Spaces:
Sleeping
Sleeping
| # Importing necessary libraries | |
| import streamlit as st | |
| st.set_page_config( | |
| page_title="Model Build", | |
| page_icon=":shark:", | |
| layout="wide", | |
| initial_sidebar_state="collapsed", | |
| ) | |
| import pickle | |
| import numpy as np | |
| import pandas as pd | |
| from utilities import set_header, load_local_css, load_authenticator | |
| load_local_css("styles.css") | |
| set_header() | |
| authenticator = st.session_state.get("authenticator") | |
| if authenticator is None: | |
| authenticator = load_authenticator() | |
| name, authentication_status, username = authenticator.login("Login", "main") | |
| auth_status = st.session_state.get("authentication_status") | |
| # Check for authentication status | |
| if auth_status != True: | |
| st.stop() | |
| # Function to validate date column in dataframe | |
| def validate_date_column(df): | |
| try: | |
| # Attempt to convert the 'Date' column to datetime | |
| df["date"] = pd.to_datetime(df["date"], format="%d-%m-%Y") | |
| return True | |
| except: | |
| return False | |
| # Function to determine data interval | |
| def determine_data_interval(common_freq): | |
| if common_freq == 1: | |
| return "daily" | |
| elif common_freq == 7: | |
| return "weekly" | |
| elif 28 <= common_freq <= 31: | |
| return "monthly" | |
| else: | |
| return "irregular" | |
| # Function to read each uploaded Excel file into a pandas DataFrame and stores them in a dictionary | |
| st.cache_resource(show_spinner=False) | |
| def files_to_dataframes(uploaded_files): | |
| df_dict = {} | |
| for uploaded_file in uploaded_files: | |
| # Extract file name without extension | |
| file_name = uploaded_file.name.rsplit(".", 1)[0] | |
| # Check for duplicate file names | |
| if file_name in df_dict: | |
| st.warning( | |
| f"Duplicate File: {file_name}. This file will be skipped.", | |
| icon="⚠️", | |
| ) | |
| continue | |
| # Read the file into a DataFrame | |
| df = pd.read_excel(uploaded_file) | |
| # Convert all column names to lowercase | |
| df.columns = df.columns.str.lower().str.strip() | |
| # Separate numeric and non-numeric columns | |
| numeric_cols = list(df.select_dtypes(include=["number"]).columns) | |
| non_numeric_cols = [ | |
| col | |
| for col in df.select_dtypes(exclude=["number"]).columns | |
| if col.lower() != "date" | |
| ] | |
| # Check for 'Date' column | |
| if not (validate_date_column(df) and len(numeric_cols) > 0): | |
| st.warning( | |
| f"File Name: {file_name} ➜ Please upload data with Date column in 'DD-MM-YYYY' format and at least one media/exogenous column. This file will be skipped.", | |
| icon="⚠️", | |
| ) | |
| continue | |
| # Check for interval | |
| common_freq = common_freq = ( | |
| pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0] | |
| ) | |
| # Calculate the data interval (daily, weekly, monthly or irregular) | |
| interval = determine_data_interval(common_freq) | |
| if interval == "irregular": | |
| st.warning( | |
| f"File Name: {file_name} ➜ Please upload data in daily, weekly or monthly interval. This file will be skipped.", | |
| icon="⚠️", | |
| ) | |
| continue | |
| # Store both DataFrames in the dictionary under their respective keys | |
| df_dict[file_name] = { | |
| "numeric": numeric_cols, | |
| "non_numeric": non_numeric_cols, | |
| "interval": interval, | |
| "df": df, | |
| } | |
| return df_dict | |
| # Function to adjust dataframe granularity | |
| def adjust_dataframe_granularity(df, current_granularity, target_granularity): | |
| # Set index | |
| df.set_index("date", inplace=True) | |
| # Define aggregation rules for resampling | |
| aggregation_rules = { | |
| col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first" | |
| for col in df.columns | |
| } | |
| # Initialize resampled_df | |
| resampled_df = df | |
| if current_granularity == "daily" and target_granularity == "weekly": | |
| resampled_df = df.resample("W-MON", closed="left", label="left").agg( | |
| aggregation_rules | |
| ) | |
| elif current_granularity == "daily" and target_granularity == "monthly": | |
| resampled_df = df.resample("MS", closed="left", label="left").agg( | |
| aggregation_rules | |
| ) | |
| elif current_granularity == "daily" and target_granularity == "daily": | |
