Spaces:
Sleeping
Sleeping
Delete pages/1_Data_Import 2.py
Browse files- pages/1_Data_Import 2.py +0 -891
pages/1_Data_Import 2.py
DELETED
@@ -1,891 +0,0 @@
|
|
1 |
-
# Importing necessary libraries
|
2 |
-
import streamlit as st
|
3 |
-
|
4 |
-
st.set_page_config(
|
5 |
-
page_title="Model Build",
|
6 |
-
page_icon=":shark:",
|
7 |
-
layout="wide",
|
8 |
-
initial_sidebar_state="collapsed",
|
9 |
-
)
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
import pandas as pd
|
13 |
-
from utilities import set_header, load_local_css, load_authenticator
|
14 |
-
import pickle
|
15 |
-
|
16 |
-
|
17 |
-
load_local_css("styles.css")
|
18 |
-
set_header()
|
19 |
-
|
20 |
-
authenticator = st.session_state.get("authenticator")
|
21 |
-
if authenticator is None:
|
22 |
-
authenticator = load_authenticator()
|
23 |
-
|
24 |
-
name, authentication_status, username = authenticator.login("Login", "main")
|
25 |
-
auth_status = st.session_state.get("authentication_status")
|
26 |
-
|
27 |
-
# Check for authentication status
|
28 |
-
if auth_status != True:
|
29 |
-
st.stop()
|
30 |
-
|
31 |
-
|
32 |
-
# Function to validate date column in dataframe
|
33 |
-
def validate_date_column(df):
|
34 |
-
try:
|
35 |
-
# Attempt to convert the 'Date' column to datetime
|
36 |
-
df["date"] = pd.to_datetime(df["date"], format="%d-%m-%Y")
|
37 |
-
return True
|
38 |
-
except:
|
39 |
-
return False
|
40 |
-
|
41 |
-
|
42 |
-
# Function to determine data interval
|
43 |
-
def determine_data_interval(common_freq):
|
44 |
-
if common_freq == 1:
|
45 |
-
return "daily"
|
46 |
-
elif common_freq == 7:
|
47 |
-
return "weekly"
|
48 |
-
elif 28 <= common_freq <= 31:
|
49 |
-
return "monthly"
|
50 |
-
else:
|
51 |
-
return "irregular"
|
52 |
-
|
53 |
-
|
54 |
-
# Function to read each uploaded Excel file into a pandas DataFrame and stores them in a dictionary
|
55 |
-
st.cache_resource(show_spinner=False)
|
56 |
-
|
57 |
-
|
58 |
-
def files_to_dataframes(uploaded_files):
|
59 |
-
df_dict = {}
|
60 |
-
for uploaded_file in uploaded_files:
|
61 |
-
# Extract file name without extension
|
62 |
-
file_name = uploaded_file.name.rsplit(".", 1)[0]
|
63 |
-
|
64 |
-
# Check for duplicate file names
|
65 |
-
if file_name in df_dict:
|
66 |
-
st.warning(
|
67 |
-
f"Duplicate File: {file_name}. This file will be skipped.",
|
68 |
-
icon="⚠️",
|
69 |
-
)
|
70 |
-
continue
|
71 |
-
|
72 |
-
# Read the file into a DataFrame
|
73 |
-
df = pd.read_excel(uploaded_file)
|
74 |
-
|
75 |
-
# Convert all column names to lowercase
|
76 |
-
df.columns = df.columns.str.lower().str.strip()
|
77 |
-
|
78 |
-
# Separate numeric and non-numeric columns
|
79 |
-
numeric_cols = list(df.select_dtypes(include=["number"]).columns)
|
80 |
-
non_numeric_cols = [
|
81 |
-
col
|
82 |
-
for col in df.select_dtypes(exclude=["number"]).columns
|
83 |
-
if col.lower() != "date"
|
84 |
-
]
|
85 |
-
|
86 |
-
# Check for 'Date' column
|
87 |
-
if not (validate_date_column(df) and len(numeric_cols) > 0):
|
88 |
-
st.warning(
|
89 |
-
f"File Name: {file_name} ➜ Please upload data with Date column in 'DD-MM-YYYY' format and at least one media/exogenous column. This file will be skipped.",
|
90 |
-
icon="⚠️",
|
91 |
-
)
|
92 |
-
continue
|
93 |
-
|
94 |
-
# Check for interval
|
95 |
-
common_freq = common_freq = (
|
96 |
-
pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]
|
97 |
-
)
|
98 |
-
# Calculate the data interval (daily, weekly, monthly or irregular)
|
99 |
-
interval = determine_data_interval(common_freq)
|
100 |
-
if interval == "irregular":
|
101 |
-
st.warning(
|
102 |
-
f"File Name: {file_name} ➜ Please upload data in daily, weekly or monthly interval. This file will be skipped.",
|
103 |
-
icon="⚠️",
|
104 |
-
)
|
105 |
-
continue
|
106 |
-
|
107 |
-
# Store both DataFrames in the dictionary under their respective keys
|
108 |
-
df_dict[file_name] = {
|
109 |
-
"numeric": numeric_cols,
|
110 |
-
"non_numeric": non_numeric_cols,
|
111 |
-
"interval": interval,
|
112 |
-
"df": df,
|
113 |
-
}
|
114 |
-
|
115 |
-
return df_dict
|
116 |
-
|
117 |
-
|
118 |
-
# Function to adjust dataframe granularity
|
119 |
-
# def adjust_dataframe_granularity(df, current_granularity, target_granularity):
|
120 |
-
# # Set index
|
121 |
-
# df.set_index("date", inplace=True)
|
122 |
-
|
123 |
-
# # Define aggregation rules for resampling
|
124 |
-
# aggregation_rules = {
|
125 |
-
# col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
|
