Spaces:
Sleeping
Sleeping
File size: 14,365 Bytes
bd80083 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
'''
MMO Build Sprint 3
additions : contributions calculated using tuned Mixed LM model
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
MMO Build Sprint 4
additions : response metrics selection
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
'''
import streamlit as st
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import pickle
from utilities_with_panel import (set_header,
overview_test_data_prep_panel,
overview_test_data_prep_nonpanel,
initialize_data,
load_local_css,
create_channel_summary,
create_contribution_pie,
create_contribuion_stacked_plot,
create_channel_spends_sales_plot,
format_numbers,
channel_name_formating)
import plotly.graph_objects as go
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import time
st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
def get_random_effects(media_data, panel_col, mdf):
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
for i, market in enumerate(media_data[panel_col].unique()):
print(i, end='\r')
intercept = mdf.random_effects[market].values[0]
random_eff_df.loc[i, 'random_effect'] = intercept
random_eff_df.loc[i, panel_col] = market
return random_eff_df
def process_train_and_test(train, test, features, panel_col, target_col):
X1 = train[features]
ss = MinMaxScaler()
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
X1[panel_col] = train[panel_col]
X1[target_col] = train[target_col]
if test is not None:
X2 = test[features]
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
X2[panel_col] = test[panel_col]
X2[target_col] = test[target_col]
return X1, X2
return X1
def mdf_predict(X_df, mdf, random_eff_df) :
X=X_df.copy()
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
X['pred_fixed_effect'] = mdf.predict(X)
X['pred'] = X['pred_fixed_effect'] + X['random_effect']
X.to_csv('Test/merged_df_contri.csv',index=False)
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
return X
target='Revenue'
# is_panel=False
# is_panel = st.session_state['is_panel']
panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
date_col = 'date'
#st.write(media_data)
is_panel = True if len(panel_col)>0 else False
# panel_col='markets'
date_col = 'date'
# Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default
if "used_response_metrics" in st.session_state and st.session_state['used_response_metrics']!=[]:
sel_target_col = st.selectbox("Select the response metric", st.session_state['used_response_metrics'])
target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
else :
sel_target_col = 'Total Approved Accounts - Revenue'
target_col = 'total_approved_accounts_revenue'
# Sprint4 - Look through all saved tuned models, only show saved models of the sel resp metric (target_col)
# saved_models = st.session_state['saved_model_names']
# Sprint4 - get the model obj of the selected model
# st.write(sel_model_dict)
# Sprint3 - Contribution
if is_panel:
# read tuned mixedLM model
# if st.session_state["tuned_model"] is not None :
if st.session_state["is_tuned_model"][target_col]==True: #Sprint4
with open("tuned_model.pkl", 'rb') as file:
model_dict = pickle.load(file)
saved_models = list(model_dict.keys())
required_saved_models = [m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col]
sel_model = st.selectbox("Select the model to review", required_saved_models)
sel_model_dict = model_dict[sel_model + "__" + target_col]
# model=st.session_state["tuned_model"]
# X_train=st.session_state["X_train_tuned"]
# X_test=st.session_state["X_test_tuned"]
# best_feature_set=st.session_state["tuned_model_features"]
model=sel_model_dict["Model_object"]
X_train=sel_model_dict["X_train_tuned"]
X_test=sel_model_dict["X_test_tuned"]
best_feature_set=sel_model_dict["feature_set"]
# st.write("features", best_feature_set)
# st.write(X_test.columns)
else : # if non tuned model to be used # Pending
with open("best_models.pkl", 'rb') as file:
model_dict = pickle.load(file)
saved_models = list(model_dict.keys())
required_saved_models = [m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col]
sel_model = st.selectbox("Select the model to review", required_saved_models)
sel_model_dict = model_dict[sel_model + "__" + target_col]
model=st.session_state["base_model"]
X_train = st.session_state['X_train']
X_test = st.session_state['X_test']
# y_train = st.session_state['y_train']
# y_test = st.session_state['y_test']
best_feature_set = st.session_state['base_model_feature_set']
# st.write(best_feature_set)
# st.write(X_test.columns)
# Calculate contributions
with open("data_import.pkl", "rb") as f:
data = pickle.load(f)
# Accessing the loaded objects
st.session_state['orig_media_data'] = data["final_df"]
st.session_state['orig_media_data'].columns=[col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['orig_media_data'].columns]
media_data = st.session_state["media_data"]
# st.session_state['orig_media_data']=st.session_state["media_data"]
#st.write(media_data)
contri_df = pd.DataFrame()
y = []
y_pred = []
random_eff_df = get_random_effects(media_data, panel_col, model)
random_eff_df['fixed_effect'] = model.fe_params['Intercept']
random_eff_df['panel_effect'] = random_eff_df['random_effect'] + random_eff_df['fixed_effect']
# random_eff_df.to_csv("Test/random_eff_df_contri.csv", index=False)
coef_df = pd.DataFrame(model.fe_params)
coef_df.columns = ['coef']
# coef_df.reset_index().to_csv("Test/coef_df_contri1.csv",index=False)
# print(model.fe_params)
x_train_contribution = X_train.copy()
x_test_contribution = X_test.copy()
# preprocessing not needed since X_train is already preprocessed
# X1, X2 = process_train_and_test(x_train_contribution, x_test_contribution, best_feature_set, panel_col, target_col)
# x_train_contribution[best_feature_set] = X1[best_feature_set]
# x_test_contribution[best_feature_set] = X2[best_feature_set]
x_train_contribution = mdf_predict(x_train_contribution, model, random_eff_df)
