Spaces:
Sleeping
Sleeping
File size: 10,635 Bytes
c0ffc2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from Eda_functions import *
import numpy as np
import re
import pickle
from streamlit_pandas_profiling import st_profile_report
import streamlit as st
import streamlit.components.v1 as components
import sweetviz as sv
from utilities import set_header,initialize_data,load_local_css
from st_aggrid import GridOptionsBuilder,GridUpdateMode
from st_aggrid import GridOptionsBuilder
from st_aggrid import AgGrid
import base64
st.set_page_config(
page_title="Data Validation",
page_icon=":shark:",
layout="wide",
initial_sidebar_state='collapsed'
)
load_local_css('styles.css')
set_header()
#preprocessing
# with open('Categorised_data.pkl', 'rb') as file:
# Categorised_data = pickle.load(file)
# with open("edited_dataframe.pkl", 'rb') as file:
# df = pickle.load(file)
# date=df.index
# df.reset_index(inplace=True)
# df['Date'] = pd.to_datetime(date)
#prospects=pd.read_excel('EDA_Data.xlsx',sheet_name='Prospects')
#spends=pd.read_excel('EDA_Data.xlsx',sheet_name='SPEND INPUT')
#spends.columns=['Week','Streaming (Spends)','TV (Spends)','Search (Spends)','Digital (Spends)']
#df=pd.concat([df,spends],axis=1)
#df['Date'] =pd.to_datetime(df['Date']).dt.strftime('%m/%d/%Y')
#df['Prospects']=prospects['Prospects']
#df.drop(['Week'],axis=1,inplace=True)
st.title('Data Validation and Insights')
with open("Pickle_files/main_df",'rb') as f:
st.session_state['cleaned_data']= pickle.load(f)
with open("Pickle_files/category_dict",'rb') as c:
st.session_state['category_dict']=pickle.load(c)
# st.write(st.session_state['cleaned_data'])
target_variables=[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Response_Metric']
target_column = st.selectbox('Select the Target Feature/Dependent Variable (will be used in all charts as reference)',list(*target_variables))
st.session_state['target_column']=target_column
fig=line_plot_target(st.session_state['cleaned_data'], target=target_column, title=f'{target_column} Over Time')
st.plotly_chart(fig, use_container_width=True)
media_channel=list(*[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Media'])
# st.write(media_channel)
Non_media_channel=[col for col in st.session_state['cleaned_data'].columns if col not in media_channel]
st.markdown('### Annual Data Summary')
st.dataframe(summary(st.session_state['cleaned_data'], media_channel+[target_column], spends=None,Target=True), use_container_width=True)
if st.checkbox('Show raw data'):
st.write(pd.concat([pd.to_datetime(st.session_state['cleaned_data']['Date']).dt.strftime('%m/%d/%Y'),st.session_state['cleaned_data'].select_dtypes(np.number).applymap(format_numbers)],axis=1))
col1 = st.columns(1)
if "selected_feature" not in st.session_state:
st.session_state['selected_feature']=None
st.header('1. Media Channels')
if 'Validation' not in st.session_state:
st.session_state['Validation']=[]
eda_columns=st.columns(2)
with eda_columns[0]:
if st.button('Generate Profile Report'):
pr = st.session_state['cleaned_data'].profile_report()
pr.to_file("Profile_Report.html")
with open("Profile_Report.html", "rb") as f:
profile_report_html = f.read()
b64 = base64.b64encode(profile_report_html).decode()
href = f'<a href="data:text/html;base64,{b64}" download="Profile_Report.html">Download Profile Report</a>'
st.markdown(href, unsafe_allow_html=True)
with eda_columns[1]:
if st.button('Generate Sweetviz Report'):
def generate_report_with_target(df, target_feature):
report = sv.analyze([df, "Dataset"], target_feat=target_feature)
return report
report = generate_report_with_target(st.session_state['cleaned_data'], target_feature=target_column)
report.show_html()
selected_media = st.selectbox('Select media', np.unique([Categorised_data[col]['VB'] for col in media_channel]))
# selected_feature=st.multiselect('Select Metric', df.columns[df.columns.str.contains(selected_media,case=False)])
st.session_state["selected_feature"]=st.selectbox('Select Metric',[col for col in media_channel if Categorised_data[col]['VB'] in selected_media ] )
spends_features=[col for col in df.columns if 'spends' in col.lower() or 'cost' in col.lower()]
spends_feature=[col for col in spends_features if col.split('_')[0] in st.session_state["selected_feature"].split('_')[0]]
#st.write(spends_features)
#st.write(spends_feature)
#st.write(selected_feature)
val_variables=[col for col in media_channel if col!='Date']
if len(spends_feature)==0:
st.warning('No spends varaible available for the selected metric in data')
else:
st.write(f'Selected spends variable {spends_feature[0]} if wrong please name the varaibles properly')
# Create the dual-axis line plot
fig_row1 = line_plot(df, x_col='Date', y1_cols=[st.session_state["selected_feature"]], y2_cols=[target_column], title=f'Analysis of {st.session_state["selected_feature"]} and {[target_column][0]} Over Time')
