File size: 11,662 Bytes
a660599
 
 
 
 
 
 
 
 
 
 
1bc259c
a660599
 
 
 
1bc259c
 
27403e9
1bc259c
a660599
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc259c
 
 
 
 
a660599
 
 
 
1bc259c
a660599
 
 
1bc259c
 
 
a660599
30c2b16
c90b8f9
1bc259c
 
 
 
 
 
 
 
 
 
a660599
 
1bc259c
 
a660599
 
1bc259c
 
a660599
1bc259c
a660599
 
1bc259c
 
 
 
 
a660599
 
 
 
 
 
1bc259c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a660599
 
1bc259c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a660599
 
1bc259c
 
a660599
 
 
 
 
 
 
1bc259c
a660599
 
1bc259c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a660599
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from Eda_functions import *
import numpy as np
import pickle
from streamlit_pandas_profiling import st_profile_report
import streamlit as st
import streamlit.components.v1 as components
import sweetviz as sv
from utilities import set_header,load_local_css
from st_aggrid import GridOptionsBuilder,GridUpdateMode
from st_aggrid import GridOptionsBuilder
from st_aggrid import AgGrid
import base64
import os
import tempfile
#from ydata_profiling import ProfileReport
import re

st.set_page_config(
  page_title="Data Validation",
  page_icon=":shark:",
  layout="wide",
  initial_sidebar_state='collapsed'
)
load_local_css('styles.css')
set_header()





with open('data_import.pkl', 'rb') as f:
    data = pickle.load(f)
 
st.session_state['cleaned_data']= data['final_df']
st.session_state['category_dict'] = data['bin_dict']

st.title('Data Validation and Insights')


target_variables=[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Response Metrics']

target_column = st.selectbox('Select the Target Feature/Dependent Variable (will be used in all charts as reference)',list(*target_variables))
st.session_state['target_column']=target_column
panels=st.session_state['category_dict']['Panel Level 1'][0]
selected_panels=st.multiselect('Please choose the panels you wish to analyze.If no panels are selected, insights will be derived from the overall data.',st.session_state['cleaned_data'][panels].unique())
aggregation_dict = {item: 'sum' if key == 'Media' else 'mean' for key, value in st.session_state['category_dict'].items()  for item in value if item not in ['date','Panel_1']}

#st.write(st.session_state['cleaned_data'])

with st.expander('**Reponse Metric Analysis**'):
    
    if len(selected_panels)>0:
        st.session_state['Cleaned_data_panel']=st.session_state['cleaned_data'][st.session_state['cleaned_data']['Panel_1'].isin(selected_panels)]
 
        st.session_state['Cleaned_data_panel']=st.session_state['Cleaned_data_panel'].groupby(by='date').agg(aggregation_dict)
        st.session_state['Cleaned_data_panel']=st.session_state['Cleaned_data_panel'].reset_index()
    else:
        st.session_state['Cleaned_data_panel']=st.session_state['cleaned_data'].groupby(by='date').agg(aggregation_dict)
        st.session_state['Cleaned_data_panel']=st.session_state['Cleaned_data_panel'].reset_index()


    fig=line_plot_target(st.session_state['Cleaned_data_panel'], target=target_column, title=f'{target_column} Over Time')
    st.plotly_chart(fig, use_container_width=True)


    media_channel=list(*[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Media'])
    # st.write(media_channel)

    Non_media_variables=list(*[st.session_state['category_dict'][key] for key in st.session_state['category_dict'].keys() if key =='Exogenous' or key=='Internal'])


    st.markdown('### Annual Data Summary')
    st.dataframe(summary(st.session_state['Cleaned_data_panel'], media_channel+[target_column], spends=None,Target=True), use_container_width=True)

    if st.checkbox('Show raw data'):
        st.write(pd.concat([pd.to_datetime(st.session_state['Cleaned_data_panel']['date']).dt.strftime('%m/%d/%Y'),st.session_state['Cleaned_data_panel'].select_dtypes(np.number).applymap(format_numbers)],axis=1))
col1 = st.columns(1)

if "selected_feature" not in st.session_state:
    st.session_state['selected_feature']=None


def generate_report_with_target(channel_data, target_feature):
        report = sv.analyze([channel_data, "Dataset"], target_feat=target_feature)
        temp_dir = tempfile.mkdtemp()
        report_path = os.path.join(temp_dir, "report.html")
        report.show_html(filepath=report_path, open_browser=False)  # Generate the report as an HTML file
        return report_path

def generate_profile_report(df):
    pr = df.profile_report()
    temp_dir = tempfile.mkdtemp()
    report_path = os.path.join(temp_dir, "report.html")
    pr.to_file(report_path)
    return report_path


#st.header()
with st.expander('Univariate and Bivariate Report'):
    eda_columns=st.columns(2)
    with eda_columns[0]:
        if st.button('Generate Profile Report',help='Univariate report which inlcudes all statistical analysis'):
            with st.spinner('Generating Report'):     
                report_file = generate_profile_report(st.session_state['Cleaned_data_panel'])

                if os.path.exists(report_file):
                    with open(report_file, 'rb') as f:
                        st.success('Report Generated')
                        st.download_button(
                            label="Download EDA Report",
                            data=f.read(),
                            file_name="pandas_profiling_report.html",
                            mime="text/html"
                        )
                else:
                    st.warning("Report generation failed. Unable to find the report file.")

with eda_columns[1]:
    if st.button('Generate Sweetviz Report',help='Bivariate report for selected response metric'):
       with st.spinner('Generating Report'):     
            report_file = generate_report_with_target(st.session_state['Cleaned_data_panel'], target_column)

            if os.path.exists(report_file):
                with open(report_file, 'rb') as f:
                    st.success('Report Generated')
                    st.download_button(
                        label="Download EDA Report",
                        data=f.read(),
                        file_name="report.html",
                        mime="text/html"
                    )
            else:
                st.warning("Report generation failed. Unable to find the report file.")
            