x_test_contribution = mdf_predict(x_test_contribution, model, random_eff_df)
x_train_contribution = pd.merge(x_train_contribution, random_eff_df[[panel_col, 'panel_effect']], on=panel_col,
how='left')
x_test_contribution = pd.merge(x_test_contribution, random_eff_df[[panel_col, 'panel_effect']], on=panel_col,
how='left')
inp_coef = coef_df['coef'][1:].tolist() # 0th index is intercept
for i in range(len(inp_coef)):
x_train_contribution[str(best_feature_set[i]) + "_contr"] = inp_coef[i] * x_train_contribution[best_feature_set[i]]
x_test_contribution[str(best_feature_set[i]) + "_contr"] = inp_coef[i] * x_test_contribution[best_feature_set[i]]
x_train_contribution['sum_contributions'] = x_train_contribution.filter(regex="contr").sum(axis=1)
x_train_contribution['sum_contributions'] = x_train_contribution['sum_contributions'] + x_train_contribution['panel_effect']
x_test_contribution['sum_contributions'] = x_test_contribution.filter(regex="contr").sum(axis=1)
x_test_contribution['sum_contributions'] = x_test_contribution['sum_contributions'] + x_test_contribution['panel_effect']
# # test
x_train_contribution.to_csv("Test/x_train_contribution.csv",index=False)
x_test_contribution.to_csv("Test/x_test_contribution.csv",index=False)
#
# st.session_state['orig_media_data'].to_csv("Test/transformed_data.csv",index=False)
# st.session_state['X_test_spends'].to_csv("Test/test_spends.csv",index=False)
# # st.write(st.session_state['orig_media_data'].columns)
st.write(date_col,panel_col)
# st.write(x_test_contribution)
overview_test_data_prep_panel(x_test_contribution, st.session_state['orig_media_data'], st.session_state['X_test_spends'],
date_col, panel_col, target_col)
else : # NON PANEL
if st.session_state["is_tuned_model"][target_col]==True: #Sprint4
with open("tuned_model.pkl", 'rb') as file:
model_dict = pickle.load(file)
saved_models = list(model_dict.keys())
required_saved_models = [m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col]
sel_model = st.selectbox("Select the model to review", required_saved_models)
sel_model_dict = model_dict[sel_model + "__" + target_col]
model=sel_model_dict["Model_object"]
X_train=sel_model_dict["X_train_tuned"]
X_test=sel_model_dict["X_test_tuned"]
best_feature_set=sel_model_dict["feature_set"]
else : #Sprint4
with open("best_models.pkl", 'rb') as file:
model_dict = pickle.load(file)
saved_models = list(model_dict.keys())
required_saved_models = [m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col]
sel_model = st.selectbox("Select the model to review", required_saved_models)
sel_model_dict = model_dict[sel_model + "__" + target_col]
model=sel_model_dict["Model_object"]
X_train=sel_model_dict["X_train"]
X_test=sel_model_dict["X_test"]
best_feature_set=sel_model_dict["feature_set"]
x_train_contribution = X_train.copy()
x_test_contribution = X_test.copy()
x_train_contribution['pred'] = model.predict(x_train_contribution[best_feature_set])
x_test_contribution['pred'] = model.predict(x_test_contribution[best_feature_set])
for num,i in enumerate(model.params.values):
col=best_feature_set[num]
x_train_contribution[col + "_contr"] = X_train[col] * i
x_test_contribution[col + "_contr"] = X_test[col] * i
x_test_contribution.to_csv("Test/x_test_contribution_non_panel.csv",index=False)
overview_test_data_prep_nonpanel(x_test_contribution, st.session_state['orig_media_data'].copy(), st.session_state['X_test_spends'].copy(), date_col, target_col)
# for k, v in st.session_sta
# te.items():
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
# st.session_state[k] = v
# authenticator = st.session_state.get('authenticator')
# if authenticator is None:
# authenticator = load_authenticator()
# name, authentication_status, username = authenticator.login('Login', 'main')
# auth_status = st.session_state['authentication_status']
# if auth_status:
# authenticator.logout('Logout', 'main')
# is_state_initiaized = st.session_state.get('initialized',False)
# if not is_state_initiaized:
initialize_data(target_col)
scenario = st.session_state['scenario']
raw_df = st.session_state['raw_df']
st.header('Overview of previous spends')
# st.write(scenario.actual_total_spends)
# st.write(scenario.actual_total_sales)
columns = st.columns((1,1,3))
with columns[0]:
st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
###print(f"##################### {scenario.actual_total_sales} ##################")
with columns[1]:
st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False))
actual_summary_df = create_channel_summary(scenario)
actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
columns = st.columns((2,1))
with columns[0]:
with st.expander('Channel wise overview'):
st.markdown(actual_summary_df.style.set_table_styles(
[{
'selector': 'th',
'props': [('background-color', '#11B6BD')]
},
{
'selector' : 'tr:nth-child(even)',
'props' : [('background-color', '#11B6BD')]
}]).to_html(), unsafe_allow_html=True)
st.markdown("<hr>",unsafe_allow_html=True)
##############################
st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
st.markdown("<hr>",unsafe_allow_html=True)
################################3
st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
st.markdown("<hr>",unsafe_allow_html=True)
#######################################
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
selected_channel = scenario.channels.get(selected_channel_name,None)
st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
st.markdown("<hr>",unsafe_allow_html=True)
# elif auth_status == False:
# st.error('Username/Password is incorrect')
# if auth_status != True:
# try:
# username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
# if username_forgot_pw:
# st.success('New password sent securely')
# # Random password to be transferred to user securely
# elif username_forgot_pw == False:
# st.error('Username not found')
# except Exception as e:
# st.error(e)
|