126 |
-
# for col in df.columns
|
127 |
-
# }
|
128 |
-
|
129 |
-
# resampled_df = df
|
130 |
-
# if current_granularity == "daily" and target_granularity == "weekly":
|
131 |
-
# resampled_df = df.resample("W-MON").agg(aggregation_rules)
|
132 |
-
|
133 |
-
# elif current_granularity == "daily" and target_granularity == "monthly":
|
134 |
-
# resampled_df = df.resample("MS").agg(aggregation_rules)
|
135 |
-
|
136 |
-
# elif current_granularity == "daily" and target_granularity == "daily":
|
137 |
-
# resampled_df = df.resample("D").agg(aggregation_rules)
|
138 |
-
|
139 |
-
# elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
|
140 |
-
# # For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
|
141 |
-
# expanded_data = []
|
142 |
-
# for _, row in df.iterrows():
|
143 |
-
# if current_granularity == "weekly":
|
144 |
-
# period_range = pd.date_range(start=row.name, periods=7)
|
145 |
-
# elif current_granularity == "monthly":
|
146 |
-
# period_range = pd.date_range(
|
147 |
-
# start=row.name, periods=row.name.days_in_month
|
148 |
-
# )
|
149 |
-
|
150 |
-
# for date in period_range:
|
151 |
-
# new_row = {}
|
152 |
-
# for col in df.columns:
|
153 |
-
# if pd.api.types.is_numeric_dtype(df[col]):
|
154 |
-
# if current_granularity == "weekly":
|
155 |
-
# new_row[col] = row[col] / 7
|
156 |
-
# elif current_granularity == "monthly":
|
157 |
-
# new_row[col] = row[col] / row.name.days_in_month
|
158 |
-
# else:
|
159 |
-
# new_row[col] = row[col]
|
160 |
-
# expanded_data.append((date, new_row))
|
161 |
-
|
162 |
-
# resampled_df = pd.DataFrame(
|
163 |
-
# [data for _, data in expanded_data],
|
164 |
-
# index=[date for date, _ in expanded_data],
|
165 |
-
# )
|
166 |
-
|
167 |
-
# # Reset index
|
168 |
-
# resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
|
169 |
-
|
170 |
-
# return resampled_df
|
171 |
-
|
172 |
-
|
173 |
-
def adjust_dataframe_granularity(df, current_granularity, target_granularity):
|
174 |
-
# Set index
|
175 |
-
df.set_index("date", inplace=True)
|
176 |
-
|
177 |
-
# Define aggregation rules for resampling
|
178 |
-
aggregation_rules = {
|
179 |
-
col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
|
180 |
-
for col in df.columns
|
181 |
-
}
|
182 |
-
|
183 |
-
# Initialize resampled_df
|
184 |
-
resampled_df = df
|
185 |
-
if current_granularity == "daily" and target_granularity == "weekly":
|
186 |
-
resampled_df = df.resample("W-MON", closed="left", label="left").agg(
|
187 |
-
aggregation_rules
|
188 |
-
)
|
189 |
-
|
190 |
-
elif current_granularity == "daily" and target_granularity == "monthly":
|
191 |
-
resampled_df = df.resample("MS", closed="left", label="left").agg(
|
192 |
-
aggregation_rules
|
193 |
-
)
|
194 |
-
|
195 |
-
elif current_granularity == "daily" and target_granularity == "daily":
|
196 |
-
resampled_df = df.resample("D").agg(aggregation_rules)
|
197 |
-
|
198 |
-
elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
|
199 |
-
# For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
|
200 |
-
expanded_data = []
|
201 |
-
for _, row in df.iterrows():
|
202 |
-
if current_granularity == "weekly":
|
203 |
-
period_range = pd.date_range(start=row.name, periods=7)
|
204 |
-
elif current_granularity == "monthly":
|
205 |
-
period_range = pd.date_range(
|
206 |
-
start=row.name, periods=row.name.days_in_month
|
207 |
-
)
|
208 |
-
|
209 |
-
for date in period_range:
|
210 |
-
new_row = {}
|
211 |
-
for col in df.columns:
|
212 |
-
if pd.api.types.is_numeric_dtype(df[col]):
|
213 |
-
if current_granularity == "weekly":
|
214 |
-
new_row[col] = row[col] / 7
|
215 |
-
elif current_granularity == "monthly":
|
216 |
-
new_row[col] = row[col] / row.name.days_in_month
|
217 |
-
else:
|
218 |
-
new_row[col] = row[col]
|
219 |
-
expanded_data.append((date, new_row))
|
220 |
-
|
221 |
-
resampled_df = pd.DataFrame(
|
222 |
-
[data for _, data in expanded_data],
|
223 |
-
index=[date for date, _ in expanded_data],
|
224 |
-
)
|
225 |
-
|
226 |
-
# Reset index
|
227 |
-
resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
|
228 |
-
|
229 |
-
return resampled_df
|
230 |
-
|
231 |
-
|
232 |
-
# Function to clean and extract unique values of DMA and Panel
|
233 |
-
st.cache_resource(show_spinner=False)
|
234 |
-
|
235 |
-
|
236 |
-
def clean_and_extract_unique_values(files_dict, selections):
|
237 |
-
all_dma_values = set()
|
238 |
-
all_panel_values = set()
|
239 |
-
|
240 |
-
