df.index)
#   excel_file='Overview_data.xlsx'

#   with pd.ExcelWriter(excel_file,engine='xlsxwriter') as writer:
#      raw_data.to_excel(writer,sheet_name='RAW DATA MMM',index=False)
#      spends_df.to_excel(writer,sheet_name='SPEND INPUT',index=False)
#      contribution_df.to_excel(writer,sheet_name='CONTRIBUTION MMM')