Spaces:
Sleeping
Sleeping
File size: 15,034 Bytes
94bbd2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# Importing necessary libraries
import streamlit as st
import pickle
st.set_page_config(
page_title="Model Build",
page_icon=":shark:",
layout="wide",
initial_sidebar_state="collapsed",
)
from utilities import load_authenticator
import numpy as np
import pandas as pd
from utilities import set_header, load_local_css
load_local_css("styles.css")
set_header()
for k, v in st.session_state.items():
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
st.session_state[k] = v
authenticator = st.session_state.get('authenticator')
if authenticator is None:
authenticator = load_authenticator()
name, authentication_status, username = authenticator.login('Login', 'main')
auth_status = st.session_state.get('authentication_status')
if auth_status == True:
is_state_initiaized = st.session_state.get('initialized',False)
if not is_state_initiaized:
a=1
# Function to expand dataframe to daily
@st.cache_resource(show_spinner=False)
def expand_to_daily(df, granularity, start_date, end_date):
# Create a new DataFrame with a row for each day
all_dates = pd.date_range(start=start_date, end=end_date, freq="D")
daily_df = pd.DataFrame(all_dates, columns=["Date"])
if granularity == "daily":
# For daily data, simply merge to fill missing dates
daily_df = daily_df.merge(df, on="Date", how="left")
else:
# For weekly or monthly, distribute values to daily rows
for column in df.columns:
if column != "Date": # Skip 'Date' column
daily_df[column] = np.nan # Initialize with NaNs
# Group by the required frequency and distribute values
freq = "W-MON" if granularity == "weekly" else "MS"
for _, group in df.groupby(pd.Grouper(key="Date", freq=freq)):
num_days = len(
pd.date_range(group["Date"].min(), group["Date"].max(), freq="D")
)
for column in group.columns:
if column == "Date": # Skip 'Date' column
continue
value = group[column].sum() / num_days
date_range = pd.date_range(
group["Date"].min(), periods=num_days, freq="D"
)
daily_df.loc[daily_df["Date"].isin(date_range), column] = value
return daily_df
# Function to validate date column in dataframe
def validate_date_column(df):
try:
# Attempt to convert the 'Date' column to datetime
df["Date"] = pd.to_datetime(df["Date"], format="%d-%m-%Y")
return True
except:
return False
# Function to determine data interval
def determine_data_interval(common_freq):
if common_freq == 1:
return "daily"
elif common_freq == 7:
return "weekly"
elif 28 <= common_freq <= 31:
return "monthly"
else:
return "irregular"
# Function to convert and fill dates in dataframe
def convert_and_fill_dates(df, start_date, end_date, interval):
# Create a date range for the desired period
all_dates = pd.date_range(start=start_date, end=end_date, freq="D")
new_df = pd.DataFrame(all_dates, columns=["Date"])
# Preprocess and aggregate data based on the original interval
if interval != "daily":
# Resample to start of each week/month, then sum values for the same period
if interval == "weekly":
df = df.resample("W-MON", on="Date").sum().reset_index()
elif interval == "monthly":
df = df.resample("MS", on="Date").sum().reset_index()
# Distribute values equally across the days in each week/month
expanded_rows = []
for _, row in df.iterrows():
if interval == "weekly":
period_dates = pd.date_range(row["Date"], periods=7)
elif interval == "monthly":
period_end = row["Date"] + pd.offsets.MonthEnd(1)
period_dates = pd.date_range(row["Date"], period_end)
for date in period_dates:
new_row = row.copy()
new_row["Date"] = date
for col in df.columns:
if col != "Date": # Skip 'Date' column
new_row[col] = row[col] / len(period_dates)
expanded_rows.append(new_row)
# Create a DataFrame from expanded rows
expanded_df = pd.DataFrame(expanded_rows)
new_df = pd.merge(new_df, expanded_df, how="left", on="Date")
else:
# Daily data, aggregate if there are multiple entries for the same day
df = df.groupby("Date").sum().reset_index()