for file_name, file_data in files_dict.items():
|
241 |
-
df = file_data["df"]
|
242 |
-
|
243 |
-
# 'DMA' and 'Panel' selections
|
244 |
-
selected_dma = selections[file_name].get("DMA")
|
245 |
-
selected_panel = selections[file_name].get("Panel")
|
246 |
-
|
247 |
-
# Clean and standardize DMA column if it exists and is selected
|
248 |
-
if selected_dma and selected_dma != "N/A" and selected_dma in df.columns:
|
249 |
-
df[selected_dma] = (
|
250 |
-
df[selected_dma].str.lower().str.strip().str.replace("_", " ")
|
251 |
-
)
|
252 |
-
all_dma_values.update(df[selected_dma].dropna().unique())
|
253 |
-
|
254 |
-
# Clean and standardize Panel column if it exists and is selected
|
255 |
-
if selected_panel and selected_panel != "N/A" and selected_panel in df.columns:
|
256 |
-
df[selected_panel] = (
|
257 |
-
df[selected_panel].str.lower().str.strip().str.replace("_", " ")
|
258 |
-
)
|
259 |
-
all_panel_values.update(df[selected_panel].dropna().unique())
|
260 |
-
|
261 |
-
# Update the processed DataFrame back in the dictionary
|
262 |
-
files_dict[file_name]["df"] = df
|
263 |
-
|
264 |
-
return all_dma_values, all_panel_values
|
265 |
-
|
266 |
-
|
267 |
-
# Function to format values for display
|
268 |
-
st.cache_resource(show_spinner=False)
|
269 |
-
|
270 |
-
|
271 |
-
def format_values_for_display(values_list):
|
272 |
-
# Capitalize the first letter of each word and replace underscores with spaces
|
273 |
-
formatted_list = [value.replace("_", " ").title() for value in values_list]
|
274 |
-
# Join values with commas and 'and' before the last value
|
275 |
-
if len(formatted_list) > 1:
|
276 |
-
return ", ".join(formatted_list[:-1]) + ", and " + formatted_list[-1]
|
277 |
-
elif formatted_list:
|
278 |
-
return formatted_list[0]
|
279 |
-
return "No values available"
|
280 |
-
|
281 |
-
|
282 |
-
# Function to normalizes all data within files_dict to a daily granularity
|
283 |
-
st.cache(show_spinner=False, allow_output_mutation=True)
|
284 |
-
|
285 |
-
|
286 |
-
def standardize_data_to_daily(files_dict, selections):
|
287 |
-
# Normalize all data to a daily granularity using a provided function
|
288 |
-
files_dict = apply_granularity_to_all(files_dict, "daily", selections)
|
289 |
-
|
290 |
-
# Update the "interval" attribute for each dataset to indicate the new granularity
|
291 |
-
for files_name, files_data in files_dict.items():
|
292 |
-
files_data["interval"] = "daily"
|
293 |
-
|
294 |
-
return files_dict
|
295 |
-
|
296 |
-
|
297 |
-
# Function to apply granularity transformation to all DataFrames in files_dict
|
298 |
-
st.cache_resource(show_spinner=False)
|
299 |
-
|
300 |
-
|
301 |
-
def apply_granularity_to_all(files_dict, granularity_selection, selections):
|
302 |
-
for file_name, file_data in files_dict.items():
|
303 |
-
df = file_data["df"].copy()
|
304 |
-
|
305 |
-
# Handling when DMA or Panel might be 'N/A'
|
306 |
-
selected_dma = selections[file_name].get("DMA")
|
307 |
-
selected_panel = selections[file_name].get("Panel")
|
308 |
-
|
309 |
-
# Correcting the segment selection logic & handling 'N/A'
|
310 |
-
if selected_dma != "N/A" and selected_panel != "N/A":
|
311 |
-
unique_combinations = df[[selected_dma, selected_panel]].drop_duplicates()
|
312 |
-
elif selected_dma != "N/A":
|
313 |
-
unique_combinations = df[[selected_dma]].drop_duplicates()
|
314 |
-
selected_panel = None # Ensure Panel is ignored if N/A
|
315 |
-
elif selected_panel != "N/A":
|
316 |
-
unique_combinations = df[[selected_panel]].drop_duplicates()
|
317 |
-
selected_dma = None # Ensure DMA is ignored if N/A
|
318 |
-
else:
|
319 |
-
# If both are 'N/A', process the entire dataframe as is
|
320 |
-
df = adjust_dataframe_granularity(
|
321 |
-
df, file_data["interval"], granularity_selection
|
322 |
-
)
|
323 |
-
files_dict[file_name]["df"] = df
|
324 |
-
continue # Skip to the next file
|
325 |
-
|
326 |
-
transformed_segments = []
|
327 |
-
for _, combo in unique_combinations.iterrows():
|
328 |
-
if selected_dma and selected_panel:
|
329 |
-
segment = df[
|
330 |
-
(df[selected_dma] == combo[selected_dma])
|
331 |
-
& (df[selected_panel] == combo[selected_panel])
|
332 |
-
]
|
333 |
-
elif selected_dma:
|
334 |
-
segment = df[df[selected_dma] == combo[selected_dma]]
|
335 |
-
elif selected_panel:
|
336 |
-
segment = df[df[selected_panel] == combo[selected_panel]]
|
337 |
-
|
338 |
-
# Adjust granularity of the segment
|
339 |
-
transformed_segment = adjust_dataframe_granularity(
