File size: 19,414 Bytes
a660599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71ed8f8
a660599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
'''
MMO Build Sprint 3
date :
changes : capability to tune MixedLM as well as simple LR in the same page
'''

import streamlit as st
import pandas as pd
from Eda_functions import format_numbers
import pickle
from utilities import set_header,load_local_css
import statsmodels.api as sm
import re
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from statsmodels.stats.outliers_influence import variance_inflation_factor
st.set_option('deprecation.showPyplotGlobalUse', False)
import statsmodels.formula.api as smf
from Data_prep_functions import *

for i in ["model_tuned", "X_train_tuned", "X_test_tuned", "tuned_model_features"] :
    if i not in st.session_state :
        st.session_state[i] = None

st.set_page_config(
  page_title="Model Tuning",
  page_icon=":shark:",
  layout="wide",
  initial_sidebar_state='collapsed'
)
load_local_css('styles.css')
set_header()

# Sprint3
is_panel= True
panel_col= 'markets' # set the panel column
date_col = 'date'
target_col = 'total_approved_accounts_revenue'

st.title('1. Model Tuning')


if "X_train" not in st.session_state:
   st.error(
"Oops! It seems there are no saved models available. Please build and save a model from the previous page to proceed.")
   st.stop()
X_train=st.session_state['X_train']
X_test=st.session_state['X_test']
y_train=st.session_state['y_train']
y_test=st.session_state['y_test']
df=st.session_state['media_data']

# st.write(X_train.columns)
# st.write(X_test.columns)

with open("best_models.pkl", 'rb') as file:
  model_dict= pickle.load(file)

if 'selected_model' not in st.session_state:
   st.session_state['selected_model']=0

# st.write(model_dict[st.session_state["selected_model"]]['X_train'].columns)

st.markdown('### 1.1 Event Flags')
st.markdown('Helps in quantifying the impact of specific occurrences of events')
with st.expander('Apply Event Flags'):
  st.session_state["selected_model"]=st.selectbox('Select Model to apply flags',model_dict.keys())
  model =model_dict[st.session_state["selected_model"]]['Model_object']
  date=st.session_state['date']
  date=pd.to_datetime(date)
  X_train =model_dict[st.session_state["selected_model"]]['X_train']

  features_set= model_dict[st.session_state["selected_model"]]['feature_set']

  col=st.columns(3)
  min_date=min(date)
  max_date=max(date)
  with col[0]:
    start_date=st.date_input('Select Start Date',min_date,min_value=min_date,max_value=max_date)
  with col[1]:
    end_date=st.date_input('Select End Date',max_date,min_value=min_date,max_value=max_date)
  with col[2]:
    repeat=st.selectbox('Repeat Annually',['Yes','No'],index=1)
  if repeat =='Yes':
      repeat=True
  else:
      repeat=False
  # X_train=sm.add_constant(X_train)

  if 'Flags' not in st.session_state:
    st.session_state['Flags']={}
  # print("**"*50)
  # print(y_train)
  # print("**"*50)
  # print(model.fittedvalues)
  if is_panel : # Sprint3
      met, line_values, fig_flag = plot_actual_vs_predicted(X_train[date_col], y_train,
                                                            model.fittedvalues, model,
                                                            target_column='Revenue',
                                                            flag=(start_date, end_date),
                                                            repeat_all_years=repeat, is_panel=True)
      st.plotly_chart(fig_flag, use_container_width=True)

      # create flag on test
      met, test_line_values, fig_flag = plot_actual_vs_predicted(X_test[date_col], y_test,
                                                            st.session_state['pred_test'], model,
                                                            target_column='Revenue',
                                                            flag=(start_date, end_date),
                                                            repeat_all_years=repeat, is_panel=True)

  else :
      met,line_values,fig_flag=plot_actual_vs_predicted(date[:150], y_train, model.predict(X_train), model,flag=(start_date,end_date),repeat_all_years=repeat)
      st.plotly_chart(fig_flag,use_container_width=True)

      met,test_line_values,fig_flag=plot_actual_vs_predicted(date[150:], y_test, model.predict(X_test), model,flag=(start_date,end_date),repeat_all_years=repeat)


  flag_name='f1'
  flag_name=st.text_input('Enter Flag Name')
  if st.button('Update flag'):
    st.session_state['Flags'][flag_name]= {}
    st.session_state['Flags'][flag_name]['train']=line_values
    st.session_state['Flags'][flag_name]['test']=test_line_values
    # st.write(st.session_state['Flags'][flag_name])
    st.success(f'{flag_name} stored')

