Spaces:
Sleeping
Sleeping
File size: 32,112 Bytes
a660599 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 |
# Importing necessary libraries
import streamlit as st
st.set_page_config(
page_title="Model Build",
page_icon=":shark:",
layout="wide",
initial_sidebar_state="collapsed",
)
import numpy as np
import pandas as pd
from utilities import set_header, load_local_css, load_authenticator
import pickle
load_local_css("styles.css")
set_header()
authenticator = st.session_state.get("authenticator")
if authenticator is None:
authenticator = load_authenticator()
name, authentication_status, username = authenticator.login("Login", "main")
auth_status = st.session_state.get("authentication_status")
# Check for authentication status
if auth_status != True:
st.stop()
# Function to validate date column in dataframe
def validate_date_column(df):
try:
# Attempt to convert the 'Date' column to datetime
df["date"] = pd.to_datetime(df["date"], format="%d-%m-%Y")
return True
except:
return False
# Function to determine data interval
def determine_data_interval(common_freq):
if common_freq == 1:
return "daily"
elif common_freq == 7:
return "weekly"
elif 28 <= common_freq <= 31:
return "monthly"
else:
return "irregular"
# Function to read each uploaded Excel file into a pandas DataFrame and stores them in a dictionary
st.cache_resource(show_spinner=False)
def files_to_dataframes(uploaded_files):
df_dict = {}
for uploaded_file in uploaded_files:
# Extract file name without extension
file_name = uploaded_file.name.rsplit(".", 1)[0]
# Check for duplicate file names
if file_name in df_dict:
st.warning(
f"Duplicate File: {file_name}. This file will be skipped.",
icon="⚠️",
)
continue
# Read the file into a DataFrame
df = pd.read_excel(uploaded_file)
# Convert all column names to lowercase
df.columns = df.columns.str.lower().str.strip()
# Separate numeric and non-numeric columns
numeric_cols = list(df.select_dtypes(include=["number"]).columns)
non_numeric_cols = [
col
for col in df.select_dtypes(exclude=["number"]).columns
if col.lower() != "date"
]
# Check for 'Date' column
if not (validate_date_column(df) and len(numeric_cols) > 0):
st.warning(
f"File Name: {file_name} ➜ Please upload data with Date column in 'DD-MM-YYYY' format and at least one media/exogenous column. This file will be skipped.",
icon="⚠️",
)
continue
# Check for interval
common_freq = common_freq = (
pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]
)
# Calculate the data interval (daily, weekly, monthly or irregular)
interval = determine_data_interval(common_freq)
if interval == "irregular":
st.warning(
f"File Name: {file_name} ➜ Please upload data in daily, weekly or monthly interval. This file will be skipped.",
icon="⚠️",
)
continue
# Store both DataFrames in the dictionary under their respective keys
df_dict[file_name] = {
"numeric": numeric_cols,
"non_numeric": non_numeric_cols,
"interval": interval,
"df": df,
}
return df_dict
# Function to adjust dataframe granularity
# def adjust_dataframe_granularity(df, current_granularity, target_granularity):
# # Set index
# df.set_index("date", inplace=True)
# # Define aggregation rules for resampling
# aggregation_rules = {
# col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
# for col in df.columns
# }
# resampled_df = df
# if current_granularity == "daily" and target_granularity == "weekly":
# resampled_df = df.resample("W-MON").agg(aggregation_rules)
# elif current_granularity == "daily" and target_granularity == "monthly":
# resampled_df = df.resample("MS").agg(aggregation_rules)
# elif current_granularity == "daily" and target_granularity == "daily":
# resampled_df = df.resample("D").agg(aggregation_rules)
# elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
# # For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
# expanded_data = []
# for _, row in df.iterrows():
# if current_granularity == "weekly":
# period_range = pd.date_range(start=row.name, periods=7)
# elif current_granularity == "monthly":
# period_range = pd.date_range(
# start=row.name, periods=row.name.days_in_month
# )
# for date in period_range:
# new_row = {}
# for col in df.columns:
# if pd.api.types.is_numeric_dtype(df[col]):
# if current_granularity == "weekly":
# new_row[col] = row[col] / 7
# elif current_granularity == "monthly":
# new_row[col] = row[col] / row.name.days_in_month
# else:
# new_row[col] = row[col]
# expanded_data.append((date, new_row))
# resampled_df = pd.DataFrame(
# [data for _, data in expanded_data],
# index=[date for date, _ in expanded_data],
# )
# # Reset index
# resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
# return resampled_df
def adjust_dataframe_granularity(df, current_granularity, target_granularity):