|
340 |
-
segment, file_data["interval"], granularity_selection
|
341 |
-
)
|
342 |
-
transformed_segments.append(transformed_segment)
|
343 |
-
|
344 |
-
# Combine all transformed segments into a single DataFrame for this file
|
345 |
-
transformed_df = pd.concat(transformed_segments, ignore_index=True)
|
346 |
-
files_dict[file_name]["df"] = transformed_df
|
347 |
-
|
348 |
-
return files_dict
|
349 |
-
|
350 |
-
|
351 |
-
# Function to create main dataframe structure
|
352 |
-
st.cache_resource(show_spinner=False)
|
353 |
-
|
354 |
-
|
355 |
-
def create_main_dataframe(
|
356 |
-
files_dict, all_dma_values, all_panel_values, granularity_selection
|
357 |
-
):
|
358 |
-
# Determine the global start and end dates across all DataFrames
|
359 |
-
global_start = min(df["df"]["date"].min() for df in files_dict.values())
|
360 |
-
global_end = max(df["df"]["date"].max() for df in files_dict.values())
|
361 |
-
|
362 |
-
# Adjust the date_range generation based on the granularity_selection
|
363 |
-
if granularity_selection == "weekly":
|
364 |
-
# Generate a weekly range, with weeks starting on Monday
|
365 |
-
date_range = pd.date_range(start=global_start, end=global_end, freq="W-MON")
|
366 |
-
elif granularity_selection == "monthly":
|
367 |
-
# Generate a monthly range, starting from the first day of each month
|
368 |
-
date_range = pd.date_range(start=global_start, end=global_end, freq="MS")
|
369 |
-
else: # Default to daily if not weekly or monthly
|
370 |
-
date_range = pd.date_range(start=global_start, end=global_end, freq="D")
|
371 |
-
|
372 |
-
# Collect all unique DMA and Panel values, excluding 'N/A'
|
373 |
-
all_dmas = all_dma_values
|
374 |
-
all_panels = all_panel_values
|
375 |
-
|
376 |
-
# Dynamically build the list of dimensions (Panel, DMA) to include in the main DataFrame based on availability
|
377 |
-
dimensions, merge_keys = [], []
|
378 |
-
if all_panels:
|
379 |
-
dimensions.append(all_panels)
|
380 |
-
merge_keys.append("Panel")
|
381 |
-
if all_dmas:
|
382 |
-
dimensions.append(all_dmas)
|
383 |
-
merge_keys.append("DMA")
|
384 |
-
|
385 |
-
dimensions.append(date_range) # Date range is always included
|
386 |
-
merge_keys.append("date") # Date range is always included
|
387 |
-
|
388 |
-
# Create a main DataFrame template with the dimensions
|
389 |
-
main_df = pd.MultiIndex.from_product(
|
390 |
-
dimensions,
|
391 |
-
names=[name for name, _ in zip(merge_keys, dimensions)],
|
392 |
-
).to_frame(index=False)
|
393 |
-
|
394 |
-
return main_df.reset_index(drop=True)
|
395 |
-
|
396 |
-
|
397 |
-
# Function to prepare and merge dataFrames
|
398 |
-
st.cache_resource(show_spinner=False)
|
399 |
-
|
400 |
-
|
401 |
-
def merge_into_main_df(main_df, files_dict, selections):
|
402 |
-
for file_name, file_data in files_dict.items():
|
403 |
-
df = file_data["df"].copy()
|
404 |
-
|
405 |
-
# Rename selected DMA and Panel columns if not 'N/A'
|
406 |
-
selected_dma = selections[file_name].get("DMA", "N/A")
|
407 |
-
selected_panel = selections[file_name].get("Panel", "N/A")
|
408 |
-
if selected_dma != "N/A":
|
409 |
-
df.rename(columns={selected_dma: "DMA"}, inplace=True)
|
410 |
-
if selected_panel != "N/A":
|
411 |
-
df.rename(columns={selected_panel: "Panel"}, inplace=True)
|
412 |
-
|
413 |
-
# Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel' and 'DMA'
|
414 |
-
merge_keys = ["date"]
|
415 |
-
if "Panel" in df.columns:
|
416 |
-
merge_keys.append("Panel")
|
417 |
-
if "DMA" in df.columns:
|
418 |
-
merge_keys.append("DMA")
|
419 |
-
main_df = pd.merge(main_df, df, on=merge_keys, how="left")
|
420 |
-
|
421 |
-
# After all merges, sort by 'date' and reset index for cleanliness
|
422 |
-
sort_by = ["date"]
|
423 |
-
if "Panel" in main_df.columns:
|
424 |
-
sort_by.append("Panel")
|
425 |
-
if "DMA" in main_df.columns:
|
426 |
-
sort_by.append("DMA")
|
427 |
-
main_df.sort_values(by=sort_by, inplace=True)
|
428 |
-
main_df.reset_index(drop=True, inplace=True)
|
429 |
-
|
430 |
-
return main_df
|
431 |
-
|
432 |
-
|
433 |
-
# Function to categorize column
|
434 |
-
def categorize_column(column_name):
|
435 |
-
# Define keywords for each category
|
436 |
-
internal_keywords = [
|
437 |
-
"Price",
|
438 |
-
"Discount",
|
439 |
-
"product_price",
|
440 |
-
"cost",
|
441 |
-
"margin",
|
442 |
-
"inventory",
|
443 |
-
"sales",
|
444 |
-
"revenue",
|
445 |
-
"turnover",
|
446 |
-
"expense",
|
447 |
-
]
|
448 |
-
