File size: 7,071 Bytes
9d7bf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
import pandas as pd
from Eda_functions import format_numbers
import pickle
from utilities import set_header,load_local_css
import statsmodels.api as sm
import re
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from statsmodels.stats.outliers_influence import variance_inflation_factor
st.set_option('deprecation.showPyplotGlobalUse', False)
from Data_prep_functions import *

st.set_page_config(
  page_title="Model Tuning",
  page_icon=":shark:",
  layout="wide",
  initial_sidebar_state='collapsed'
)
load_local_css('styles.css')
set_header()


st.title('1. Model Tuning')


if "X_train" not in st.session_state:
   st.error(
"Oops! It seems there are no saved models available. Please build and save a model from the previous page to proceed.")
   st.stop()
X_train=st.session_state['X_train']
X_test=st.session_state['X_test']
y_train=st.session_state['y_train']
y_test=st.session_state['y_test']
df=st.session_state['media_data']

with open("best_models.pkl", 'rb') as file:
  model_dict= pickle.load(file)

if 'selected_model' not in st.session_state:
   st.session_state['selected_model']=0


st.markdown('### 1.1 Event Flags')
st.markdown('Helps in quantifying the impact of specific occurrences of events')   
with st.expander('Apply Event Flags'):
  st.session_state["selected_model"]=st.selectbox('Select Model to apply flags',model_dict.keys())
  model =model_dict[st.session_state["selected_model"]]['Model_object']
  date=st.session_state['date']
  date=pd.to_datetime(date)
  X_train =model_dict[st.session_state["selected_model"]]['X_train']
  features_set= model_dict[st.session_state["selected_model"]]['feature_set']

  col=st.columns(3)  
  min_date=min(date)
  max_date=max(date)
  with col[0]:
    start_date=st.date_input('Select Start Date',min_date,min_value=min_date,max_value=max_date)
  with col[1]:
    end_date=st.date_input('Select End Date',max_date,min_value=min_date,max_value=max_date)
  with col[2]:
    repeat=st.selectbox('Repeat Annually',['Yes','No'],index=1)
  if repeat =='Yes':
      repeat=True
  else: 
      repeat=False
  # X_train=sm.add_constant(X_train)

  if 'Flags' not in st.session_state:
    st.session_state['Flags']={}

  met,line_values,fig_flag=plot_actual_vs_predicted(date[:150], y_train, model.predict(X_train), model,flag=(start_date,end_date),repeat_all_years=repeat)
  st.plotly_chart(fig_flag,use_container_width=True)
  flag_name='f1'
  flag_name=st.text_input('Enter Flag Name')
  if st.button('Update flag'):
    st.session_state['Flags'][flag_name]=line_values
    st.success(f'{flag_name} stored')

  options=list(st.session_state['Flags'].keys())
  selected_options = []
  num_columns = 4
  num_rows = -(-len(options) // num_columns)  


tick=False
if st.checkbox('Select all'):
    tick=True
selected_options = []
for row in range(num_rows):
    cols = st.columns(num_columns)
    for col in cols:
        if options:
            option = options.pop(0) 
            selected = col.checkbox(option,value=tick)
            if selected:
                selected_options.append(option)