# Set index
df.set_index("date", inplace=True)
# Define aggregation rules for resampling
aggregation_rules = {
col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
for col in df.columns
}
# Initialize resampled_df
resampled_df = df
if current_granularity == "daily" and target_granularity == "weekly":
resampled_df = df.resample("W-MON", closed="left", label="left").agg(
aggregation_rules
)
elif current_granularity == "daily" and target_granularity == "monthly":
resampled_df = df.resample("MS", closed="left", label="left").agg(
aggregation_rules
)
elif current_granularity == "daily" and target_granularity == "daily":
resampled_df = df.resample("D").agg(aggregation_rules)
elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
# For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
expanded_data = []
for _, row in df.iterrows():
if current_granularity == "weekly":
period_range = pd.date_range(start=row.name, periods=7)
elif current_granularity == "monthly":
period_range = pd.date_range(
start=row.name, periods=row.name.days_in_month
)
for date in period_range:
new_row = {}
for col in df.columns:
if pd.api.types.is_numeric_dtype(df[col]):
if current_granularity == "weekly":
new_row[col] = row[col] / 7
elif current_granularity == "monthly":
new_row[col] = row[col] / row.name.days_in_month
else:
new_row[col] = row[col]
expanded_data.append((date, new_row))
resampled_df = pd.DataFrame(
[data for _, data in expanded_data],
index=[date for date, _ in expanded_data],
)
# Reset index
resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
return resampled_df
# Function to clean and extract unique values of DMA and Panel
st.cache_resource(show_spinner=False)
def clean_and_extract_unique_values(files_dict, selections):
all_dma_values = set()
all_panel_values = set()
for file_name, file_data in files_dict.items():
df = file_data["df"]
# 'DMA' and 'Panel' selections
selected_dma = selections[file_name].get("DMA")
selected_panel = selections[file_name].get("Panel")
# Clean and standardize DMA column if it exists and is selected
if selected_dma and selected_dma != "N/A" and selected_dma in df.columns:
df[selected_dma] = (
df[selected_dma].str.lower().str.strip().str.replace("_", " ")
)
all_dma_values.update(df[selected_dma].dropna().unique())
# Clean and standardize Panel column if it exists and is selected
if selected_panel and selected_panel != "N/A" and selected_panel in df.columns:
df[selected_panel] = (
df[selected_panel].str.lower().str.strip().str.replace("_", " ")
)
all_panel_values.update(df[selected_panel].dropna().unique())
# Update the processed DataFrame back in the dictionary
files_dict[file_name]["df"] = df
return all_dma_values, all_panel_values
# Function to format values for display
st.cache_resource(show_spinner=False)
def format_values_for_display(values_list):
# Capitalize the first letter of each word and replace underscores with spaces
formatted_list = [value.replace("_", " ").title() for value in values_list]
# Join values with commas and 'and' before the last value
if len(formatted_list) > 1:
return ", ".join(formatted_list[:-1]) + ", and " + formatted_list[-1]
elif formatted_list:
return formatted_list[0]
return "No values available"
# Function to normalizes all data within files_dict to a daily granularity
st.cache(show_spinner=False, allow_output_mutation=True)
def standardize_data_to_daily(files_dict, selections):
# Normalize all data to a daily granularity using a provided function
files_dict = apply_granularity_to_all(files_dict, "daily", selections)
# Update the "interval" attribute for each dataset to indicate the new granularity
for files_name, files_data in files_dict.items():
files_data["interval"] = "daily"
return files_dict
# Function to apply granularity transformation to all DataFrames in files_dict
st.cache_resource(show_spinner=False)
def apply_granularity_to_all(files_dict, granularity_selection, selections):
for file_name, file_data in files_dict.items():
df = file_data["df"].copy()
# Handling when DMA or Panel might be 'N/A'
selected_dma = selections[file_name].get("DMA")
selected_panel = selections[file_name].get("Panel")