exogenous_keywords = [
|
449 |
-
"GDP",
|
450 |
-
"Tax",
|
451 |
-
"Inflation",
|
452 |
-
"interest_rate",
|
453 |
-
"employment_rate",
|
454 |
-
"exchange_rate",
|
455 |
-
"consumer_spending",
|
456 |
-
"retail_sales",
|
457 |
-
"oil_prices",
|
458 |
-
"weather",
|
459 |
-
]
|
460 |
-
|
461 |
-
# Check if the column name matches any of the keywords for Internal or Exogenous categories
|
462 |
-
for keyword in internal_keywords:
|
463 |
-
if keyword.lower() in column_name.lower():
|
464 |
-
return "Internal"
|
465 |
-
for keyword in exogenous_keywords:
|
466 |
-
if keyword.lower() in column_name.lower():
|
467 |
-
return "Exogenous"
|
468 |
-
|
469 |
-
# Default to Media if no match found
|
470 |
-
return "Media"
|
471 |
-
|
472 |
-
|
473 |
-
# Function to calculate missing stats and prepare for editable DataFrame
|
474 |
-
st.cache_resource(show_spinner=False)
|
475 |
-
|
476 |
-
|
477 |
-
def prepare_missing_stats_df(df):
|
478 |
-
missing_stats = []
|
479 |
-
for column in df.columns:
|
480 |
-
if (
|
481 |
-
column == "date" or column == "DMA" or column == "Panel"
|
482 |
-
): # Skip Date, DMA and Panel column
|
483 |
-
continue
|
484 |
-
|
485 |
-
missing = df[column].isnull().sum()
|
486 |
-
pct_missing = round((missing / len(df)) * 100, 2)
|
487 |
-
|
488 |
-
# Dynamically assign category based on column name
|
489 |
-
# category = categorize_column(column)
|
490 |
-
category = "Media"
|
491 |
-
|
492 |
-
missing_stats.append(
|
493 |
-
{
|
494 |
-
"Column": column,
|
495 |
-
"Missing Values": missing,
|
496 |
-
"Missing Percentage": pct_missing,
|
497 |
-
"Impute Method": "Fill with 0", # Default value
|
498 |
-
"Category": category,
|
499 |
-
}
|
500 |
-
)
|
501 |
-
stats_df = pd.DataFrame(missing_stats)
|
502 |
-
|
503 |
-
return stats_df
|
504 |
-
|
505 |
-
|
506 |
-
# Function to add API DataFrame details to the files dictionary
|
507 |
-
st.cache_resource(show_spinner=False)
|
508 |
-
|
509 |
-
|
510 |
-
def add_api_dataframe_to_dict(main_df, files_dict):
|
511 |
-
files_dict["API"] = {
|
512 |
-
"numeric": list(main_df.select_dtypes(include=["number"]).columns),
|
513 |
-
"non_numeric": [
|
514 |
-
col
|
515 |
-
for col in main_df.select_dtypes(exclude=["number"]).columns
|
516 |
-
if col.lower() != "date"
|
517 |
-
],
|
518 |
-
"interval": determine_data_interval(
|
519 |
-
pd.Series(main_df["date"].unique()).diff().dt.days.dropna().mode()[0]
|
520 |
-
),
|
521 |
-
"df": main_df,
|
522 |
-
}
|
523 |
-
|
524 |
-
return files_dict
|
525 |
-
|
526 |
-
|
527 |
-
# Function to reads an API into a DataFrame, parsing specified columns as datetime
|
528 |
-
@st.cache_resource(show_spinner=False)
|
529 |
-
def read_API_data():
|
530 |
-
return pd.read_excel(r"upf_data_converted.xlsx", parse_dates=["Date"])
|
531 |
-
|
532 |
-
|
533 |
-
# Function to set the 'DMA_Panel_Selected' session state variable to False
|
534 |
-
def set_DMA_Panel_Selected_false():
|
535 |
-
st.session_state["DMA_Panel_Selected"] = False
|
536 |
-
|
537 |
-
|
538 |
-
# Initialize 'final_df' in session state
|
539 |
-
if "final_df" not in st.session_state:
|
540 |
-
st.session_state["final_df"] = pd.DataFrame()
|
541 |
-
|
542 |
-
# Initialize 'bin_dict' in session state
|
543 |
-
if "bin_dict" not in st.session_state:
|
544 |
-
st.session_state["bin_dict"] = {}
|
545 |
-
|
546 |
-
# Initialize 'DMA_Panel_Selected' in session state
|
547 |
-
if "DMA_Panel_Selected" not in st.session_state:
|
548 |
-
st.session_state["DMA_Panel_Selected"] = False
|
549 |
-
|
550 |
-
# Page Title
|
551 |
-
st.write("") # Top padding
|
552 |
-
st.title("Data Import")
|
553 |
-
|
554 |
-
|
555 |
-
#########################################################################################################################################################
|
556 |
-
# Create a dictionary to hold all DataFrames and collect user input to specify "DMA" and "Panel" columns for each file
|
557 |
-
#########################################################################################################################################################
|
558 |
-
|
559 |
-
|
560 |
-
# Read the Excel file, parsing 'Date' column as datetime
|
561 |
-
main_df = read_API_data()
|
562 |
-
|
563 |
-
# Convert all column names to lowercase
|
564 |
-
main_df.columns = main_df.columns.str.lower().str.strip()
|
565 |
-
|
566 |
-
# File uploader
|
567 |
-
uploaded_files = st.file_uploader(
|
568 |
-
"Upload additional data",
|
569 |
