Spaces:
Sleeping
Sleeping
File size: 17,827 Bytes
a660599 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import plotly.express as px
import numpy as np
import plotly.graph_objects as go
import streamlit as st
import pandas as pd
import statsmodels.api as sm
from sklearn.metrics import mean_absolute_percentage_error
import sys
import os
from utilities import (set_header,
load_local_css,
load_authenticator)
import seaborn as sns
import matplotlib.pyplot as plt
import sweetviz as sv
import tempfile
from sklearn.preprocessing import MinMaxScaler
from st_aggrid import AgGrid
from st_aggrid import GridOptionsBuilder,GridUpdateMode
from st_aggrid import GridOptionsBuilder
import sys
import re
sys.setrecursionlimit(10**6)
original_stdout = sys.stdout
sys.stdout = open('temp_stdout.txt', 'w')
sys.stdout.close()
sys.stdout = original_stdout
st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
for k, v in st.session_state.items():
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
st.session_state[k] = v
authenticator = st.session_state.get('authenticator')
if authenticator is None:
authenticator = load_authenticator()
name, authentication_status, username = authenticator.login('Login', 'main')
auth_status = st.session_state.get('authentication_status')
if auth_status == True:
is_state_initiaized = st.session_state.get('initialized',False)
if not is_state_initiaized:
a=1
def plot_residual_predicted(actual, predicted, df_):
df_['Residuals'] = actual - pd.Series(predicted)
df_['StdResidual'] = (df_['Residuals'] - df_['Residuals'].mean()) / df_['Residuals'].std()
# Create a Plotly scatter plot
fig = px.scatter(df_, x=predicted, y='StdResidual', opacity=0.5,color_discrete_sequence=["#11B6BD"])
# Add horizontal lines
fig.add_hline(y=0, line_dash="dash", line_color="darkorange")
fig.add_hline(y=2, line_color="red")
fig.add_hline(y=-2, line_color="red")
fig.update_xaxes(title='Predicted')
fig.update_yaxes(title='Standardized Residuals (Actual - Predicted)')
# Set the same width and height for both figures
fig.update_layout(title='Residuals over Predicted Values', autosize=False, width=600, height=400)
return fig
def residual_distribution(actual, predicted):
Residuals = actual - pd.Series(predicted)
# Create a Seaborn distribution plot
sns.set(style="whitegrid")
plt.figure(figsize=(6, 4))
sns.histplot(Residuals, kde=True, color="#11B6BD")
plt.title(' Distribution of Residuals')
plt.xlabel('Residuals')
plt.ylabel('Probability Density')
return plt
def qqplot(actual, predicted):
Residuals = actual - pd.Series(predicted)
Residuals = pd.Series(Residuals)
Resud_std = (Residuals - Residuals.mean()) / Residuals.std()
# Create a QQ plot using Plotly with custom colors
fig = go.Figure()
fig.add_trace(go.Scatter(x=sm.ProbPlot(Resud_std).theoretical_quantiles,
y=sm.ProbPlot(Resud_std).sample_quantiles,
mode='markers',
marker=dict(size=5, color="#11B6BD"),
name='QQ Plot'))
# Add the 45-degree reference line
diagonal_line = go.Scatter(
x=[-2, 2], # Adjust the x values as needed to fit the range of your data
y=[-2, 2], # Adjust the y values accordingly
mode='lines',
line=dict(color='red'), # Customize the line color and style
name=' '
)
fig.add_trace(diagonal_line)
# Customize the layout
fig.update_layout(title='QQ Plot of Residuals',title_x=0.5, autosize=False, width=600, height=400,
xaxis_title='Theoretical Quantiles', yaxis_title='Sample Quantiles')
return fig
def plot_actual_vs_predicted(date, y, predicted_values, model):
fig = go.Figure()
fig.add_trace(go.Scatter(x=date, y=y, mode='lines', name='Actual', line=dict(color='blue')))
fig.add_trace(go.Scatter(x=date, y=predicted_values, mode='lines', name='Predicted', line=dict(color='orange')))
# Calculate MAPE
mape = mean_absolute_percentage_error(y, predicted_values)*100
# Calculate R-squared
rss = np.sum((y - predicted_values) ** 2)
tss = np.sum((y - np.mean(y)) ** 2)
r_squared = 1 - (rss / tss)
# Get the number of predictors
num_predictors = model.df_model
# Get the number of samples
num_samples = len(y)
# Calculate Adjusted R-squared
adj_r_squared = 1 - ((1 - r_squared) * ((num_samples - 1) / (num_samples - num_predictors - 1)))
metrics_table = pd.DataFrame({
'Metric': ['MAPE', 'R-squared', 'AdjR-squared'],
'Value': [mape, r_squared, adj_r_squared]})
fig.update_layout(
xaxis=dict(title='Date'),
yaxis=dict(title='Value'),