  options=list(st.session_state['Flags'].keys())
  selected_options = []
  num_columns = 4
  num_rows = -(-len(options) // num_columns)


tick=False
if st.checkbox('Select all'):
    tick=True
selected_options = []
for row in range(num_rows):
    cols = st.columns(num_columns)
    for col in cols:
        if options:
            option = options.pop(0)
            selected = col.checkbox(option,value=tick)
            if selected:
                selected_options.append(option)

st.markdown('### 1.2 Select Parameters to Apply')
parameters=st.columns(3)
with parameters[0]:
   Trend=st.checkbox("**Trend**")
   st.markdown('Helps account for long-term trends or seasonality that could influence advertising effectiveness')
with parameters[1]:
   week_number=st.checkbox('**Week_number**')
   st.markdown('Assists in detecting and incorporating weekly patterns or seasonality')
with parameters[2]:
   sine_cosine=st.checkbox('**Sine and Cosine Waves**')
   st.markdown('Helps in capturing cyclical patterns or seasonality in the data')

if st.button('Build model with Selected Parameters and Flags'):
  st.header('2.1 Results Summary')
  # date=list(df.index)
  # df = df.reset_index(drop=True)
  # st.write(df.head(2))
  # X_train=df[features_set]
  ss = MinMaxScaler()
  if is_panel == True :
    X = X_train[features_set]
    X_train_tuned = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
    X_train_tuned[target_col] = X_train[target_col]
    X_train_tuned[date_col] = X_train[date_col]
    X_train_tuned[panel_col] = X_train[panel_col]

    X = X_test[features_set]
    X_test_tuned = pd.DataFrame(ss.transform(X), columns=X.columns)
    X_test_tuned[target_col] = X_test[target_col]
    X_test_tuned[date_col] = X_test[date_col]
    X_test_tuned[panel_col] = X_test[panel_col]

  else :
    X_train_tuned = pd.DataFrame(ss.fit_transform(X_train), columns=X_train.columns)
    X_train_tuned = sm.add_constant(X_train_tuned)

    X_test_tuned = pd.DataFrame(ss.transform(X_test), columns=X_test.columns)
    X_test_tuned = sm.add_constant(X_test_tuned)

  for flag in selected_options:
    X_train_tuned[flag]=st.session_state['Flags'][flag]['train']
    X_test_tuned[flag]=st.session_state['Flags'][flag]['test']

    #test
    # X_train_tuned.to_csv("Test/X_train_tuned_flag.csv",index=False)
    # X_test_tuned.to_csv("Test/X_test_tuned_flag.csv",index=False)

  new_features = features_set
    # print("()()"*20,flag, len(st.session_state['Flags'][flag]))
  if Trend:
     # Sprint3 - group by panel, calculate trend of each panel spearately. Add trend to new feature set
     if is_panel :
         newdata = pd.DataFrame()
         panel_wise_end_point_train = {}
         for panel, groupdf in X_train_tuned.groupby(panel_col):
             groupdf.sort_values(date_col, inplace=True)
             groupdf['Trend'] = np.arange(1, len(groupdf) + 1, 1)
             newdata = pd.concat([newdata, groupdf])
             panel_wise_end_point_train[panel] = len(groupdf)
         X_train_tuned = newdata.copy()

         test_newdata=pd.DataFrame()
         for panel, test_groupdf in X_test_tuned.groupby(panel_col):
             test_groupdf.sort_values(date_col, inplace=True)
             start = panel_wise_end_point_train[panel]+1
             end = start + len(test_groupdf)
             # print("??"*20, panel, len(test_groupdf), len(np.arange(start, end, 1)), start)
             test_groupdf['Trend'] = np.arange(start, end, 1)
             test_newdata = pd.concat([test_newdata, test_groupdf])
         X_test_tuned = test_newdata.copy()

         new_features = new_features + ['Trend']

         # test
         X_test_tuned.to_csv("Test/X_test_tuned_trend.csv", index=False)
         X_train_tuned.to_csv("Test/X_train_tuned_trend.csv", index=False)
         pd.concat([X_train_tuned,X_test_tuned]).sort_values([panel_col, date_col]).to_csv("Test/X_train_test_tuned_trend.csv", index=False)

     else :
         X_train_tuned['Trend']=np.arange(1,len(X_train_tuned)+1,1)
         X_test_tuned['Trend'] = np.arange(len(X_train_tuned)+1, len(X_train_tuned)+len(X_test_tuned), 1)

