Spaces:
Sleeping
Sleeping
Delete pages/1_Data_Import 2.py
Browse files- pages/1_Data_Import 2.py +0 -891
pages/1_Data_Import 2.py
DELETED
|
@@ -1,891 +0,0 @@
|
|
| 1 |
-
# Importing necessary libraries
|
| 2 |
-
import streamlit as st
|
| 3 |
-
|
| 4 |
-
st.set_page_config(
|
| 5 |
-
page_title="Model Build",
|
| 6 |
-
page_icon=":shark:",
|
| 7 |
-
layout="wide",
|
| 8 |
-
initial_sidebar_state="collapsed",
|
| 9 |
-
)
|
| 10 |
-
|
| 11 |
-
import numpy as np
|
| 12 |
-
import pandas as pd
|
| 13 |
-
from utilities import set_header, load_local_css, load_authenticator
|
| 14 |
-
import pickle
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
load_local_css("styles.css")
|
| 18 |
-
set_header()
|
| 19 |
-
|
| 20 |
-
authenticator = st.session_state.get("authenticator")
|
| 21 |
-
if authenticator is None:
|
| 22 |
-
authenticator = load_authenticator()
|
| 23 |
-
|
| 24 |
-
name, authentication_status, username = authenticator.login("Login", "main")
|
| 25 |
-
auth_status = st.session_state.get("authentication_status")
|
| 26 |
-
|
| 27 |
-
# Check for authentication status
|
| 28 |
-
if auth_status != True:
|
| 29 |
-
st.stop()
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# Function to validate date column in dataframe
|
| 33 |
-
def validate_date_column(df):
|
| 34 |
-
try:
|
| 35 |
-
# Attempt to convert the 'Date' column to datetime
|
| 36 |
-
df["date"] = pd.to_datetime(df["date"], format="%d-%m-%Y")
|
| 37 |
-
return True
|
| 38 |
-
except:
|
| 39 |
-
return False
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
# Function to determine data interval
|
| 43 |
-
def determine_data_interval(common_freq):
|
| 44 |
-
if common_freq == 1:
|
| 45 |
-
return "daily"
|
| 46 |
-
elif common_freq == 7:
|
| 47 |
-
return "weekly"
|
| 48 |
-
elif 28 <= common_freq <= 31:
|
| 49 |
-
return "monthly"
|
| 50 |
-
else:
|
| 51 |
-
return "irregular"
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
# Function to read each uploaded Excel file into a pandas DataFrame and stores them in a dictionary
|
| 55 |
-
st.cache_resource(show_spinner=False)
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def files_to_dataframes(uploaded_files):
|
| 59 |
-
df_dict = {}
|
| 60 |
-
for uploaded_file in uploaded_files:
|
| 61 |
-
# Extract file name without extension
|
| 62 |
-
file_name = uploaded_file.name.rsplit(".", 1)[0]
|
| 63 |
-
|
| 64 |
-
# Check for duplicate file names
|
| 65 |
-
if file_name in df_dict:
|
| 66 |
-
st.warning(
|
| 67 |
-
f"Duplicate File: {file_name}. This file will be skipped.",
|
| 68 |
-
icon="⚠️",
|
| 69 |
-
)
|
| 70 |
-
continue
|
| 71 |
-
|
| 72 |
-
# Read the file into a DataFrame
|
| 73 |
-
df = pd.read_excel(uploaded_file)
|
| 74 |
-
|
| 75 |
-
# Convert all column names to lowercase
|
| 76 |
-
df.columns = df.columns.str.lower().str.strip()
|
| 77 |
-
|
| 78 |
-
# Separate numeric and non-numeric columns
|
| 79 |
-
numeric_cols = list(df.select_dtypes(include=["number"]).columns)
|
| 80 |
-
non_numeric_cols = [
|
| 81 |
-
col
|
| 82 |
-
for col in df.select_dtypes(exclude=["number"]).columns
|
| 83 |
-
if col.lower() != "date"
|
| 84 |
-
]
|
| 85 |
-
|
| 86 |
-
# Check for 'Date' column
|
| 87 |
-
if not (validate_date_column(df) and len(numeric_cols) > 0):
|
| 88 |
-
st.warning(
|
| 89 |
-
f"File Name: {file_name} ➜ Please upload data with Date column in 'DD-MM-YYYY' format and at least one media/exogenous column. This file will be skipped.",