| resampled_df = df.resample("D").agg(aggregation_rules) | |
| elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily": | |
| # For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period | |
| expanded_data = [] | |
| for _, row in df.iterrows(): | |
| if current_granularity == "weekly": | |
| period_range = pd.date_range(start=row.name, periods=7) | |
| elif current_granularity == "monthly": | |
| period_range = pd.date_range( | |
| start=row.name, periods=row.name.days_in_month | |
| ) | |
| for date in period_range: | |
| new_row = {} | |
| for col in df.columns: | |
| if pd.api.types.is_numeric_dtype(df[col]): | |
| if current_granularity == "weekly": | |
| new_row[col] = row[col] / 7 | |
| elif current_granularity == "monthly": | |
| new_row[col] = row[col] / row.name.days_in_month | |
| else: | |
| new_row[col] = row[col] | |
| expanded_data.append((date, new_row)) | |
| resampled_df = pd.DataFrame( | |
| [data for _, data in expanded_data], | |
| index=[date for date, _ in expanded_data], | |
| ) | |
| # Reset index | |
| resampled_df = resampled_df.reset_index().rename(columns={"index": "date"}) | |
| return resampled_df | |
| # Function to clean and extract unique values of Panel_1 and Panel_2 | |
| st.cache_resource(show_spinner=False) | |
| def clean_and_extract_unique_values(files_dict, selections): | |
| all_panel1_values = set() | |
| all_panel2_values = set() | |
| for file_name, file_data in files_dict.items(): | |
| df = file_data["df"] | |
| # 'Panel_1' and 'Panel_2' selections | |
| selected_panel1 = selections[file_name].get("Panel_1") | |
| selected_panel2 = selections[file_name].get("Panel_2") | |
| # Clean and standardize Panel_1 column if it exists and is selected | |
| if ( | |
| selected_panel1 | |
| and selected_panel1 != "N/A" | |
| and selected_panel1 in df.columns | |
| ): | |
| df[selected_panel1] = ( | |
| df[selected_panel1].str.lower().str.strip().str.replace("_", " ") | |
| ) | |
| all_panel1_values.update(df[selected_panel1].dropna().unique()) | |
| # Clean and standardize Panel_2 column if it exists and is selected | |
| if ( | |
| selected_panel2 | |
| and selected_panel2 != "N/A" | |
| and selected_panel2 in df.columns | |
| ): | |
| df[selected_panel2] = ( | |
| df[selected_panel2].str.lower().str.strip().str.replace("_", " ") | |
| ) | |
| all_panel2_values.update(df[selected_panel2].dropna().unique()) | |
| # Update the processed DataFrame back in the dictionary | |
| files_dict[file_name]["df"] = df | |
| return all_panel1_values, all_panel2_values | |
| # Function to format values for display | |
| st.cache_resource(show_spinner=False) | |
| def format_values_for_display(values_list): | |
| # Capitalize the first letter of each word and replace underscores with spaces | |
| formatted_list = [value.replace("_", " ").title() for value in values_list] | |
| # Join values with commas and 'and' before the last value | |
| if len(formatted_list) > 1: | |
| return ", ".join(formatted_list[:-1]) + ", and " + formatted_list[-1] | |
| elif formatted_list: | |
| return formatted_list[0] | |
| return "No values available" | |
| # Function to normalizes all data within files_dict to a daily granularity | |
| st.cache(show_spinner=False, allow_output_mutation=True) | |
| def standardize_data_to_daily(files_dict, selections): | |
| # Normalize all data to a daily granularity using a provided function | |
| files_dict = apply_granularity_to_all(files_dict, "daily", selections) | |
| # Update the "interval" attribute for each dataset to indicate the new granularity | |
| for files_name, files_data in files_dict.items(): | |
| files_data["interval"] = "daily" | |
| return files_dict | |
| # Function to apply granularity transformation to all DataFrames in files_dict | |
| st.cache_resource(show_spinner=False) | |
| def apply_granularity_to_all(files_dict, granularity_selection, selections): | |
| for file_name, file_data in files_dict.items(): | |
| df = file_data["df"].copy() | |
| # Handling when Panel_1 or Panel_2 might be 'N/A' | |
| selected_panel1 = selections[file_name].get("Panel_1") | |
| selected_panel2 = selections[file_name].get("Panel_2") | |
| # Correcting the segment selection logic & handling 'N/A' | |