  if week_number :
     # Sprint3 - create weeknumber from date column in xtrain tuned. add week num to new feature set
     if is_panel :
        X_train_tuned[date_col] = pd.to_datetime(X_train_tuned[date_col])
        X_train_tuned['Week_number'] = X_train_tuned[date_col].dt.day_of_week
        if X_train_tuned['Week_number'].nunique() == 1 :
            st.write("All dates in the data are of the same week day. Hence Week number can't be used.")
        else :
            X_test_tuned[date_col] = pd.to_datetime(X_test_tuned[date_col])
            X_test_tuned['Week_number'] = X_test_tuned[date_col].dt.day_of_week
            new_features = new_features + ['Week_number']

     else :
        date = pd.to_datetime(date.values)
        X_train_tuned['Week_number'] = date.dt.day_of_week[:150]
        X_test_tuned['Week_number'] = date.dt.day_of_week[150:]

  if sine_cosine :
      # Sprint3 - create panel wise sine cosine waves in xtrain tuned. add to new feature set
      if is_panel :
        new_features = new_features + ['sine_wave', 'cosine_wave']
        newdata = pd.DataFrame()
        groups = X_train_tuned.groupby(panel_col)
        frequency = 2 * np.pi / 365  # Adjust the frequency as needed

        train_panel_wise_end_point = {}
        for panel, groupdf in groups:
            num_samples = len(groupdf)
            train_panel_wise_end_point[panel] = num_samples
            days_since_start = np.arange(num_samples)
            sine_wave = np.sin(frequency * days_since_start)
            cosine_wave = np.cos(frequency * days_since_start)
            sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
            assert len(sine_cosine_df) == len(groupdf)
            # groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
            groupdf['sine_wave'] = sine_wave
            groupdf['cosine_wave'] = cosine_wave
            newdata = pd.concat([newdata, groupdf])

        test_groups = X_test_tuned.groupby(panel_col)
        for panel, test_groupdf in test_groups:
            num_samples = len(test_groupdf)
            start = train_panel_wise_end_point[panel]
            days_since_start = np.arange(start, start+num_samples, 1)
            # print("##", panel, num_samples, start, len(np.arange(start, start+num_samples, 1)))
            sine_wave = np.sin(frequency * days_since_start)
            cosine_wave = np.cos(frequency * days_since_start)
            sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
            assert len(sine_cosine_df) == len(test_groupdf)
            # groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
            test_groupdf['sine_wave'] = sine_wave
            test_groupdf['cosine_wave'] = cosine_wave
            newdata = pd.concat([newdata, test_groupdf])

        X_train_tuned = newdata.copy()


      else :
        num_samples = len(X_train_tuned)
        frequency = 2 * np.pi / 365  # Adjust the frequency as needed
        days_since_start = np.arange(num_samples)
        sine_wave = np.sin(frequency * days_since_start)
        cosine_wave = np.cos(frequency * days_since_start)
        sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
        # Concatenate the sine and cosine waves with the scaled X DataFrame
        X_train_tuned = pd.concat([X_train_tuned, sine_cosine_df], axis=1)

        test_num_samples = len(X_test_tuned)
        start = num_samples
        days_since_start = np.arange(start, start+test_num_samples, 1)
        sine_wave = np.sin(frequency * days_since_start)
        cosine_wave = np.cos(frequency * days_since_start)
        sine_cosine_df = pd.DataFrame({'sine_wave': sine_wave, 'cosine_wave': cosine_wave})
        # Concatenate the sine and cosine waves with the scaled X DataFrame
        X_test_tuned = pd.concat([X_test_tuned, sine_cosine_df], axis=1)

  # model

  if is_panel :
      if selected_options :
        new_features =  new_features + selected_options

      inp_vars_str = " + ".join(new_features)

      # X_train_tuned.to_csv("Test/X_train_tuned.csv",index=False)
      # st.write(X_train_tuned[['total_approved_accounts_revenue'] + new_features].dtypes)
      # st.write(X_train_tuned[['total_approved_accounts_revenue', panel_col] + new_features].isna().sum())

      md_tuned = smf.mixedlm("total_approved_accounts_revenue ~ {}".format(inp_vars_str),
                             data=X_train_tuned[['total_approved_accounts_revenue'] + new_features],
                             groups=X_train_tuned[panel_col])
      model_tuned = md_tuned.fit()