-
type=["xlsx"],
|
570 |
-
accept_multiple_files=True,
|
571 |
-
on_change=set_DMA_Panel_Selected_false,
|
572 |
-
)
|
573 |
-
|
574 |
-
# Custom HTML for upload instructions
|
575 |
-
recommendation_html = f"""
|
576 |
-
<div style="text-align: justify;">
|
577 |
-
<strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including DMA, Panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
|
578 |
-
</div>
|
579 |
-
"""
|
580 |
-
st.markdown(recommendation_html, unsafe_allow_html=True)
|
581 |
-
|
582 |
-
# Choose Date Granularity
|
583 |
-
st.markdown("#### Choose Date Granularity")
|
584 |
-
# Granularity Selection
|
585 |
-
granularity_selection = st.selectbox(
|
586 |
-
"Choose Date Granularity",
|
587 |
-
["Daily", "Weekly", "Monthly"],
|
588 |
-
label_visibility="collapsed",
|
589 |
-
on_change=set_DMA_Panel_Selected_false,
|
590 |
-
)
|
591 |
-
granularity_selection = str(granularity_selection).lower()
|
592 |
-
|
593 |
-
# Convert files to dataframes
|
594 |
-
files_dict = files_to_dataframes(uploaded_files)
|
595 |
-
|
596 |
-
# Add API Dataframe
|
597 |
-
if main_df is not None:
|
598 |
-
files_dict = add_api_dataframe_to_dict(main_df, files_dict)
|
599 |
-
|
600 |
-
# Display a warning message if no files have been uploaded and halt further execution
|
601 |
-
if not files_dict:
|
602 |
-
st.warning(
|
603 |
-
"Please upload at least one file to proceed.",
|
604 |
-
icon="⚠️",
|
605 |
-
)
|
606 |
-
st.stop() # Halts further execution until file is uploaded
|
607 |
-
|
608 |
-
|
609 |
-
# Select DMA and Panel columns
|
610 |
-
st.markdown("#### Select DMA and Panel columns")
|
611 |
-
selections = {}
|
612 |
-
with st.expander("Select DMA and Panel columns", expanded=False):
|
613 |
-
count = 0 # Initialize counter to manage the visibility of labels and keys
|
614 |
-
for file_name, file_data in files_dict.items():
|
615 |
-
# Determine visibility of the label based on the count
|
616 |
-
if count == 0:
|
617 |
-
label_visibility = "visible"
|
618 |
-
else:
|
619 |
-
label_visibility = "collapsed"
|
620 |
-
|
621 |
-
# Extract non-numeric columns
|
622 |
-
non_numeric_cols = file_data["non_numeric"]
|
623 |
-
|
624 |
-
# Prepare DMA and Panel values for dropdown, adding "N/A" as an option
|
625 |
-
dma_values = non_numeric_cols + ["N/A"]
|
626 |
-
panel_values = non_numeric_cols + ["N/A"]
|
627 |
-
|
628 |
-
# Skip if only one option is available
|
629 |
-
if len(dma_values) == 1 and len(panel_values) == 1:
|
630 |
-
selected_dma, selected_panel = "N/A", "N/A"
|
631 |
-
# Update the selections for DMA and Panel for the current file
|
632 |
-
selections[file_name] = {
|
633 |
-
"DMA": selected_dma,
|
634 |
-
"Panel": selected_panel,
|
635 |
-
}
|
636 |
-
continue
|
637 |
-
|
638 |
-
# Create layout columns for File Name, DMA, and Panel selections
|
639 |
-
file_name_col, DMA_col, Panel_col = st.columns([2, 4, 4])
|
640 |
-
|
641 |
-
with file_name_col:
|
642 |
-
# Display "File Name" label only for the first file
|
643 |
-
if count == 0:
|
644 |
-
st.write("File Name")
|
645 |
-
else:
|
646 |
-
st.write("")
|
647 |
-
st.write(file_name) # Display the file name
|
648 |
-
|
649 |
-
with DMA_col:
|
650 |
-
# Display a selectbox for DMA values
|
651 |
-
selected_dma = st.selectbox(
|
652 |
-
"Select DMA",
|
653 |
-
dma_values,
|
654 |
-
on_change=set_DMA_Panel_Selected_false,
|
655 |
-
label_visibility=label_visibility, # Control visibility of the label
|
656 |
-
key=f"DMA_selectbox{count}", # Ensure unique key for each selectbox
|
657 |
-
)
|
658 |
-
|
659 |
-
with Panel_col:
|
660 |
-
# Display a selectbox for Panel values
|
661 |
-
selected_panel = st.selectbox(
|
662 |
-
"Select Panel",
|
663 |
-
panel_values,
|
664 |
-
on_change=set_DMA_Panel_Selected_false,
|
665 |
-
label_visibility=label_visibility, # Control visibility of the label
|
666 |
-
key=f"Panel_selectbox{count}", # Ensure unique key for each selectbox
|
667 |
-
)
|
668 |
-
|
669 |
-
# Skip processing if the same column is selected for both Panel and DMA due to potential data integrity issues
|
670 |
-
if selected_panel == selected_dma and not (
|
671 |
-
selected_panel == "N/A" and selected_dma == "N/A"
|
672 |
-
):
|
673 |
-
st.warning(
|
674 |
-
f"File: {file_name} → The same column cannot serve as both Panel and DMA. Please adjust your selections.",
|
675 |
-
)
|
676 |
-
selected_dma, selected_panel = "N/A", "N/A"
|
677 |
-
st.stop()
|
678 |
-
|
679 |
-