| if selected_panel1 != "N/A" and selected_panel2 != "N/A": | |
| unique_combinations = df[ | |
| [selected_panel1, selected_panel2] | |
| ].drop_duplicates() | |
| elif selected_panel1 != "N/A": | |
| unique_combinations = df[[selected_panel1]].drop_duplicates() | |
| selected_panel2 = None # Ensure Panel_2 is ignored if N/A | |
| elif selected_panel2 != "N/A": | |
| unique_combinations = df[[selected_panel2]].drop_duplicates() | |
| selected_panel1 = None # Ensure Panel_1 is ignored if N/A | |
| else: | |
| # If both are 'N/A', process the entire dataframe as is | |
| df = adjust_dataframe_granularity( | |
| df, file_data["interval"], granularity_selection | |
| ) | |
| files_dict[file_name]["df"] = df | |
| continue # Skip to the next file | |
| transformed_segments = [] | |
| for _, combo in unique_combinations.iterrows(): | |
| if selected_panel1 and selected_panel2: | |
| segment = df[ | |
| (df[selected_panel1] == combo[selected_panel1]) | |
| & (df[selected_panel2] == combo[selected_panel2]) | |
| ] | |
| elif selected_panel1: | |
| segment = df[df[selected_panel1] == combo[selected_panel1]] | |
| elif selected_panel2: | |
| segment = df[df[selected_panel2] == combo[selected_panel2]] | |
| # Adjust granularity of the segment | |
| transformed_segment = adjust_dataframe_granularity( | |
| segment, file_data["interval"], granularity_selection | |
| ) | |
| transformed_segments.append(transformed_segment) | |
| # Combine all transformed segments into a single DataFrame for this file | |
| transformed_df = pd.concat(transformed_segments, ignore_index=True) | |
| files_dict[file_name]["df"] = transformed_df | |
| return files_dict | |
| # Function to create main dataframe structure | |
| st.cache_resource(show_spinner=False) | |
| def create_main_dataframe( | |
| files_dict, all_panel1_values, all_panel2_values, granularity_selection | |
| ): | |
| # Determine the global start and end dates across all DataFrames | |
| global_start = min(df["df"]["date"].min() for df in files_dict.values()) | |
| global_end = max(df["df"]["date"].max() for df in files_dict.values()) | |
| # Adjust the date_range generation based on the granularity_selection | |
| if granularity_selection == "weekly": | |
| # Generate a weekly range, with weeks starting on Monday | |
| date_range = pd.date_range(start=global_start, end=global_end, freq="W-MON") | |
| elif granularity_selection == "monthly": | |
| # Generate a monthly range, starting from the first day of each month | |
| date_range = pd.date_range(start=global_start, end=global_end, freq="MS") | |
| else: # Default to daily if not weekly or monthly | |
| date_range = pd.date_range(start=global_start, end=global_end, freq="D") | |
| # Collect all unique Panel_1 and Panel_2 values, excluding 'N/A' | |
| all_panel1s = all_panel1_values | |
| all_panel2s = all_panel2_values | |
| # Dynamically build the list of dimensions (Panel_1, Panel_2) to include in the main DataFrame based on availability | |
| dimensions, merge_keys = [], [] | |
| if all_panel1s: | |
| dimensions.append(all_panel1s) | |
| merge_keys.append("Panel_1") | |
| if all_panel2s: | |
| dimensions.append(all_panel2s) | |
| merge_keys.append("Panel_2") | |
| dimensions.append(date_range) # Date range is always included | |
| merge_keys.append("date") # Date range is always included | |
| # Create a main DataFrame template with the dimensions | |
| main_df = pd.MultiIndex.from_product( | |
| dimensions, | |
| names=[name for name, _ in zip(merge_keys, dimensions)], | |
| ).to_frame(index=False) | |
| return main_df.reset_index(drop=True) | |
| # Function to prepare and merge dataFrames | |
| st.cache_resource(show_spinner=False) | |
| def merge_into_main_df(main_df, files_dict, selections): | |
| for file_name, file_data in files_dict.items(): | |
| df = file_data["df"].copy() | |
| # Rename selected Panel_1 and Panel_2 columns if not 'N/A' | |
| selected_panel1 = selections[file_name].get("Panel_1", "N/A") | |
| selected_panel2 = selections[file_name].get("Panel_2", "N/A") | |
| if selected_panel1 != "N/A": | |
| df.rename(columns={selected_panel1: "Panel_1"}, inplace=True) | |
| if selected_panel2 != "N/A": | |
| df.rename(columns={selected_panel2: "Panel_2"}, inplace=True) | |
| # Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel_1' and 'Panel_2' | |
| merge_keys = ["date"] | |
| if "Panel_1" in df.columns: | |
| merge_keys.append("Panel_1") | |
| if "Panel_2" in df.columns: | |
| merge_keys.append("Panel_2") | |
| main_df = pd.merge(main_df, df, on=merge_keys, how="left") | |
| # After all merges, sort by 'date' and reset index for cleanliness | |
| sort_by = ["date"] | |
| if "Panel_1" in main_df.columns: | |
| sort_by.append("Panel_1") | |
| if "Panel_2" in main_df.columns: | |
| sort_by.append("Panel_2") | |
| main_df.sort_values(by=sort_by, inplace=True) | |
| main_df.reset_index(drop=True, inplace=True) | |
| return main_df | |
| # Function to categorize column | |
| def categorize_column(column_name): | |
| # Define keywords for each category | |
| internal_keywords = [ | |
| "Price", | |
| "Discount", | |
| "product_price", | |
| "cost", | |
| "margin", | |
| "inventory", | |
| "sales", | |
| "revenue", | |
| "turnover", | |
| "expense", | |
| ] | |
| exogenous_keywords = [ | |
| "GDP", | |
| "Tax", | |
| "Inflation", | |
| "interest_rate", | |
| "employment_rate", | |
| "exchange_rate", | |
| "consumer_spending", | |
| "retail_sales", | |
| "oil_prices", | |
| "weather", | |
| ] | |
| # Check if the column name matches any of the keywords for Internal or Exogenous categories | |
| for keyword in internal_keywords: | |
| if keyword.lower() in column_name.lower(): | |
| return "Internal" | |
| for keyword in exogenous_keywords: | |
| if keyword.lower() in column_name.lower(): | |
| return "Exogenous" | |
| # Default to Media if no match found | |
| return "Media" | |
| # Function to calculate missing stats and prepare for editable DataFrame | |
| st.cache_resource(show_spinner=False) | |
| def prepare_missing_stats_df(df): | |
| missing_stats = [] | |
| for column in df.columns: | |
| if ( | |
| column == "date" or column == "Panel_2" or column == "Panel_1" | |
| ): # Skip Date, Panel_1 and Panel_2 column | |
| continue | |
| missing = df[column].isnull().sum() | |
| pct_missing = round((missing / len(df)) * 100, 2) | |
| # Dynamically assign category based on column name | |
| category = categorize_column(column) | |
| # category = "Media" # Keep default bin as Media | |
| missing_stats.append( | |
| { | |
| "Column": column, | |
| "Missing Values": missing, | |
| "Missing Percentage": pct_missing, | |
| "Impute Method": "Fill with 0", # Default value | |
| "Category": category, | |
| } | |
| ) | |
| stats_df = pd.DataFrame(missing_stats) | |
| return stats_df | |
| # Function to add API DataFrame details to the files dictionary | |
| st.cache_resource(show_spinner=False) | |
| def add_api_dataframe_to_dict(main_df, files_dict): | |
| files_dict["API"] = { | |
| "numeric": list(main_df.select_dtypes(include=["number"]).columns), | |
| "non_numeric": [ | |
| col | |
| for col in main_df.select_dtypes(exclude=["number"]).columns | |
| if col.lower() != "date" | |
| ], | |
| "interval": determine_data_interval( | |
| pd.Series(main_df["date"].unique()).diff().dt.days.dropna().mode()[0] | |
| ), | |
| "df": main_df, | |
| } | |
| return files_dict | |
| # Function to reads an API into a DataFrame, parsing specified columns as datetime | |
| def read_API_data(): | |
| return pd.read_excel("upf_data_converted.xlsx", parse_dates=["Date"]) | |
| # Function to set the 'Panel_1_Panel_2_Selected' session state variable to False | |
| def set_Panel_1_Panel_2_Selected_false(): | |
| st.session_state["Panel_1_Panel_2_Selected"] = False | |
| # Function to serialize and save the objects into a pickle file | |
| def save_to_pickle(file_path, final_df, bin_dict): | |
| # Open the file in write-binary mode and dump the objects | |
| with open(file_path, "wb") as f: | |
| pickle.dump({"final_df": final_df, "bin_dict": bin_dict}, f) | |
| # Data is now saved to file | |
| # Initialize 'final_df' in session state | |
| if "final_df" not in st.session_state: | |
| st.session_state["final_df"] = pd.DataFrame() | |
| # Initialize 'bin_dict' in session state | |
| if "bin_dict" not in st.session_state: | |
| st.session_state["bin_dict"] = {} | |
| # Initialize 'Panel_1_Panel_2_Selected' in session state | |
| if "Panel_1_Panel_2_Selected" not in st.session_state: | |
