File size: 17,633 Bytes
9d7bf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from Eda_functions import format_numbers
import numpy as np
import pickle
from st_aggrid import AgGrid
from st_aggrid import GridOptionsBuilder,GridUpdateMode
from utilities import set_header,load_local_css
from st_aggrid import GridOptionsBuilder
import time
import itertools
import statsmodels.api as sm
import numpy as npc
import re
import itertools
from sklearn.metrics import mean_absolute_error, r2_score,mean_absolute_percentage_error  
from sklearn.preprocessing import MinMaxScaler
import os
import matplotlib.pyplot as plt
from statsmodels.stats.outliers_influence import variance_inflation_factor
st.set_option('deprecation.showPyplotGlobalUse', False)
from datetime import datetime
import seaborn as sns
from Data_prep_functions import *

st.set_page_config(
  page_title="Model Build",
  page_icon=":shark:",
  layout="wide",
  initial_sidebar_state='collapsed'
)

load_local_css('styles.css')
set_header()


st.title('1. Build Your Model')

# media_data=pd.read_csv('Media_data_for_model.csv')
media_data=pd.read_csv('Media_data_for_model_dma_level.csv')
date=media_data['Date']
st.session_state['date']=date
revenue=media_data['Total Approved Accounts - Revenue']
media_data.drop(['Total Approved Accounts - Revenue'],axis=1,inplace=True)
media_data.drop(['Date'],axis=1,inplace=True)
media_data.reset_index(drop=True,inplace=True)
media_data.dropna(inplace=True)

if st.toggle('Apply Transformations on DMA/Panel Level'):
  dma=st.selectbox('Select the Level of data ',[ col for col in media_data.columns if col.lower() in ['dma','panel']])


else:
  """ code to aggregate data on date """


  dma=None

# dma_dict={ dm:media_data[media_data[dma]==dm] for dm in media_data[dma].unique()}
# st.write(dma_dict)

st.markdown('## Select the Range of Transformations')
columns = st.columns(2)
old_shape=media_data.shape


if "old_shape" not in st.session_state:
   st.session_state['old_shape']=old_shape


with columns[0]:
  slider_value_adstock  = st.slider('Select Adstock Range (only applied to media)', 0.0, 1.0, (0.2, 0.4), step=0.1, format="%.2f")
with columns[1]:
  slider_value_lag = st.slider('Select Lag Range (applied to media, seasonal, macroeconomic variables)', 1, 7, (1, 3), step=1)

# with columns[2]:
#    slider_value_power=st.slider('Select Power range (only applied to media )',0,4,(1,2),step=1)

# with columns[1]:
#    st.number_input('Select the range of half saturation point ',min_value=1,max_value=5)
#    st.number_input('Select the range of  ')

def lag(data,features,lags,dma=None):
    if dma:
        
        transformed_data=pd.concat([data.groupby([dma])[features].shift(lag).add_suffix(f'_lag_{lag}') for lag in lags],axis=1)
        transformed_data=transformed_data.fillna(method='bfill')
        return pd.concat([transformed_data,data],axis=1)

    else:
                          
        ''' data should be aggregated on date'''
                                         
        transformed_data=pd.concat([data[features].shift(lag).add_suffix(f'_lag_{lag}') for lag in lags],axis=1)
        transformed_data=transformed_data.fillna(method='bfill')

        return pd.concat([transformed_data,data],axis=1)
    
#adstock
def adstock(df, alphas, cutoff, features,dma=None):
    
    if dma:
        transformed_data=pd.DataFrame()
        for d in df[dma].unique():
            dma_sub_df = df[df[dma] == d]
            n = len(dma_sub_df)
                                
 
            weights = np.array([[[alpha**(i-j) if i >= j and j >= i-cutoff else 0. for j in range(n)] for i in range(n)] for alpha in alphas])

            X = dma_sub_df[features].to_numpy()
            res = pd.DataFrame(np.hstack(weights @ X), 
                               columns=[f'{col}_adstock_{alpha}' for alpha in alphas for col in features])
            
            transformed_data=pd.concat([transformed_data,res],axis=0)
            transformed_data.reset_index(drop=True,inplace=True)
        return pd.concat([transformed_data,df],axis=1)

    else:
        
        n = len(df)


        weights = np.array([[[alpha**(i-j) if i >= j and j >= i-cutoff else 0. for j in range(n)] for i in range(n)] for alpha in alphas])