new_df = pd.merge(new_df, df, how="left", on="Date")
# Ensure all dates from start to end are present, filling missing values with NaN
new_df["Date"] = pd.to_datetime(new_df["Date"]) # Ensure 'Date' is datetime type
new_df = new_df.set_index("Date").reindex(all_dates).reset_index()
new_df.rename(columns={"index": "Date"}, inplace=True)
return new_df
# Function to convert a DataFrame from daily level granularity to either weekly or monthly level
def convert_to_higher_granularity(df, required_granularity):
if required_granularity == "daily":
return df
# Ensure 'Date' is the index and is in datetime format
if not pd.api.types.is_datetime64_any_dtype(df["Date"]):
df["Date"] = pd.to_datetime(df["Date"])
df.set_index("Date", inplace=True)
# Resample and aggregate
if required_granularity == "weekly":
# Resample to weekly, using 'W-MON' to indicate weeks starting on Monday
df = df.resample("W-MON").sum()
elif required_granularity == "monthly":
# Resample to monthly, using 'MS' to indicate month start
df = df.resample("MS").sum()
# Reset index to move 'Date' back to a column
df.reset_index(inplace=True)
return df
# # Read the CSV file, parsing 'Date' column as datetime
main_df = pd.read_csv("Media_data_for_model_dma_level.csv", dayfirst=True, parse_dates=["Date"])
# st.write(main_df)
# Get the start date (minimum) and end date (maximum) from the 'Date' column
api_start_date = main_df["Date"].min()
api_end_date = main_df["Date"].max()
# Infer the granularity from the most common difference between consecutive dates
date_diffs = main_df["Date"].diff().dt.days.dropna()
common_diff = date_diffs.mode()[0]
api_granularity = determine_data_interval(common_diff)
# Convert the DataFrame to daily level granularity
main_df = expand_to_daily(main_df, api_granularity, api_start_date, api_end_date)
# Page Title
st.title("Data Import")
# File uploader
uploaded_files = st.file_uploader(
"Upload additional data", type=["xlsx"], accept_multiple_files=True
)
# Custom HTML for upload instructions
recommendation_html = f"""
<div style="text-align: justify;">
<strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values, and aggregated to a {api_granularity} level.
</div>
"""
st.markdown(recommendation_html, unsafe_allow_html=True)
# Initialize a list to collect all processed DataFrames
all_data_dfs = []
if uploaded_files:
for uploaded_file in uploaded_files:
# Extract the file name
file_name = uploaded_file.name
# Load the file into a DataFrame
data_df = pd.read_excel(
uploaded_file,
)
# Identify numeric columns in the DataFrame
numeric_columns = data_df.select_dtypes(include="number").columns.tolist()
# Validate the 'Date' column and ensure there's at least one numeric column
if validate_date_column(data_df) and len(numeric_columns) > 0:
data_df = data_df[["Date"] + numeric_columns]
# Ensure the 'Date' column is in datetime format and sorted
data_df["Date"] = pd.to_datetime(data_df["Date"], dayfirst=True)
data_df.sort_values("Date", inplace=True)
# Calculate the most common day difference between dates to determine frequency
common_freq = data_df["Date"].diff().dt.days.dropna().mode()[0]
# Calculate the data interval (daily, weekly, monthly or irregular)
interval = determine_data_interval(common_freq)
if interval == "irregular":
# Warn the user if the 'Date' column doesn't meet the format requirements
st.warning(
f"File Name: {file_name} β Please upload data in daily, weekly or monthly interval."
)
continue
# Convert data to specified interval and redistribute to daily
data_df = convert_and_fill_dates(
data_df, api_start_date, api_end_date, interval
)
# Add the processed DataFrame to the list
all_data_dfs.append(data_df)
else:
# Warn the user if the 'Date' column doesn't meet the format requirements
st.warning(
f"File Name: {file_name} β Please upload data with Date column in 'DD-MM-YYYY' format and at least one media/exogenous column."