| st.session_state["Panel_1_Panel_2_Selected"] = False | |
| # Page Title | |
| st.write("") # Top padding | |
| st.title("Data Import") | |
| ######################################################################################################################################################### | |
| # Create a dictionary to hold all DataFrames and collect user input to specify "Panel_2" and "Panel_1" columns for each file | |
| ######################################################################################################################################################### | |
| # Read the Excel file, parsing 'Date' column as datetime | |
| main_df = read_API_data() | |
| # Convert all column names to lowercase | |
| main_df.columns = main_df.columns.str.lower().str.strip() | |
| # File uploader | |
| uploaded_files = st.file_uploader( | |
| "Upload additional data", | |
| type=["xlsx"], | |
| accept_multiple_files=True, | |
| on_change=set_Panel_1_Panel_2_Selected_false, | |
| ) | |
| # Custom HTML for upload instructions | |
| recommendation_html = f""" | |
| <div style="text-align: justify;"> | |
| <strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values. | |
| </div> | |
| """ | |
| st.markdown(recommendation_html, unsafe_allow_html=True) | |
| # Choose Desired Granularity | |
| st.markdown("#### Choose Desired Granularity") | |
| # Granularity Selection | |
| granularity_selection = st.selectbox( | |
| "Choose Date Granularity", | |
| ["Daily", "Weekly", "Monthly"], | |
| label_visibility="collapsed", | |
| on_change=set_Panel_1_Panel_2_Selected_false, | |
| ) | |
| granularity_selection = str(granularity_selection).lower() | |
| # Convert files to dataframes | |
| files_dict = files_to_dataframes(uploaded_files) | |
| # Add API Dataframe | |
| if main_df is not None: | |
| files_dict = add_api_dataframe_to_dict(main_df, files_dict) | |
| # Display a warning message if no files have been uploaded and halt further execution | |
| if not files_dict: | |
| st.warning( | |
| "Please upload at least one file to proceed.", | |
| icon="⚠️", | |
| ) | |
| st.stop() # Halts further execution until file is uploaded | |
| # Select Panel_1 and Panel_2 columns | |
| st.markdown("#### Select Panel columns") | |
| selections = {} | |
| with st.expander("Select Panel columns", expanded=False): | |
| count = 0 # Initialize counter to manage the visibility of labels and keys | |
| for file_name, file_data in files_dict.items(): | |
| # Determine visibility of the label based on the count | |
| if count == 0: | |
| label_visibility = "visible" | |
| else: | |
| label_visibility = "collapsed" | |
| # Extract non-numeric columns | |
| non_numeric_cols = file_data["non_numeric"] | |
| # Prepare Panel_1 and Panel_2 values for dropdown, adding "N/A" as an option | |
| panel1_values = non_numeric_cols + ["N/A"] | |
| panel2_values = non_numeric_cols + ["N/A"] | |
| # Skip if only one option is available | |
| if len(panel1_values) == 1 and len(panel2_values) == 1: | |
| selected_panel1, selected_panel2 = "N/A", "N/A" | |
| # Update the selections for Panel_1 and Panel_2 for the current file | |
| selections[file_name] = { | |
| "Panel_1": selected_panel1, | |
| "Panel_2": selected_panel2, | |
| } | |
| continue | |
| # Create layout columns for File Name, Panel_2, and Panel_1 selections | |
| file_name_col, Panel_1_col, Panel_2_col = st.columns([2, 4, 4]) | |
| with file_name_col: | |
| # Display "File Name" label only for the first file | |
| if count == 0: | |
| st.write("File Name") | |
| else: | |
| st.write("") | |
| st.write(file_name) # Display the file name | |
| with Panel_1_col: | |
| # Display a selectbox for Panel_1 values | |
| selected_panel1 = st.selectbox( | |
| "Select Panel Level 1", | |
| panel2_values, | |
| on_change=set_Panel_1_Panel_2_Selected_false, | |
| label_visibility=label_visibility, # Control visibility of the label | |
| key=f"Panel_1_selectbox{count}", # Ensure unique key for each selectbox | |
| ) | |
| with Panel_2_col: | |
| # Display a selectbox for Panel_2 values | |
| selected_panel2 = st.selectbox( | |
| "Select Panel Level 2", | |
| panel1_values, | |
| on_change=set_Panel_1_Panel_2_Selected_false, | |
| label_visibility=label_visibility, # Control visibility of the label | |