# Update the selections for DMA and Panel for the current file
|
680 |
-
selections[file_name] = {
|
681 |
-
"DMA": selected_dma,
|
682 |
-
"Panel": selected_panel,
|
683 |
-
}
|
684 |
-
|
685 |
-
count += 1 # Increment the counter after processing each file
|
686 |
-
|
687 |
-
# Accept DMA and Panel selection
|
688 |
-
if st.button("Accept and Process", use_container_width=True):
|
689 |
-
|
690 |
-
# Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
|
691 |
-
with st.spinner("Processing...", cache=True):
|
692 |
-
files_dict = standardize_data_to_daily(files_dict, selections)
|
693 |
-
|
694 |
-
# Convert all data to daily level granularity
|
695 |
-
files_dict = apply_granularity_to_all(
|
696 |
-
files_dict, granularity_selection, selections
|
697 |
-
)
|
698 |
-
|
699 |
-
st.session_state["files_dict"] = files_dict
|
700 |
-
st.session_state["DMA_Panel_Selected"] = True
|
701 |
-
|
702 |
-
|
703 |
-
#########################################################################################################################################################
|
704 |
-
# Display unique DMA and Panel values
|
705 |
-
#########################################################################################################################################################
|
706 |
-
|
707 |
-
|
708 |
-
# Halts further execution until DMA and Panel columns are selected
|
709 |
-
if "files_dict" in st.session_state and st.session_state["DMA_Panel_Selected"]:
|
710 |
-
files_dict = st.session_state["files_dict"]
|
711 |
-
else:
|
712 |
-
st.stop()
|
713 |
-
|
714 |
-
# Set to store unique values of DMA and Panel
|
715 |
-
with st.spinner("Fetching DMA and Panel values..."):
|
716 |
-
all_dma_values, all_panel_values = clean_and_extract_unique_values(
|
717 |
-
files_dict, selections
|
718 |
-
)
|
719 |
-
|
720 |
-
# List of DMA and Panel columns unique values
|
721 |
-
list_of_all_dma_values = list(all_dma_values)
|
722 |
-
list_of_all_panel_values = list(all_panel_values)
|
723 |
-
|
724 |
-
# Format DMA and Panel values for display
|
725 |
-
formatted_dma_values = format_values_for_display(list_of_all_dma_values)
|
726 |
-
formatted_panel_values = format_values_for_display(list_of_all_panel_values)
|
727 |
-
|
728 |
-
# Unique DMA and Panel values
|
729 |
-
st.markdown("#### Unique DMA and Panel values")
|
730 |
-
# Display DMA and Panel values
|
731 |
-
with st.expander("Unique DMA and Panel values"):
|
732 |
-
st.write("")
|
733 |
-
st.markdown(
|
734 |
-
f"""
|
735 |
-
<style>
|
736 |
-
.justify-text {{
|
737 |
-
text-align: justify;
|
738 |
-
}}
|
739 |
-
</style>
|
740 |
-
<div class="justify-text">
|
741 |
-
<strong>Panel Values:</strong> {formatted_panel_values}<br>
|
742 |
-
<strong>DMA Values:</strong> {formatted_dma_values}
|
743 |
-
</div>
|
744 |
-
""",
|
745 |
-
unsafe_allow_html=True,
|
746 |
-
)
|
747 |
-
|
748 |
-
# Display total DMA and Panel
|
749 |
-
st.write("")
|
750 |
-
st.markdown(
|
751 |
-
f"""
|
752 |
-
<div style="text-align: justify;">
|
753 |
-
<strong>Number of DMAs detected:</strong> {len(list_of_all_dma_values)}<br>
|
754 |
-
<strong>Number of Panels detected:</strong> {len(list_of_all_panel_values)}
|
755 |
-
</div>
|
756 |
-
""",
|
757 |
-
unsafe_allow_html=True,
|
758 |
-
)
|
759 |
-
st.write("")
|
760 |
-
|
761 |
-
|
762 |
-
#########################################################################################################################################################
|
763 |
-
# Merge all DataFrames
|
764 |
-
#########################################################################################################################################################
|
765 |
-
|
766 |
-
|
767 |
-
# Merge all DataFrames selected
|
768 |
-
main_df = create_main_dataframe(
|
769 |
-
files_dict, all_dma_values, all_panel_values, granularity_selection
|
770 |
-
)
|
771 |
-
merged_df = merge_into_main_df(main_df, files_dict, selections)
|
772 |
-
|
773 |
-
# # Display the merged DataFrame
|
774 |
-
# st.markdown("#### Merged DataFrame based on selected DMA and Panel")
|
775 |
-
# st.dataframe(merged_df)
|
776 |
-
|
777 |
-
|
778 |
-
#########################################################################################################################################################
|
779 |
-
# Categorize Variables and Impute Missing Values
|
780 |
-
#########################################################################################################################################################