)
# Sequentially merge each of the other DataFrames with the main DataFrame on 'Date'
for df in all_data_dfs:
main_df = pd.merge(main_df, df, on="Date", how="left")
# Function to calculate missing stats and prepare for editable DataFrame
def prepare_missing_stats_df(df):
missing_stats = []
for column in df.columns:
if (
column == "Date" or column == "Total Approved Accounts - Revenue"
): # Skip Date and Revenue column
continue
missing = df[column].isnull().sum()
pct_missing = round((missing / len(df)) * 100, 2)
missing_stats.append(
{
"Column": column,
"Missing Values": missing,
"Missing Percentage": pct_missing,
"Impute Method": "Fill with 0", # Default value
"Category": "Media", # Default value
}
)
stats_df = pd.DataFrame(missing_stats)
return stats_df
# Prepare missing stats DataFrame for editing
missing_stats_df = prepare_missing_stats_df(main_df)
# Create an editable DataFrame in Streamlit
st.markdown("#### Select Variables Category & Impute Missing Values")
edited_stats_df = st.data_editor(
missing_stats_df,
column_config={
"Impute Method": st.column_config.SelectboxColumn(
options=[
"Drop Column",
"Fill with Mean",
"Fill with Median",
"Fill with 0",
],
required=True,
default="Fill with 0",
),
"Category": st.column_config.SelectboxColumn(
options=[
"Date",
"Media",
"Exogenous",
"Internal",
"DMA/Panel",
"Response_Metric"
],
required=True,
default="Media",
),
},
disabled=["Column", "Missing Values", "Missing Percentage"],
hide_index=True,
use_container_width=True,
)
# Apply changes based on edited DataFrame
for i, row in edited_stats_df.iterrows():
column = row["Column"]
if row["Impute Method"] == "Drop Column":
main_df.drop(columns=[column], inplace=True)
elif row["Impute Method"] == "Fill with Mean":
main_df[column].fillna(main_df[column].mean(), inplace=True)
elif row["Impute Method"] == "Fill with Median":
main_df[column].fillna(main_df[column].median(), inplace=True)
elif row["Impute Method"] == "Fill with 0":
main_df[column].fillna(0, inplace=True)
# Convert the Final DataFrame to required granularity
main_df = convert_to_higher_granularity(main_df, api_granularity)
# Display the Final DataFrame and exogenous variables
st.markdown("#### Final DataFrame:")
st.dataframe(main_df)
# Initialize an empty dictionary to hold categories and their variables
category_dict = {}
# Iterate over each row in the edited DataFrame to populate the dictionary
for i, row in edited_stats_df.iterrows():
column = row["Column"]
category = row["Category"] # The category chosen by the user for this variable
# Check if the category already exists in the dictionary
if category not in category_dict:
# If not, initialize it with the current column as its first element
category_dict[category] = [column]
else:
# If it exists, append the current column to the list of variables under this category
category_dict[category].append(column)
# Display the dictionary
st.markdown("#### Variable Category:")
for category, variables in category_dict.items():
# Check if there are multiple variables to handle "and" insertion correctly
if len(variables) > 1:
# Join all but the last variable with ", ", then add " and " before the last variable
variables_str = ", ".join(variables[:-1]) + " and " + variables[-1]
else:
# If there's only one variable, no need for "and"
variables_str = variables[0]
# Display the category and its variables in the desired format
st.markdown(f"**{category}:** {variables_str}\n\n", unsafe_allow_html=True)
# storing maindf and categories in session_state
# st.write(main_df)
# st.session_state['Cleaned_data']=main_df
# st.session_state['category_dict']=category_dict
if st.button('Save Changes'):
with open("Pickle_files/main_df", 'wb') as f:
pickle.dump(main_df, f)
with open("Pickle_files/category_dict",'wb') as c:
pickle.dump(category_dict,c)
st.success('Changes Saved!')
|