| key=f"Panel_2_selectbox{count}", # Ensure unique key for each selectbox | |
| ) | |
| # Skip processing if the same column is selected for both Panel_1 and Panel_2 due to potential data integrity issues | |
| if selected_panel2 == selected_panel1 and not ( | |
| selected_panel2 == "N/A" and selected_panel1 == "N/A" | |
| ): | |
| st.warning( | |
| f"File: {file_name} → The same column cannot serve as both Panel_1 and Panel_2. Please adjust your selections.", | |
| ) | |
| selected_panel1, selected_panel2 = "N/A", "N/A" | |
| st.stop() | |
| # Update the selections for Panel_1 and Panel_2 for the current file | |
| selections[file_name] = { | |
| "Panel_1": selected_panel1, | |
| "Panel_2": selected_panel2, | |
| } | |
| count += 1 # Increment the counter after processing each file | |
| # Accept Panel_1 and Panel_2 selection | |
| if st.button("Accept and Process", use_container_width=True): | |
| # Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity | |
| with st.spinner("Processing..."): | |
| files_dict = standardize_data_to_daily(files_dict, selections) | |
| # Convert all data to daily level granularity | |
| files_dict = apply_granularity_to_all( | |
| files_dict, granularity_selection, selections | |
| ) | |
| st.session_state["files_dict"] = files_dict | |
| st.session_state["Panel_1_Panel_2_Selected"] = True | |
| ######################################################################################################################################################### | |
| # Display unique Panel_1 and Panel_2 values | |
| ######################################################################################################################################################### | |
| # Halts further execution until Panel_1 and Panel_2 columns are selected | |
| if "files_dict" in st.session_state and st.session_state["Panel_1_Panel_2_Selected"]: | |
| files_dict = st.session_state["files_dict"] | |
| else: | |
| st.stop() | |
| # Set to store unique values of Panel_1 and Panel_2 | |
| with st.spinner("Fetching Panel values..."): | |
| all_panel1_values, all_panel2_values = clean_and_extract_unique_values( | |
| files_dict, selections | |
| ) | |
| # List of Panel_1 and Panel_2 columns unique values | |
| list_of_all_panel1_values = list(all_panel1_values) | |
| list_of_all_panel2_values = list(all_panel2_values) | |
| # Format Panel_1 and Panel_2 values for display | |
| formatted_panel1_values = format_values_for_display(list_of_all_panel1_values) | |
| formatted_panel2_values = format_values_for_display(list_of_all_panel2_values) | |
| # Unique Panel_1 and Panel_2 values | |
| st.markdown("#### Unique Panel values") | |
| # Display Panel_1 and Panel_2 values | |
| with st.expander("Unique Panel values"): | |
| st.write("") | |
| st.markdown( | |
| f""" | |
| <style> | |
| .justify-text {{ | |
| text-align: justify; | |
| }} | |
| </style> | |
| <div class="justify-text"> | |
| <strong>Panel Level 1 Values:</strong> {formatted_panel1_values}<br> | |
| <strong>Panel Level 2 Values:</strong> {formatted_panel2_values} | |
| </div> | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| # Display total Panel_1 and Panel_2 | |
| st.write("") | |
| st.markdown( | |
| f""" | |
| <div style="text-align: justify;"> | |
| <strong>Number of Level 1 Panels detected:</strong> {len(list_of_all_panel1_values)}<br> | |
| <strong>Number of Level 2 Panels detected:</strong> {len(list_of_all_panel2_values)} | |
| </div> | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| st.write("") | |
| ######################################################################################################################################################### | |
| # Merge all DataFrames | |
| ######################################################################################################################################################### | |
| # Merge all DataFrames selected | |
| main_df = create_main_dataframe( | |
| files_dict, all_panel1_values, all_panel2_values, granularity_selection | |
| ) | |
| merged_df = merge_into_main_df(main_df, files_dict, selections) | |
| # # Display the merged DataFrame | |
| # st.markdown("#### Merged DataFrame based on selected Panel_1 and Panel_2") | |