        X = df[features].to_numpy()
        res = pd.DataFrame(np.hstack(weights @ X), 
                           columns=[f'{col}_adstock_{alpha}' for alpha in alphas for col in features])
        return  pd.concat([res,df],axis=1)
    




if 'media_data' not in st.session_state:
   
  st.session_state['media_data']=pd.DataFrame()

variables_to_be_transformed=[col for col in media_data.columns if col.lower() not in ['dma','panel'] ] # change for buckets


if st.button('Apply Transformations'):
   with st.spinner('Applying Transformations'):
    transformed_data_lag=lag(media_data,features=variables_to_be_transformed,lags=np.arange(slider_value_lag[0],slider_value_lag[1]+1,1),dma=dma)

    variables_to_be_transformed=[col for col in list(transformed_data_lag.columns) if col not in ['Date','DMA','Panel']] #change for buckets

    transformed_data_adstock=adstock(df=transformed_data_lag, alphas=np.arange(slider_value_adstock[0],slider_value_adstock[1]+0.1,0.1), cutoff=8, features=variables_to_be_transformed,dma=dma)

    st.success('Done')
    st.write(f'old shape {old_shape}, new shape {transformed_data_adstock.shape}')
    st.write(media_data.head(10))
    st.write(transformed_data_adstock)
    st.write(transformed_data_adstock.isnull().sum().sort_values(ascending=False))






    
#     st.write(dma_dict)
#     st.session_state['media_data']=media_data

#     with st.spinner('Applying Transformations'):
#       time.sleep(2)
#       st.success("Transformations complete!")

# if st.session_state['media_data'].shape[1]>old_shape[1]:
#   with columns[0]:
#     st.write(f'Total no.of variables before transformation: {old_shape[1]}, Total no.of variables after transformation: {st.session_state["media_data"].shape[1]}')
#   #st.write(f'Total no.of variables after transformation: {st.session_state["media_data"].shape[1]}')


# bucket=['paid_search', 'kwai','indicacao','infleux', 'influencer','FB: Level Achieved - Tier 1 Impressions',
#       ' FB: Level Achieved - Tier 2 Impressions','paid_social_others',
#         ' GA App: Will And Cid Pequena Baixo Risco Clicks',
#       'digital_tactic_others',"programmatic"
#       ]
   
# with columns[1]:
#   if st.button('Create Combinations of Variables'):

#     top_3_correlated_features=[]
#     for col in st.session_state['media_data'].columns[:19]:
#         corr_df=pd.concat([st.session_state['media_data'].filter(regex=col),
#                   revenue],axis=1).corr()['Total Approved Accounts - Revenue'].iloc[:-1]
#         top_3_correlated_features.append(list(corr_df.sort_values(ascending=False).head(2).index))
#     flattened_list = [item for sublist in top_3_correlated_features for item in sublist]
#     all_features_set={var:[col for col in flattened_list if var in col] for var in bucket}
#     channels_all=[values for values in all_features_set.values()]
#     st.session_state['combinations'] = list(itertools.product(*channels_all))

#   # if 'combinations' not in st.session_state:  
#   #   st.session_state['combinations']=combinations_all

#     st.session_state['final_selection']=st.session_state['combinations']



# revenue.reset_index(drop=True,inplace=True)
# if 'Model_results' not in st.session_state:
#       st.session_state['Model_results']={'Model_object':[],
#     'Model_iteration':[],
#     'Feature_set':[],
#     'MAPE':[],
#     'R2':[],
#     'ADJR2':[]
#     }

# #if st.button('Build Model'):
# if 'iterations' not in st.session_state:
#    st.session_state['iterations']=1
# save_path = r"Model"
# with columns[1]:
#   if "final_selection" in st.session_state:
#     st.write(f'Total combinations created {format_numbers(len(st.session_state["final_selection"]))}')
    
#     st.success('Done')
# if st.checkbox('Build all iterations'):
#    iterations=len(st.session_state['final_selection'])
# else:
#    iterations = st.number_input('Select the number of iterations to perform', min_value=1, step=100, value=st.session_state['iterations'])  

# st.session_state['iterations']=iterations


# st.session_state['media_data']=st.session_state['media_data'].fillna(method='ffill')
# if st.button("Build Models"):  
#   st.markdown('Data Split -- Training Period: May 9th, 2023 - October 5th,2023 , Testing Period: October 6th, 2023 - November 7th, 2023 ')
#   progress_bar = st.progress(0)  # Initialize the progress bar
#   #time_remaining_text = st.empty()  # Create an empty space for time remaining text
#   start_time = time.time()  # Record the start time
#   progress_text = st.empty()
#   #time_elapsed_text = st.empty()
#   for i, selected_features in enumerate(st.session_state["final_selection"][40000:40000+int(iterations)]):
#       df = st.session_state['media_data']