st.plotly_chart(fig_row1, use_container_width=True)
st.markdown('### Annual Data Summary')
st.dataframe(summary(df,[st.session_state["selected_feature"]],spends=spends_feature[0]),use_container_width=True)
if st.button('Validate'):
st.session_state['Validation'].append(st.session_state["selected_feature"])
if st.checkbox('Validate all'):
st.session_state['Validation'].extend(val_variables)
st.success('All media variables are validated ✅')
if len(set(st.session_state['Validation']).intersection(val_variables))!=len(val_variables):
#st.write(st.session_state['Validation'])
validation_data=pd.DataFrame({'Variables':val_variables,
'Validated':[1 if col in st.session_state['Validation'] else 0 for col in val_variables],
'Bucket':[Categorised_data[col]['VB'] for col in val_variables]})
gd=GridOptionsBuilder.from_dataframe(validation_data)
gd.configure_pagination(enabled=True)
gd.configure_selection(use_checkbox=True,selection_mode='multiple')
#gd.configure_selection_toggle_all(None, show_toggle_all=True)
#gd.configure_columns_auto_size_mode(GridOptionsBuilder.configure_columns)
gridoptions=gd.build()
#st.text(st.session_state['Validation'])
table = AgGrid(validation_data,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED,fit_columns_on_grid_load=True)
#st.table(table)
selected_rows = table["selected_rows"]
st.session_state['Validation'].extend([col['Variables'] for col in selected_rows])
not_validated_variables = [col for col in val_variables if col not in st.session_state["Validation"]]
if not_validated_variables:
not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}'
st.warning(not_validated_message)
st.header('2. Non Media Variables')
selected_columns_row = [col for col in df.columns if ("imp" not in col.lower()) and ('cli' not in col.lower() ) and ('spend' not in col.lower()) and col!='Date']
selected_columns_row4 = st.selectbox('Select Channel',selected_columns_row )
if not selected_columns_row4:
st.warning('Please select at least one.')
else:
# Create the dual-axis line plot
fig_row4 = line_plot(df, x_col='Date', y1_cols=[selected_columns_row4], y2_cols=[target_column], title=f'Analysis of {selected_columns_row4} and {target_column} Over Time')
st.plotly_chart(fig_row4, use_container_width=True)
selected_non_media=selected_columns_row4
sum_df = df[['Date', selected_non_media,target_column]]
sum_df['Year']=pd.to_datetime(df['Date']).dt.year
#st.dataframe(df)
#st.dataframe(sum_df.head(2))
sum_df=sum_df.groupby('Year').agg('sum')
sum_df.loc['Grand Total']=sum_df.sum()
sum_df=sum_df.applymap(format_numbers)
sum_df.fillna('-',inplace=True)
sum_df=sum_df.replace({"0.0":'-','nan':'-'})
st.markdown('### Annual Data Summary')
st.dataframe(sum_df,use_container_width=True)
# if st.checkbox('Validate',key='2'):
# st.session_state['Validation'].append(selected_columns_row4)
# val_variables=[col for col in media_channel if col!='Date']
# if st.checkbox('Validate all'):
# st.session_state['Validation'].extend(val_variables)
# validation_data=pd.DataFrame({'Variables':val_variables,
# 'Validated':[1 if col in st.session_state['Validation'] else 0 for col in val_variables],
# 'Bucket':[Categorised_data[col]['VB'] for col in val_variables]})
# gd=GridOptionsBuilder.from_dataframe(validation_data)
# gd.configure_pagination(enabled=True)
# gd.configure_selection(use_checkbox=True,selection_mode='multiple')
# #gd.configure_selection_toggle_all(None, show_toggle_all=True)
# #gd.configure_columns_auto_size_mode(GridOptionsBuilder.configure_columns)
# gridoptions=gd.build()
# #st.text(st.session_state['Validation'])
# table = AgGrid(validation_data,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED,fit_columns_on_grid_load=True)
# #st.table(table)
# selected_rows = table["selected_rows"]
# st.session_state['Validation'].extend([col['Variables'] for col in selected_rows])
# not_validated_variables = [col for col in val_variables if col not in st.session_state["Validation"]]
# if not_validated_variables:
# not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}'
# st.warning(not_validated_message)
options = list(df.select_dtypes(np.number).columns)
st.markdown(' ')
st.markdown(' ')
st.markdown('# Exploratory Data Analysis')
st.markdown(' ')
selected_options = []
num_columns = 4
num_rows = -(-len(options) // num_columns) # Ceiling division to calculate rows
# Create a grid of checkboxes
st.header('Select Features for Correlation Plot')
tick=False
if st.checkbox('Select all'):
tick=True
selected_options = []
for row in range(num_rows):
cols = st.columns(num_columns)
for col in cols:
if options:
option = options.pop(0)
selected = col.checkbox(option,value=tick)
if selected:
selected_options.append(option)
# Display selected options
#st.write('You selected:', selected_options)
st.pyplot(correlation_plot(df,selected_options,target_column))
|