# Correcting the segment selection logic & handling 'N/A'
if selected_dma != "N/A" and selected_panel != "N/A":
unique_combinations = df[[selected_dma, selected_panel]].drop_duplicates()
elif selected_dma != "N/A":
unique_combinations = df[[selected_dma]].drop_duplicates()
selected_panel = None # Ensure Panel is ignored if N/A
elif selected_panel != "N/A":
unique_combinations = df[[selected_panel]].drop_duplicates()
selected_dma = None # Ensure DMA is ignored if N/A
else:
# If both are 'N/A', process the entire dataframe as is
df = adjust_dataframe_granularity(
df, file_data["interval"], granularity_selection
)
files_dict[file_name]["df"] = df
continue # Skip to the next file
transformed_segments = []
for _, combo in unique_combinations.iterrows():
if selected_dma and selected_panel:
segment = df[
(df[selected_dma] == combo[selected_dma])
& (df[selected_panel] == combo[selected_panel])
]
elif selected_dma:
segment = df[df[selected_dma] == combo[selected_dma]]
elif selected_panel:
segment = df[df[selected_panel] == combo[selected_panel]]
# Adjust granularity of the segment
transformed_segment = adjust_dataframe_granularity(
segment, file_data["interval"], granularity_selection
)
transformed_segments.append(transformed_segment)
# Combine all transformed segments into a single DataFrame for this file
transformed_df = pd.concat(transformed_segments, ignore_index=True)
files_dict[file_name]["df"] = transformed_df
return files_dict
# Function to create main dataframe structure
st.cache_resource(show_spinner=False)
def create_main_dataframe(
files_dict, all_dma_values, all_panel_values, granularity_selection
):
# Determine the global start and end dates across all DataFrames
global_start = min(df["df"]["date"].min() for df in files_dict.values())
global_end = max(df["df"]["date"].max() for df in files_dict.values())
# Adjust the date_range generation based on the granularity_selection
if granularity_selection == "weekly":
# Generate a weekly range, with weeks starting on Monday
date_range = pd.date_range(start=global_start, end=global_end, freq="W-MON")
elif granularity_selection == "monthly":
# Generate a monthly range, starting from the first day of each month
date_range = pd.date_range(start=global_start, end=global_end, freq="MS")
else: # Default to daily if not weekly or monthly
date_range = pd.date_range(start=global_start, end=global_end, freq="D")
# Collect all unique DMA and Panel values, excluding 'N/A'
all_dmas = all_dma_values
all_panels = all_panel_values
# Dynamically build the list of dimensions (Panel, DMA) to include in the main DataFrame based on availability
dimensions, merge_keys = [], []
if all_panels:
dimensions.append(all_panels)
merge_keys.append("Panel")
if all_dmas:
dimensions.append(all_dmas)
merge_keys.append("DMA")
dimensions.append(date_range) # Date range is always included
merge_keys.append("date") # Date range is always included
# Create a main DataFrame template with the dimensions
main_df = pd.MultiIndex.from_product(
dimensions,
names=[name for name, _ in zip(merge_keys, dimensions)],
).to_frame(index=False)
return main_df.reset_index(drop=True)
# Function to prepare and merge dataFrames
st.cache_resource(show_spinner=False)
def merge_into_main_df(main_df, files_dict, selections):
for file_name, file_data in files_dict.items():
df = file_data["df"].copy()
# Rename selected DMA and Panel columns if not 'N/A'
selected_dma = selections[file_name].get("DMA", "N/A")
selected_panel = selections[file_name].get("Panel", "N/A")
if selected_dma != "N/A":
df.rename(columns={selected_dma: "DMA"}, inplace=True)
if selected_panel != "N/A":
df.rename(columns={selected_panel: "Panel"}, inplace=True)
# Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel' and 'DMA'
merge_keys = ["date"]
if "Panel" in df.columns:
merge_keys.append("Panel")
if "DMA" in df.columns:
merge_keys.append("DMA")
main_df = pd.merge(main_df, df, on=merge_keys, how="left")
# After all merges, sort by 'date' and reset index for cleanliness
sort_by = ["date"]
if "Panel" in main_df.columns:
sort_by.append("Panel")
if "DMA" in main_df.columns:
sort_by.append("DMA")
main_df.sort_values(by=sort_by, inplace=True)
main_df.reset_index(drop=True, inplace=True)
return main_df
# Function to categorize column
def categorize_column(column_name):
# Define keywords for each category
internal_keywords = [
"Price",
"Discount",
"product_price",
"cost",
"margin",
"inventory",
"sales",
"revenue",