title=f'MAPE : {mape:.2f}%, AdjR2: {adj_r_squared:.2f}',
xaxis_tickangle=-30
)
return metrics_table,fig
def contributions(X, model):
X1 = X.copy()
for j, col in enumerate(X1.columns):
X1[col] = X1[col] * model.params.values[j]
return np.round((X1.sum() / sum(X1.sum()) * 100).sort_values(ascending=False), 2)
transformed_data=pd.read_csv('transformed_data.csv')
# hard coded for now, need to get features set from model
feature_set_dct={'app_installs_-_appsflyer':['paid_search_clicks',
'fb:_level_achieved_-_tier_1_impressions_lag2',
'fb:_level_achieved_-_tier_2_clicks_lag2',
'paid_social_others_impressions_adst.1',
'ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag2',
'digital_tactic_others_clicks',
'kwai_clicks_adst.3',
'programmaticclicks',
'indicacao_clicks_adst.1',
'infleux_clicks_adst.4',
'influencer_clicks'],
'account_requests_-_appsflyer':['paid_search_impressions',
'fb:_level_achieved_-_tier_1_clicks_adst.1',
'fb:_level_achieved_-_tier_2_clicks_adst.1',
'paid_social_others_clicks_lag2',
'ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag5_adst.1',
'digital_tactic_others_clicks_adst.1',
'kwai_clicks_adst.2',
'programmaticimpressions_lag4_adst.1',
'indicacao_clicks',
'infleux_clicks_adst.2',
'influencer_clicks'],
'total_approved_accounts_-_appsflyer':['paid_search_clicks',
'fb:_level_achieved_-_tier_1_impressions_lag2_adst.1',
'fb:_level_achieved_-_tier_2_impressions_lag2',
'paid_social_others_clicks_lag2_adst.2',
'ga_app:_will_and_cid_pequena_baixo_risco_impressions_lag4',
'digital_tactic_others_clicks',
'kwai_impressions_adst.2',
'programmaticclicks_adst.5',
'indicacao_clicks_adst.1',
'infleux_clicks_adst.3',
'influencer_clicks'],
'total_approved_accounts_-_revenue':['paid_search_impressions_adst.5',
'kwai_impressions_lag2_adst.3',
'indicacao_clicks_adst.3',
'infleux_clicks_adst.3',
'programmaticclicks_adst.4',
'influencer_clicks_adst.3',
'fb:_level_achieved_-_tier_1_impressions_adst.2',
'fb:_level_achieved_-_tier_2_impressions_lag3_adst.5',
'paid_social_others_impressions_adst.3',
'ga_app:_will_and_cid_pequena_baixo_risco_clicks_lag3_adst.5',
'digital_tactic_others_clicks_adst.2']
}
#""" the above part should be modified so that we are fetching features set from the saved model"""
def contributions(X, model,target):
X1 = X.copy()
for j, col in enumerate(X1.columns):
X1[col] = X1[col] * model.params.values[j]
contributions= np.round((X1.sum() / sum(X1.sum()) * 100).sort_values(ascending=False), 2)
contributions=pd.DataFrame(contributions,columns=target).reset_index().rename(columns={'index':'Channel'})
contributions['Channel']=[ re.split(r'_imp|_cli', col)[0] for col in contributions['Channel']]
return contributions
def model_fit(features_set,target):
X = transformed_data[features_set]
y= transformed_data[target]
ss = MinMaxScaler()
X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
X = sm.add_constant(X)
X_train=X.iloc[:150]
X_test=X.iloc[150:]
y_train=y.iloc[:150]
y_test=y.iloc[150:]
model = sm.OLS(y_train, X_train).fit()
predicted_values_train = model.predict(X_train)
r2 = model.rsquared
adjr2 = model.rsquared_adj
train_mape = mean_absolute_percentage_error(y_train, predicted_values_train)
test_mape=mean_absolute_percentage_error(y_test, model.predict(X_test))
summary=model.summary()
train_contributions=contributions(X_train,model,[target])
return pd.DataFrame({'Model':target,'R2':np.round(r2,2),'ADJr2':np.round(adjr2,2),'Train Mape':np.round(train_mape,2),
'Test Mape':np.round(test_mape,2),'Summary':summary,'Model_object':model
},index=[0]), train_contributions
metrics_table=pd.DataFrame()
if 'contribution_df' not in st.session_state:
st.session_state["contribution_df"]=pd.DataFrame()
for target,feature_set in feature_set_dct.items():
metrics_table= pd.concat([metrics_table,model_fit(features_set=feature_set,target=target)[0]])
if st.session_state["contribution_df"].empty:
st.session_state["contribution_df"]= model_fit(features_set=feature_set,target=target)[1]
else:
st.session_state["contribution_df"]=pd.merge(st.session_state["contribution_df"],model_fit(features_set=feature_set,target=target)[1])
# st.write(st.session_state["contribution_df"])
metrics_table.reset_index(drop=True,inplace=True)
eda_columns=st.columns(2)
with eda_columns[1]:
eda=st.button('Generate EDA Report',help="Click to generate a bivariate report for the selected response metric from the table below.")