| # st.dataframe(merged_df) | |
| ######################################################################################################################################################### | |
| # Categorize Variables and Impute Missing Values | |
| ######################################################################################################################################################### | |
| # Create an editable DataFrame in Streamlit | |
| st.markdown("#### Select Variables Category & Impute Missing Values") | |
| # Prepare missing stats DataFrame for editing | |
| missing_stats_df = prepare_missing_stats_df(merged_df) | |
| edited_stats_df = st.data_editor( | |
| missing_stats_df, | |
| column_config={ | |
| "Impute Method": st.column_config.SelectboxColumn( | |
| options=[ | |
| "Drop Column", | |
| "Fill with Mean", | |
| "Fill with Median", | |
| "Fill with 0", | |
| ], | |
| required=True, | |
| default="Fill with 0", | |
| ), | |
| "Category": st.column_config.SelectboxColumn( | |
| options=[ | |
| "Media", | |
| "Exogenous", | |
| "Internal", | |
| "Response Metrics", | |
| ], | |
| required=True, | |
| default="Media", | |
| ), | |
| }, | |
| disabled=["Column", "Missing Values", "Missing Percentage"], | |
| hide_index=True, | |
| use_container_width=True, | |
| ) | |
| # Apply changes based on edited DataFrame | |
| for i, row in edited_stats_df.iterrows(): | |
| column = row["Column"] | |
| if row["Impute Method"] == "Drop Column": | |
| merged_df.drop(columns=[column], inplace=True) | |
| elif row["Impute Method"] == "Fill with Mean": | |
| merged_df[column].fillna(merged_df[column].mean(), inplace=True) | |
| elif row["Impute Method"] == "Fill with Median": | |
| merged_df[column].fillna(merged_df[column].median(), inplace=True) | |
| elif row["Impute Method"] == "Fill with 0": | |
| merged_df[column].fillna(0, inplace=True) | |
| # Display the Final DataFrame and exogenous variables | |
| st.markdown("#### Final DataFrame") | |
| final_df = merged_df | |
| st.dataframe(final_df, hide_index=True) | |
| # Initialize an empty dictionary to hold categories and their variables | |
| category_dict = {} | |
| # Iterate over each row in the edited DataFrame to populate the dictionary | |
| for i, row in edited_stats_df.iterrows(): | |
| column = row["Column"] | |
| category = row["Category"] # The category chosen by the user for this variable | |
| # Check if the category already exists in the dictionary | |
| if category not in category_dict: | |
| # If not, initialize it with the current column as its first element | |
| category_dict[category] = [column] | |
| else: | |
| # If it exists, append the current column to the list of variables under this category | |
| category_dict[category].append(column) | |
| # Add Date, Panel_1 and Panel_12 in category dictionary | |
| category_dict.update({"Date": ["date"]}) | |
| if "Panel_1" in final_df.columns: | |
| category_dict["Panel Level 1"] = ["Panel_1"] | |
| if "Panel_2" in final_df.columns: | |
| category_dict["Panel Level 2"] = ["Panel_2"] | |
| # Display the dictionary | |
| st.markdown("#### Variable Category") | |
| for category, variables in category_dict.items(): | |
| # Check if there are multiple variables to handle "and" insertion correctly | |
| if len(variables) > 1: | |
| # Join all but the last variable with ", ", then add " and " before the last variable | |
| variables_str = ", ".join(variables[:-1]) + " and " + variables[-1] | |
| else: | |
| # If there's only one variable, no need for "and" | |
| variables_str = variables[0] | |
| # Display the category and its variables in the desired format | |
| st.markdown( | |
| f"<div style='text-align: justify;'><strong>{category}:</strong> {variables_str}</div>", | |
| unsafe_allow_html=True, | |
| ) | |
| # Store final dataframe and bin dictionary into session state | |
| st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict | |
| # Save the DataFrame and dictionary from the session state to the pickle file | |
| st.write("") | |
| if st.button("Accept and Save", use_container_width=True): | |
| save_to_pickle( | |
| "data_import.pkl", st.session_state["final_df"], st.session_state["bin_dict"] | |
| ) | |
| st.toast("💾 Saved Successfully!") | |