"turnover",
"expense",
]
exogenous_keywords = [
"GDP",
"Tax",
"Inflation",
"interest_rate",
"employment_rate",
"exchange_rate",
"consumer_spending",
"retail_sales",
"oil_prices",
"weather",
]
# Check if the column name matches any of the keywords for Internal or Exogenous categories
for keyword in internal_keywords:
if keyword.lower() in column_name.lower():
return "Internal"
for keyword in exogenous_keywords:
if keyword.lower() in column_name.lower():
return "Exogenous"
# Default to Media if no match found
return "Media"
# Function to calculate missing stats and prepare for editable DataFrame
st.cache_resource(show_spinner=False)
def prepare_missing_stats_df(df):
missing_stats = []
for column in df.columns:
if (
column == "date" or column == "DMA" or column == "Panel"
): # Skip Date, DMA and Panel column
continue
missing = df[column].isnull().sum()
pct_missing = round((missing / len(df)) * 100, 2)
# Dynamically assign category based on column name
# category = categorize_column(column)
category = "Media"
missing_stats.append(
{
"Column": column,
"Missing Values": missing,
"Missing Percentage": pct_missing,
"Impute Method": "Fill with 0", # Default value
"Category": category,
}
)
stats_df = pd.DataFrame(missing_stats)
return stats_df
# Function to add API DataFrame details to the files dictionary
st.cache_resource(show_spinner=False)
def add_api_dataframe_to_dict(main_df, files_dict):
files_dict["API"] = {
"numeric": list(main_df.select_dtypes(include=["number"]).columns),
"non_numeric": [
col
for col in main_df.select_dtypes(exclude=["number"]).columns
if col.lower() != "date"
],
"interval": determine_data_interval(
pd.Series(main_df["date"].unique()).diff().dt.days.dropna().mode()[0]
),
"df": main_df,
}
return files_dict
# Function to reads an API into a DataFrame, parsing specified columns as datetime
@st.cache_resource(show_spinner=False)
def read_API_data():
return pd.read_excel(r"upf_data_converted.xlsx", parse_dates=["Date"])
# Function to set the 'DMA_Panel_Selected' session state variable to False
def set_DMA_Panel_Selected_false():
st.session_state["DMA_Panel_Selected"] = False
# Initialize 'final_df' in session state
if "final_df" not in st.session_state:
st.session_state["final_df"] = pd.DataFrame()
# Initialize 'bin_dict' in session state
if "bin_dict" not in st.session_state:
st.session_state["bin_dict"] = {}
# Initialize 'DMA_Panel_Selected' in session state
if "DMA_Panel_Selected" not in st.session_state:
st.session_state["DMA_Panel_Selected"] = False
# Page Title
st.write("") # Top padding
st.title("Data Import")
#########################################################################################################################################################
# Create a dictionary to hold all DataFrames and collect user input to specify "DMA" and "Panel" columns for each file
#########################################################################################################################################################
# Read the Excel file, parsing 'Date' column as datetime
main_df = read_API_data()
# Convert all column names to lowercase
main_df.columns = main_df.columns.str.lower().str.strip()
# File uploader
uploaded_files = st.file_uploader(
"Upload additional data",
type=["xlsx"],
accept_multiple_files=True,
on_change=set_DMA_Panel_Selected_false,
)
# Custom HTML for upload instructions
recommendation_html = f"""
<div style="text-align: justify;">
<strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including DMA, Panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
</div>
"""
st.markdown(recommendation_html, unsafe_allow_html=True)
# Choose Date Granularity
st.markdown("#### Choose Date Granularity")
# Granularity Selection
granularity_selection = st.selectbox(
"Choose Date Granularity",
["Daily", "Weekly", "Monthly"],
label_visibility="collapsed",
on_change=set_DMA_Panel_Selected_false,
)
granularity_selection = str(granularity_selection).lower()
# Convert files to dataframes
files_dict = files_to_dataframes(uploaded_files)
# Add API Dataframe
if main_df is not None:
files_dict = add_api_dataframe_to_dict(main_df, files_dict)
# Display a warning message if no files have been uploaded and halt further execution
if not files_dict:
st.warning(
"Please upload at least one file to proceed.",
icon="⚠️",
)
st.stop() # Halts further execution until file is uploaded
# Select DMA and Panel columns
st.markdown("#### Select DMA and Panel columns")