# st.markdown('Model Metrics')
st.title('Contribution Overview')
contribution_selections=st.multiselect('Select the models to compare contributions',[col for col in st.session_state['contribution_df'].columns if col.lower() != 'channel' ],default=[col for col in st.session_state['contribution_df'].columns if col.lower() != 'channel' ][-1])
trace_data=[]
for selection in contribution_selections:
trace=go.Bar(x=st.session_state['contribution_df']['Channel'], y=st.session_state['contribution_df'][selection],name=selection,text=np.round(st.session_state['contribution_df'][selection],0).astype(int).astype(str)+'%',textposition='outside')
trace_data.append(trace)
layout = go.Layout(
title='Metrics Contribution by Channel',
xaxis=dict(title='Channel Name'),
yaxis=dict(title='Metrics Contribution'),
barmode='group'
)
fig = go.Figure(data=trace_data, layout=layout)
st.plotly_chart(fig,use_container_width=True)
st.title('Analysis of Models Result')
#st.markdown()
gd_table=metrics_table.iloc[:,:-2]
gd=GridOptionsBuilder.from_dataframe(gd_table)
#gd.configure_pagination(enabled=True)
gd.configure_selection(use_checkbox=True)
gridoptions=gd.build()
table = AgGrid(gd_table,gridOptions=gridoptions,fit_columns_on_grid_load=True,height=200)
# table=metrics_table.iloc[:,:-2]
# table.insert(0, "Select", False)
# selection_table=st.data_editor(table,column_config={"Select": st.column_config.CheckboxColumn(required=True)})
if len(table.selected_rows)==0:
st.warning("Click on the checkbox to view comprehensive results of the selected model.")
st.stop()
else:
target_column=table.selected_rows[0]['Model']
feature_set=feature_set_dct[target_column]
with eda_columns[1]:
if eda:
def generate_report_with_target(channel_data, target_feature):
report = sv.analyze([channel_data, "Dataset"], target_feat=target_feature,verbose=False)
temp_dir = tempfile.mkdtemp()
report_path = os.path.join(temp_dir, "report.html")
report.show_html(filepath=report_path, open_browser=False) # Generate the report as an HTML file
return report_path
report_data=transformed_data[feature_set]
report_data[target_column]=transformed_data[target_column]
report_file = generate_report_with_target(report_data, target_column)
if os.path.exists(report_file):
with open(report_file, 'rb') as f:
st.download_button(
label="Download EDA Report",
data=f.read(),
file_name="report.html",
mime="text/html"
)
else:
st.warning("Report generation failed. Unable to find the report file.")
model=metrics_table[metrics_table['Model']==target_column]['Model_object'].iloc[0]
st.header('Model Summary')
st.write(model.summary())
X=transformed_data[feature_set]
ss=MinMaxScaler()
X=pd.DataFrame(ss.fit_transform(X),columns=X.columns)
X=sm.add_constant(X)
y=transformed_data[target_column]
X_train=X.iloc[:150]
X_test=X.iloc[150:]
y_train=y.iloc[:150]
y_test=y.iloc[150:]
X.index=transformed_data['date']
y.index=transformed_data['date']
metrics_table_train,fig_train= plot_actual_vs_predicted(X_train.index, y_train, model.predict(X_train), model)
metrics_table_test,fig_test= plot_actual_vs_predicted(X_test.index, y_test, model.predict(X_test), model)
metrics_table_train=metrics_table_train.set_index('Metric').transpose()
metrics_table_train.index=['Train']
metrics_table_test=metrics_table_test.set_index('Metric').transpose()
metrics_table_test.index=['test']
metrics_table=np.round(pd.concat([metrics_table_train,metrics_table_test]),2)
st.markdown('Result Overview')
st.dataframe(np.round(metrics_table,2),use_container_width=True)
st.subheader('Actual vs Predicted Plot Train')
st.plotly_chart(fig_train,use_container_width=True)
st.subheader('Actual vs Predicted Plot Test')
st.plotly_chart(fig_test,use_container_width=True)
st.markdown('## Residual Analysis')
columns=st.columns(2)
Xtrain1=X_train.copy()
with columns[0]:
fig=plot_residual_predicted(y_train,model.predict(Xtrain1),Xtrain1)
st.plotly_chart(fig)
with columns[1]:
st.empty()
fig = qqplot(y_train,model.predict(X_train))
st.plotly_chart(fig)
with columns[0]:
fig=residual_distribution(y_train,model.predict(X_train))
st.pyplot(fig)
elif auth_status == False:
st.error('Username/Password is incorrect')
try:
username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
if username_forgot_pw:
st.success('New password sent securely')
# Random password to be transferred to the user securely
elif username_forgot_pw == False:
st.error('Username not found')
except Exception as e:
st.error(e)
|