#       fet = [var for var in selected_features if len(var) > 0]
#       X = df[fet]
#       y = revenue
#       ss = MinMaxScaler()
#       X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
#       X = sm.add_constant(X)
#       X_train=X.iloc[:150]
#       X_test=X.iloc[150:]
#       y_train=y.iloc[:150]
#       y_test=y.iloc[150:]


#       model = sm.OLS(y_train, X_train).fit()
#       # st.write(fet)
#       positive_coeff=X.columns
#       negetive_coeff=[]
#       coefficients=model.params.to_dict()
#       model_possitive=[col for col in coefficients.keys() if coefficients[col]>0]
#       # st.write(positive_coeff)
#       # st.write(model_possitive)
#       pvalues=[var for var in list(model.pvalues) if var<=0.06]
#       if (len(model_possitive)/len(selected_features))>0.9 and (len(pvalues)/len(selected_features))>=0.8:


#           predicted_values = model.predict(X_train)
#           mape = mean_absolute_percentage_error(y_train, predicted_values)
#           adjr2 = model.rsquared_adj
#           r2 = model.rsquared
#           filename = os.path.join(save_path, f"model_{i}.pkl")
#           with open(filename, "wb") as f:
#             pickle.dump(model, f)
#           # with open(r"C:\Users\ManojP\Documents\MMM\simopt\Model\model.pkl", 'rb') as file:
#           #   model = pickle.load(file)

#           st.session_state['Model_results']['Model_object'].append(filename)
#           st.session_state['Model_results']['Model_iteration'].append(i)
#           st.session_state['Model_results']['Feature_set'].append(fet)
#           st.session_state['Model_results']['MAPE'].append(mape)
#           st.session_state['Model_results']['R2'].append(r2)
#           st.session_state['Model_results']['ADJR2'].append(adjr2)

#       current_time = time.time()
#       time_taken = current_time - start_time
#       time_elapsed_minutes = time_taken / 60
#       completed_iterations_text = f"{i + 1}/{iterations}"
#       progress_bar.progress((i + 1) / int(iterations))
#       progress_text.text(f'Completed iterations: {completed_iterations_text},Time Elapsed (min): {time_elapsed_minutes:.2f}')
  
# st.write(f'Out of {st.session_state["iterations"]} iterations : {len(st.session_state["Model_results"]["Model_object"])} valid models')
# pd.DataFrame(st.session_state['Model_results']).to_csv('model_output.csv')

# def to_percentage(value):
#   return f'{value * 100:.1f}%'   

# st.title('2. Select Models')
# if 'tick' not in st.session_state:
#    st.session_state['tick']=False
# if st.checkbox('Show results of top 10 models (based on MAPE and Adj. R2)',value=st.session_state['tick']):
#   st.session_state['tick']=True
#   st.write('Select one model iteration to generate performance metrics for it:')
#   data=pd.DataFrame(st.session_state['Model_results'])
#   data.sort_values(by=['MAPE'],ascending=False,inplace=True)
#   data.drop_duplicates(subset='Model_iteration',inplace=True)
#   top_10=data.head(10)
#   top_10['Rank']=np.arange(1,len(top_10)+1,1)
#   top_10[['MAPE','R2','ADJR2']]=np.round(top_10[['MAPE','R2','ADJR2']],4).applymap(to_percentage)
#   top_10_table = top_10[['Rank','Model_iteration','MAPE','ADJR2','R2']]
#   #top_10_table.columns=[['Rank','Model Iteration Index','MAPE','Adjusted R2','R2']]
#   gd=GridOptionsBuilder.from_dataframe(top_10_table)
#   gd.configure_pagination(enabled=True)
#   gd.configure_selection(use_checkbox=True)

  
#   gridoptions=gd.build()

#   table = AgGrid(top_10,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED)
  
#   selected_rows=table.selected_rows
#   # if st.session_state["selected_rows"] != selected_rows:
#   #   st.session_state["build_rc_cb"] = False
#   st.session_state["selected_rows"] = selected_rows
#   if 'Model' not in st.session_state:
#     st.session_state['Model']={}

#   if len(selected_rows)>0:
#     st.header('2.1 Results Summary')

#     model_object=data[data['Model_iteration']==selected_rows[0]['Model_iteration']]['Model_object']
#     features_set=data[data['Model_iteration']==selected_rows[0]['Model_iteration']]['Feature_set']
    