selections = {}
with st.expander("Select DMA and Panel columns", expanded=False):
count = 0 # Initialize counter to manage the visibility of labels and keys
for file_name, file_data in files_dict.items():
# Determine visibility of the label based on the count
if count == 0:
label_visibility = "visible"
else:
label_visibility = "collapsed"
# Extract non-numeric columns
non_numeric_cols = file_data["non_numeric"]
# Prepare DMA and Panel values for dropdown, adding "N/A" as an option
dma_values = non_numeric_cols + ["N/A"]
panel_values = non_numeric_cols + ["N/A"]
# Skip if only one option is available
if len(dma_values) == 1 and len(panel_values) == 1:
selected_dma, selected_panel = "N/A", "N/A"
# Update the selections for DMA and Panel for the current file
selections[file_name] = {
"DMA": selected_dma,
"Panel": selected_panel,
}
continue
# Create layout columns for File Name, DMA, and Panel selections
file_name_col, DMA_col, Panel_col = st.columns([2, 4, 4])
with file_name_col:
# Display "File Name" label only for the first file
if count == 0:
st.write("File Name")
else:
st.write("")
st.write(file_name) # Display the file name
with DMA_col:
# Display a selectbox for DMA values
selected_dma = st.selectbox(
"Select DMA",
dma_values,
on_change=set_DMA_Panel_Selected_false,
label_visibility=label_visibility, # Control visibility of the label
key=f"DMA_selectbox{count}", # Ensure unique key for each selectbox
)
with Panel_col:
# Display a selectbox for Panel values
selected_panel = st.selectbox(
"Select Panel",
panel_values,
on_change=set_DMA_Panel_Selected_false,
label_visibility=label_visibility, # Control visibility of the label
key=f"Panel_selectbox{count}", # Ensure unique key for each selectbox
)
# Skip processing if the same column is selected for both Panel and DMA due to potential data integrity issues
if selected_panel == selected_dma and not (
selected_panel == "N/A" and selected_dma == "N/A"
):
st.warning(
f"File: {file_name} → The same column cannot serve as both Panel and DMA. Please adjust your selections.",
)
selected_dma, selected_panel = "N/A", "N/A"
st.stop()
# Update the selections for DMA and Panel for the current file
selections[file_name] = {
"DMA": selected_dma,
"Panel": selected_panel,
}
count += 1 # Increment the counter after processing each file
# Accept DMA and Panel selection
if st.button("Accept and Process", use_container_width=True):
# Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
with st.spinner("Processing...", cache=True):
files_dict = standardize_data_to_daily(files_dict, selections)
# Convert all data to daily level granularity
files_dict = apply_granularity_to_all(
files_dict, granularity_selection, selections
)
st.session_state["files_dict"] = files_dict
st.session_state["DMA_Panel_Selected"] = True
#########################################################################################################################################################
# Display unique DMA and Panel values
#########################################################################################################################################################
# Halts further execution until DMA and Panel columns are selected
if "files_dict" in st.session_state and st.session_state["DMA_Panel_Selected"]:
files_dict = st.session_state["files_dict"]
else:
st.stop()
# Set to store unique values of DMA and Panel
with st.spinner("Fetching DMA and Panel values..."):
all_dma_values, all_panel_values = clean_and_extract_unique_values(
files_dict, selections
)
# List of DMA and Panel columns unique values
list_of_all_dma_values = list(all_dma_values)
list_of_all_panel_values = list(all_panel_values)
# Format DMA and Panel values for display
formatted_dma_values = format_values_for_display(list_of_all_dma_values)
formatted_panel_values = format_values_for_display(list_of_all_panel_values)
# Unique DMA and Panel values
st.markdown("#### Unique DMA and Panel values")
# Display DMA and Panel values
with st.expander("Unique DMA and Panel values"):
st.write("")
st.markdown(
f"""
<style>
.justify-text {{
text-align: justify;
}}
</style>
<div class="justify-text">
<strong>Panel Values:</strong> {formatted_panel_values}<br>
<strong>DMA Values:</strong> {formatted_dma_values}
</div>
""",
unsafe_allow_html=True,
)
# Display total DMA and Panel
st.write("")
st.markdown(
f"""
<div style="text-align: justify;">