#st.warning('Work in Progress')
with st.expander('Media Variables Analysis'):
# Get the selected feature
    st.session_state["selected_feature"]= st.selectbox('Select media', [col for col in media_channel if 'cost' not in col.lower() and 'spend' not in col.lower()])

    # Filter spends features based on the selected feature
    spends_features = [col for col in st.session_state['Cleaned_data_panel'].columns if any(keyword in col.lower() for keyword in ['cost', 'spend'])]
    spends_feature = [col for col in spends_features if re.split(r'_cost|_spend', col.lower())[0] in st.session_state["selected_feature"]]

    if 'validation' not in st.session_state:
        st.session_state['validation']=[]


    val_variables=[col for col in media_channel if col!='date']
    if len(spends_feature)==0:  
        st.warning('No spends varaible available for the selected metric in data') 
        
    else:
        fig_row1 = line_plot(st.session_state['Cleaned_data_panel'], x_col='date', y1_cols=[st.session_state["selected_feature"]], y2_cols=[target_column], title=f'Analysis of {st.session_state["selected_feature"]} and {[target_column][0]} Over Time')
        st.plotly_chart(fig_row1, use_container_width=True)
        st.markdown('### Summary')
        st.dataframe(summary(st.session_state['cleaned_data'],[st.session_state["selected_feature"]],spends=spends_feature[0]),use_container_width=True)

        cols2=st.columns(2)
        with cols2[0]:
            if st.button('Validate'):
                st.session_state['validation'].append(st.session_state["selected_feature"])
        with cols2[1]:
            if st.checkbox('Validate all'):
                st.session_state['validation'].extend(val_variables)
                st.success('All media variables are validated ✅')

        if len(set(st.session_state['validation']).intersection(val_variables))!=len(val_variables):
            validation_data=pd.DataFrame({'Validate':[True if col in st.session_state['validation'] else False for col in val_variables],
                                        'Variables':val_variables
                                        })
            cols3=st.columns([1,30])
            with cols3[1]:
                validation_df=st.data_editor(validation_data,
                                            # column_config={
                                            # 'Validate':st.column_config.CheckboxColumn(wi)
                                            
                                            # },
                                            column_config={
                                                "Validate": st.column_config.CheckboxColumn(
                                                    default=False,
                                                    width=100,
                                                ),
                                                'Variables':st.column_config.TextColumn(
                                                    width=1000

                                                )
                                                },hide_index=True)

                selected_rows = validation_df[validation_df['Validate']==True]['Variables']

                #st.write(selected_rows)

                st.session_state['validation'].extend(selected_rows)

                not_validated_variables = [col for col in val_variables if col not in st.session_state["validation"]]
                if not_validated_variables: 
                    not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}'
                    st.warning(not_validated_message)



with st.expander('Non Media Variables Analysis'):
    selected_columns_row4 = st.selectbox('Select Channel',Non_media_variables,index=1)
    #     # Create the dual-axis line plot
    fig_row4 = line_plot(st.session_state['Cleaned_data_panel'], x_col='date', y1_cols=[selected_columns_row4], y2_cols=[target_column], title=f'Analysis of {selected_columns_row4} and {target_column} Over Time')
    st.plotly_chart(fig_row4, use_container_width=True)
    selected_non_media=selected_columns_row4
    sum_df = st.session_state['Cleaned_data_panel'][['date', selected_non_media,target_column]]
    sum_df['Year']=pd.to_datetime(st.session_state['Cleaned_data_panel']['date']).dt.year
    #st.dataframe(df)
    #st.dataframe(sum_df.head(2))
    sum_df=sum_df.groupby('Year').agg('sum')
    sum_df.loc['Grand Total']=sum_df.sum()         
    sum_df=sum_df.applymap(format_numbers) 
    sum_df.fillna('-',inplace=True)
    sum_df=sum_df.replace({"0.0":'-','nan':'-'})
    st.markdown('### Summary')    
    st.dataframe(sum_df,use_container_width=True)


with st.expander('Correlation Analysis'):
    options = list(st.session_state['Cleaned_data_panel'].select_dtypes(np.number).columns)

    # selected_options = []
    # num_columns = 4
    # num_rows = -(-len(options) // num_columns)  # Ceiling division to calculate rows

    # # Create a grid of checkboxes
    # st.header('Select Features for Correlation Plot')
    # tick=False
    # if st.checkbox('Select all'):
    #     tick=True
    # selected_options = []
    # for row in range(num_rows):
    #     cols = st.columns(num_columns)
    #     for col in cols:
    #         if options:
    #             option = options.pop(0) 
    #             selected = col.checkbox(option,value=tick)
    #             if selected:
    #                 selected_options.append(option)
    # # Display selected options

    selected_options=st.multiselect('Select Variables For correlation plot',[var for var in options if var!= target_column],default=options[3])

    st.pyplot(correlation_plot(st.session_state['Cleaned_data_panel'],selected_options,target_column))