|
781 |
-
|
782 |
-
|
783 |
-
# Create an editable DataFrame in Streamlit
|
784 |
-
st.markdown("#### Select Variables Category & Impute Missing Values")
|
785 |
-
|
786 |
-
# Prepare missing stats DataFrame for editing
|
787 |
-
missing_stats_df = prepare_missing_stats_df(merged_df)
|
788 |
-
|
789 |
-
edited_stats_df = st.data_editor(
|
790 |
-
missing_stats_df,
|
791 |
-
column_config={
|
792 |
-
"Impute Method": st.column_config.SelectboxColumn(
|
793 |
-
options=[
|
794 |
-
"Drop Column",
|
795 |
-
"Fill with Mean",
|
796 |
-
"Fill with Median",
|
797 |
-
"Fill with 0",
|
798 |
-
],
|
799 |
-
required=True,
|
800 |
-
default="Fill with 0",
|
801 |
-
),
|
802 |
-
"Category": st.column_config.SelectboxColumn(
|
803 |
-
options=[
|
804 |
-
"Media",
|
805 |
-
"Exogenous",
|
806 |
-
"Internal",
|
807 |
-
"Response_Metric"
|
808 |
-
],
|
809 |
-
required=True,
|
810 |
-
default="Media",
|
811 |
-
),
|
812 |
-
},
|
813 |
-
disabled=["Column", "Missing Values", "Missing Percentage"],
|
814 |
-
hide_index=True,
|
815 |
-
use_container_width=True,
|
816 |
-
)
|
817 |
-
|
818 |
-
# Apply changes based on edited DataFrame
|
819 |
-
for i, row in edited_stats_df.iterrows():
|
820 |
-
column = row["Column"]
|
821 |
-
if row["Impute Method"] == "Drop Column":
|
822 |
-
merged_df.drop(columns=[column], inplace=True)
|
823 |
-
|
824 |
-
elif row["Impute Method"] == "Fill with Mean":
|
825 |
-
merged_df[column].fillna(merged_df[column].mean(), inplace=True)
|
826 |
-
|
827 |
-
elif row["Impute Method"] == "Fill with Median":
|
828 |
-
merged_df[column].fillna(merged_df[column].median(), inplace=True)
|
829 |
-
|
830 |
-
elif row["Impute Method"] == "Fill with 0":
|
831 |
-
merged_df[column].fillna(0, inplace=True)
|
832 |
-
|
833 |
-
# Display the Final DataFrame and exogenous variables
|
834 |
-
st.markdown("#### Final DataFrame")
|
835 |
-
final_df = merged_df
|
836 |
-
st.dataframe(final_df, hide_index=True)
|
837 |
-
|
838 |
-
# Initialize an empty dictionary to hold categories and their variables
|
839 |
-
category_dict = {}
|
840 |
-
|
841 |
-
# Iterate over each row in the edited DataFrame to populate the dictionary
|
842 |
-
for i, row in edited_stats_df.iterrows():
|
843 |
-
column = row["Column"]
|
844 |
-
category = row["Category"] # The category chosen by the user for this variable
|
845 |
-
|
846 |
-
# Check if the category already exists in the dictionary
|
847 |
-
if category not in category_dict:
|
848 |
-
# If not, initialize it with the current column as its first element
|
849 |
-
category_dict[category] = [column]
|
850 |
-
else:
|
851 |
-
# If it exists, append the current column to the list of variables under this category
|
852 |
-
category_dict[category].append(column)
|
853 |
-
|
854 |
-
# Add Date, DMA and Panel in category dictionary
|
855 |
-
category_dict.update({"Date": ["date"]})
|
856 |
-
if "DMA" in final_df.columns:
|
857 |
-
category_dict["DMA"] = ["DMA"]
|
858 |
-
|
859 |
-
if "Panel" in final_df.columns:
|
860 |
-
category_dict["Panel"] = ["Panel"]
|
861 |
-
|
862 |
-
# Display the dictionary
|
863 |
-
st.markdown("#### Variable Category")
|
864 |
-
for category, variables in category_dict.items():
|
865 |
-
# Check if there are multiple variables to handle "and" insertion correctly
|
866 |
-
if len(variables) > 1:
|
867 |
-
# Join all but the last variable with ", ", then add " and " before the last variable
|
868 |
-
variables_str = ", ".join(variables[:-1]) + " and " + variables[-1]
|
869 |
-
else:
|
870 |
-
# If there's only one variable, no need for "and"
|
871 |
-
variables_str = variables[0]
|
872 |
-
|
873 |
-
# Display the category and its variables in the desired format
|
874 |
-
st.markdown(
|
875 |
-
f"<div style='text-align: justify;'><strong>{category}:</strong> {variables_str}</div>",
|
876 |
-
unsafe_allow_html=True,
|
877 |
-
)
|
878 |
-
|
879 |
-
# Store final dataframe and bin dictionary into session state
|
880 |
-
st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict
|
881 |
-
|
882 |
-
if st.button('Save Changes'):
|
883 |
-
|
884 |
-
with open("Pickle_files/main_df", 'wb') as f:
|
885 |
-
pickle.dump(st.session_state["final_df"], f)
|
886 |
-
with open("Pickle_files/category_dict",'wb') as c:
|
887 |
-
pickle.dump(st.session_state["bin_dict"],c)
|
888 |
-
st.success('Changes Saved!')
|
889 |
-
|
890 |
-
|
891 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|