<strong>Number of DMAs detected:</strong> {len(list_of_all_dma_values)}<br>
<strong>Number of Panels detected:</strong> {len(list_of_all_panel_values)}
</div>
""",
unsafe_allow_html=True,
)
st.write("")
#########################################################################################################################################################
# Merge all DataFrames
#########################################################################################################################################################
# Merge all DataFrames selected
main_df = create_main_dataframe(
files_dict, all_dma_values, all_panel_values, granularity_selection
)
merged_df = merge_into_main_df(main_df, files_dict, selections)
# # Display the merged DataFrame
# st.markdown("#### Merged DataFrame based on selected DMA and Panel")
# st.dataframe(merged_df)
#########################################################################################################################################################
# Categorize Variables and Impute Missing Values
#########################################################################################################################################################
# Create an editable DataFrame in Streamlit
st.markdown("#### Select Variables Category & Impute Missing Values")
# Prepare missing stats DataFrame for editing
missing_stats_df = prepare_missing_stats_df(merged_df)
edited_stats_df = st.data_editor(
missing_stats_df,
column_config={
"Impute Method": st.column_config.SelectboxColumn(
options=[
"Drop Column",
"Fill with Mean",
"Fill with Median",
"Fill with 0",
],
required=True,
default="Fill with 0",
),
"Category": st.column_config.SelectboxColumn(
options=[
"Media",
"Exogenous",
"Internal",
"Response_Metric"
],
required=True,
default="Media",
),
},
disabled=["Column", "Missing Values", "Missing Percentage"],
hide_index=True,
use_container_width=True,
)
# Apply changes based on edited DataFrame
for i, row in edited_stats_df.iterrows():
column = row["Column"]
if row["Impute Method"] == "Drop Column":
merged_df.drop(columns=[column], inplace=True)
elif row["Impute Method"] == "Fill with Mean":
merged_df[column].fillna(merged_df[column].mean(), inplace=True)
elif row["Impute Method"] == "Fill with Median":
merged_df[column].fillna(merged_df[column].median(), inplace=True)
elif row["Impute Method"] == "Fill with 0":
merged_df[column].fillna(0, inplace=True)
# Display the Final DataFrame and exogenous variables
st.markdown("#### Final DataFrame")
final_df = merged_df
st.dataframe(final_df, hide_index=True)
# Initialize an empty dictionary to hold categories and their variables
category_dict = {}
# Iterate over each row in the edited DataFrame to populate the dictionary
for i, row in edited_stats_df.iterrows():
column = row["Column"]
category = row["Category"] # The category chosen by the user for this variable
# Check if the category already exists in the dictionary
if category not in category_dict:
# If not, initialize it with the current column as its first element
category_dict[category] = [column]
else:
# If it exists, append the current column to the list of variables under this category
category_dict[category].append(column)
# Add Date, DMA and Panel in category dictionary
category_dict.update({"Date": ["date"]})
if "DMA" in final_df.columns:
category_dict["DMA"] = ["DMA"]
if "Panel" in final_df.columns:
category_dict["Panel"] = ["Panel"]
# Display the dictionary
st.markdown("#### Variable Category")
for category, variables in category_dict.items():
# Check if there are multiple variables to handle "and" insertion correctly
if len(variables) > 1:
# Join all but the last variable with ", ", then add " and " before the last variable
variables_str = ", ".join(variables[:-1]) + " and " + variables[-1]
else:
# If there's only one variable, no need for "and"
variables_str = variables[0]
# Display the category and its variables in the desired format
st.markdown(
f"<div style='text-align: justify;'><strong>{category}:</strong> {variables_str}</div>",
unsafe_allow_html=True,
)
# Store final dataframe and bin dictionary into session state
st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict
if st.button('Save Changes'):
with open("Pickle_files/main_df", 'wb') as f:
pickle.dump(st.session_state["final_df"], f)
with open("Pickle_files/category_dict",'wb') as c:
pickle.dump(st.session_state["bin_dict"],c)
st.success('Changes Saved!')
|