      # plot act v pred for original model and tuned model
      metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train[date_col], y_train,
                                                                               model.fittedvalues, model,
                                                                               target_column='Revenue',
                                                                               is_panel=True)
      metrics_table_tuned, line, actual_vs_predicted_plot_tuned = plot_actual_vs_predicted(X_train_tuned[date_col],
                                                                                           X_train_tuned[target_col],
                                                                                           model_tuned.fittedvalues,
                                                                                           model_tuned,
                                                                                           target_column='Revenue',
                                                                                           is_panel=True)

  else :
      model_tuned = sm.OLS(y_train, X_train_tuned).fit()

      metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(date[:150], y_train,
                                                                               model.predict(X_train), model,
                                                                               target_column='Revenue')
      metrics_table_tuned, line, actual_vs_predicted_plot_tuned = plot_actual_vs_predicted(date[:150], y_train,
                                                                                           model_tuned.predict(
                                                                                               X_train_tuned),
                                                                                           model_tuned,
                                                                                           target_column='Revenue')

  # st.write(metrics_table_tuned)
  mape=np.round(metrics_table.iloc[0,1],2)
  r2=np.round(metrics_table.iloc[1,1],2)
  adjr2=np.round(metrics_table.iloc[2,1],2)

  mape_tuned=np.round(metrics_table_tuned.iloc[0,1],2)
  r2_tuned=np.round(metrics_table_tuned.iloc[1,1],2)
  adjr2_tuned=np.round(metrics_table_tuned.iloc[2,1],2)

  parameters_=st.columns(3)
  with parameters_[0]:
     st.metric('R2',r2_tuned,np.round(r2_tuned-r2,2))
  with parameters_[1]:
     st.metric('Adjusted R2',adjr2_tuned,np.round(adjr2_tuned-adjr2,2))
  with parameters_[2]:
     st.metric('MAPE',mape_tuned,np.round(mape_tuned-mape,2),'inverse')

  st.header('2.2 Actual vs. Predicted Plot')
  # if is_panel:
  #   metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(date, y_train, model.predict(X_train),
  #                                                                              model, target_column='Revenue',is_panel=True)
  # else:
  #   metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date, y_train, model.predict(X_train), model,target_column='Revenue')

  metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(X_train_tuned[date_col], X_train_tuned[target_col],
                                                                                  model_tuned.fittedvalues, model_tuned,
                                                                                  target_column='Revenue',
                                                                                  is_panel=True)
      # plot_actual_vs_predicted(X_train[date_col], y_train,
      #                                                                             model.fittedvalues, model,
      #                                                                             target_column='Revenue',
      #                                                                             is_panel=is_panel)

  st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)



  st.markdown('## 2.3 Residual Analysis')
  columns=st.columns(2)
  with columns[0]:
    fig=plot_residual_predicted(y_train,model.predict(X_train),X_train)
    st.plotly_chart(fig)

  with columns[1]:
    st.empty()
    fig = qqplot(y_train,model.predict(X_train))
    st.plotly_chart(fig)

  with columns[0]:
    fig=residual_distribution(y_train,model.predict(X_train))
    st.pyplot(fig)

  if st.checkbox('Use this model to build response curves',key='123'):
    st.session_state["tuned_model"] = model_tuned
    st.session_state["X_train_tuned"] = X_train_tuned
    st.session_state["X_test_tuned"] = X_test_tuned
    st.session_state["X_train_tuned"] = X_train_tuned
    st.session_state["X_test_tuned"] = X_test_tuned
    if is_panel :
        st.session_state["tuned_model_features"] = new_features
    with open("tuned_model.pkl", "wb") as f:
        pickle.dump(st.session_state['tuned_model'], f)
        st.success('Model saved!')

#   raw_data=df[features_set]
#   columns_raw=[re.split(r"(_lag|_adst)",col)[0] for col in raw_data.columns]
#   raw_data.columns=columns_raw
#   columns_media=[col for col in columns_raw if Categorised_data[col]['BB']=='Media']
#   raw_data=raw_data[columns_media]

#   raw_data['Date']=list(df.index)

#   spends_var=[col for col in df.columns if "spends" in col.lower() and 'adst' not in col.lower() and 'lag' not in col.lower()]
#   spends_df=df[spends_var]
#   spends_df['Week']=list(df.index)


#   j=0
#   X1=X.copy()
#   col=X1.columns
#   for i in model.params.values:
#       X1[col[j]]=X1.iloc[:,j]*i
#       j+=1
#   contribution_df=X1
#   contribution_df['Date']=list(df.index)
#   excel_file='Overview_data.xlsx'

#   with pd.ExcelWriter(excel_file,engine='xlsxwriter') as writer:
#      raw_data.to_excel(writer,sheet_name='RAW DATA MMM',index=False)
#      spends_df.to_excel(writer,sheet_name='SPEND INPUT',index=False)
#      contribution_df.to_excel(writer,sheet_name='CONTRIBUTION MMM')