#     with open(str(model_object.values[0]), 'rb') as file:
#             model = pickle.load(file)
#     st.write(model.summary())        
#     st.header('2.2 Actual vs. Predicted Plot')
  
#     df=st.session_state['media_data']
#     X=df[features_set.values[0]]
#     X = sm.add_constant(X)
#     y=revenue
#     X_train=X.iloc[:150]
#     X_test=X.iloc[150:]
#     y_train=y.iloc[:150]
#     y_test=y.iloc[150:]
#     ss = MinMaxScaler()
#     X_train = pd.DataFrame(ss.fit_transform(X_train), columns=X_train.columns)
#     st.session_state['X']=X_train
#     st.session_state['features_set']=features_set.values[0]

#     metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date, y_train, model.predict(X_train), model,target_column='Revenue')

#     st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)


     
#     st.markdown('## 2.3 Residual Analysis')
#     columns=st.columns(2)
#     with columns[0]:
#       fig=plot_residual_predicted(y_train,model.predict(X_train),X_train)
#       st.plotly_chart(fig)
    
#     with columns[1]:
#       st.empty()
#       fig = qqplot(y_train,model.predict(X_train))
#       st.plotly_chart(fig)

#     with columns[0]:
#       fig=residual_distribution(y_train,model.predict(X_train))
#       st.pyplot(fig)
    


#     vif_data = pd.DataFrame()
#     # X=X.drop('const',axis=1)
#     vif_data["Variable"] = X_train.columns
#     vif_data["VIF"] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.shape[1])]
#     vif_data.sort_values(by=['VIF'],ascending=False,inplace=True)
#     vif_data=np.round(vif_data)
#     vif_data['VIF']=vif_data['VIF'].astype(float)
#     st.header('2.4 Variance Inflation Factor (VIF)')
#     #st.dataframe(vif_data)
#     color_mapping = {
#     'darkgreen': (vif_data['VIF'] < 3),
#     'orange': (vif_data['VIF'] >= 3) & (vif_data['VIF'] <= 10),
#     'darkred': (vif_data['VIF'] > 10)
#     }

# # Create a horizontal bar plot
#     fig, ax = plt.subplots()
#     fig.set_figwidth(10)  # Adjust the width of the figure as needed

#     # Sort the bars by descending VIF values
#     vif_data = vif_data.sort_values(by='VIF', ascending=False)

#     # Iterate through the color mapping and plot bars with corresponding colors
#     for color, condition in color_mapping.items():
#         subset = vif_data[condition]
#         bars = ax.barh(subset["Variable"], subset["VIF"], color=color, label=color)
        
#         # Add text annotations on top of the bars
#         for bar in bars:
#             width = bar.get_width()
#             ax.annotate(f'{width:}', xy=(width, bar.get_y() + bar.get_height() / 2), xytext=(5, 0),
#                         textcoords='offset points', va='center')

#     # Customize the plot
#     ax.set_xlabel('VIF Values')
#     #ax.set_title('2.4 Variance Inflation Factor (VIF)')
#     #ax.legend(loc='upper right')

#     # Display the plot in Streamlit
#     st.pyplot(fig)

#     with st.expander('Results Summary Test data'):
#       ss = MinMaxScaler()
#       X_test = pd.DataFrame(ss.fit_transform(X_test), columns=X_test.columns)
#       st.header('2.2 Actual vs. Predicted Plot')

#       metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date, y_test, model.predict(X_test), model,target_column='Revenue')

#       st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)

#       st.markdown('## 2.3 Residual Analysis')
#       columns=st.columns(2)
#       with columns[0]:
#         fig=plot_residual_predicted(revenue,model.predict(X_test),X_test)
#         st.plotly_chart(fig)
      
#       with columns[1]:
#         st.empty()
#         fig = qqplot(revenue,model.predict(X_test))
#         st.plotly_chart(fig)

#       with columns[0]:
#         fig=residual_distribution(revenue,model.predict(X_test))
#         st.pyplot(fig)
        
#     value=False
#     if st.checkbox('Save this model to tune',key='build_rc_cb'):
#       mod_name=st.text_input('Enter model name')
#       if len(mod_name)>0:
#         st.session_state['Model'][mod_name]={"Model_object":model,'feature_set':st.session_state['features_set'],'X_train':X_train}
#         st.session_state['X_train']=X_train
#         st.session_state['X_test']=X_test
#         st.session_state['y_train']=y_train
#         st.session_state['y_test']=y_test
#         with open("best_models.pkl", "wb") as f:
#           pickle.dump(st.session_state['Model'], f)  
#           st.success('Model saved!, Proceed  next page to tune the model')
#         value=False