st.markdown('### 1.2 Select Parameters to Apply')
parameters=st.columns(3)
with parameters[0]:
   Trend=st.checkbox("**Trend**")
   st.markdown('Helps account for long-term trends or seasonality that could influence advertising effectiveness')
with parameters[1]:
   week_number=st.checkbox('**Week_number**')
   st.markdown('Assists in detecting and incorporating weekly patterns or seasonality')
with parameters[2]:
   sine_cosine=st.checkbox('**Sine and Cosine Waves**')
   st.markdown('Helps in capturing cyclical patterns or seasonality in the data')
if st.button('Build model with Selected Parameters and Flags'):
  st.header('2.1 Results Summary')
  # date=list(df.index)
  # df = df.reset_index(drop=True)
  # st.write(df.head(2))
  # X_train=df[features_set]
  ss = MinMaxScaler()
  X_train_tuned = pd.DataFrame(ss.fit_transform(X_train), columns=X_train.columns)
  X_train_tuned=sm.add_constant(X_train_tuned)
  for flag in selected_options:
    X_train_tuned[flag]=st.session_state['Flags'][flag]
  if Trend:
     X_train_tuned['Trend']=np.arange(1,len(X_train_tuned)+1,1)
  # if week_number:
  #    st.write(date)
     date=pd.to_datetime(date.values)
     X_train_tuned['Week_number']=date.day_of_week[:150]
  model_tuned = sm.OLS(y_train, X_train_tuned).fit()

  metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date[:150], y_train, model.predict(X_train), model,target_column='Revenue')
  metrics_table_tuned,line,actual_vs_predicted_plot_tuned=plot_actual_vs_predicted(date[:150], y_train, model_tuned.predict(X_train_tuned), model_tuned,target_column='Revenue')
  
  # st.write(metrics_table)
  mape=np.round(metrics_table.iloc[0,1],2)
  r2=np.round(metrics_table.iloc[1,1],2)
  adjr2=np.round(metrics_table.iloc[2,1],2)
  mape_tuned=np.round(metrics_table_tuned.iloc[0,1],2)
  r2_tuned=np.round(metrics_table_tuned.iloc[1,1],2)
  adjr2_tuned=np.round(metrics_table_tuned.iloc[2,1],2)
  parameters_=st.columns(3)
  with parameters_[0]:
     st.metric('R2',r2_tuned,np.round(r2_tuned-r2,2))
  with parameters_[1]:
     st.metric('Adjusted R2',adjr2_tuned,np.round(adjr2_tuned-adjr2,2))
  with parameters_[2]:
     st.metric('MAPE',mape_tuned,np.round(mape_tuned-mape,2),'inverse')

  st.header('2.2 Actual vs. Predicted Plot')
  metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date, y_train, model.predict(X_train), model,target_column='Revenue')

  st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)


     
  st.markdown('## 2.3 Residual Analysis')
  columns=st.columns(2)
  with columns[0]:
    fig=plot_residual_predicted(y_train,model.predict(X_train),X_train)
    st.plotly_chart(fig)
  
  with columns[1]:
    st.empty()
    fig = qqplot(y_train,model.predict(X_train))
    st.plotly_chart(fig)

  with columns[0]:
    fig=residual_distribution(y_train,model.predict(X_train))
    st.pyplot(fig)

# if st.checkbox('Use this model to build response curves',key='123'):

#   raw_data=df[features_set]
#   columns_raw=[re.split(r"(_lag|_adst)",col)[0] for col in raw_data.columns]
#   raw_data.columns=columns_raw
#   columns_media=[col for col in columns_raw if Categorised_data[col]['BB']=='Media']
#   raw_data=raw_data[columns_media]

#   raw_data['Date']=list(df.index)

#   spends_var=[col for col in df.columns if "spends" in col.lower() and 'adst' not in col.lower() and 'lag' not in col.lower()]
#   spends_df=df[spends_var]
#   spends_df['Week']=list(df.index)
  
 
#   j=0
#   X1=X.copy()
#   col=X1.columns
#   for i in model.params.values:
#       X1[col[j]]=X1.iloc[:,j]*i
#       j+=1
#   contribution_df=X1
#   contribution_df['Date']=list(df.index)
#   excel_file='Overview_data.xlsx'

#   with pd.ExcelWriter(excel_file,engine='xlsxwriter') as writer:
#      raw_data.to_excel(writer,sheet_name='RAW DATA MMM',index=False)
#      spends_df.to_excel(writer,sheet_name='SPEND INPUT',index=False)
#      contribution_df.to_excel(writer,sheet_name='CONTRIBUTION MMM')