|
| 90 |
-
icon="⚠️",
|
| 91 |
-
)
|
| 92 |
-
continue
|
| 93 |
-
|
| 94 |
-
# Check for interval
|
| 95 |
-
common_freq = common_freq = (
|
| 96 |
-
pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]
|
| 97 |
-
)
|
| 98 |
-
# Calculate the data interval (daily, weekly, monthly or irregular)
|
| 99 |
-
interval = determine_data_interval(common_freq)
|
| 100 |
-
if interval == "irregular":
|
| 101 |
-
st.warning(
|
| 102 |
-
f"File Name: {file_name} ➜ Please upload data in daily, weekly or monthly interval. This file will be skipped.",
|
| 103 |
-
icon="⚠️",
|
| 104 |
-
)
|
| 105 |
-
continue
|
| 106 |
-
|
| 107 |
-
# Store both DataFrames in the dictionary under their respective keys
|
| 108 |
-
df_dict[file_name] = {
|
| 109 |
-
"numeric": numeric_cols,
|
| 110 |
-
"non_numeric": non_numeric_cols,
|
| 111 |
-
"interval": interval,
|
| 112 |
-
"df": df,
|
| 113 |
-
}
|
| 114 |
-
|
| 115 |
-
return df_dict
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
# Function to adjust dataframe granularity
|
| 119 |
-
# def adjust_dataframe_granularity(df, current_granularity, target_granularity):
|
| 120 |
-
# # Set index
|
| 121 |
-
# df.set_index("date", inplace=True)
|
| 122 |
-
|
| 123 |
-
# # Define aggregation rules for resampling
|
| 124 |
-
# aggregation_rules = {
|
| 125 |
-
# col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
|
| 126 |
-
# for col in df.columns
|
| 127 |
-
# }
|
| 128 |
-
|
| 129 |
-
# resampled_df = df
|
| 130 |
-
# if current_granularity == "daily" and target_granularity == "weekly":
|
| 131 |
-
# resampled_df = df.resample("W-MON").agg(aggregation_rules)
|
| 132 |
-
|
| 133 |
-
# elif current_granularity == "daily" and target_granularity == "monthly":
|
| 134 |
-
# resampled_df = df.resample("MS").agg(aggregation_rules)
|
| 135 |
-
|
| 136 |
-
# elif current_granularity == "daily" and target_granularity == "daily":
|
| 137 |
-
# resampled_df = df.resample("D").agg(aggregation_rules)
|
| 138 |
-
|
| 139 |
-
# elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
|
| 140 |
-
# # For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
|
| 141 |
-
# expanded_data = []
|
| 142 |
-
# for _, row in df.iterrows():
|
| 143 |
-
# if current_granularity == "weekly":
|
| 144 |
-
# period_range = pd.date_range(start=row.name, periods=7)
|
| 145 |
-
# elif current_granularity == "monthly":
|
| 146 |
-
# period_range = pd.date_range(
|
| 147 |
-
# start=row.name, periods=row.name.days_in_month
|
| 148 |
-
# )
|
| 149 |
-
|
| 150 |
-
# for date in period_range:
|
| 151 |
-
# new_row = {}
|
| 152 |
-
# for col in df.columns:
|
| 153 |
-
# if pd.api.types.is_numeric_dtype(df[col]):
|
| 154 |
-
# if current_granularity == "weekly":
|
| 155 |
-
# new_row[col] = row[col] / 7
|
| 156 |
-
# elif current_granularity == "monthly":
|
| 157 |
-
# new_row[col] = row[col] / row.name.days_in_month
|
| 158 |
-
# else:
|
| 159 |
-
# new_row[col] = row[col]
|
| 160 |
-
# expanded_data.append((date, new_row))
|
| 161 |
-
|
| 162 |
-
# resampled_df = pd.DataFrame(
|
| 163 |
-
# [data for _, data in expanded_data],
|
| 164 |
-
# index=[date for date, _ in expanded_data],
|
| 165 |
-
# )
|
| 166 |
-
|
| 167 |
-
# # Reset index
|
| 168 |
-
# resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
|
| 169 |
-
|
| 170 |
-
# return resampled_df
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
def adjust_dataframe_granularity(df, current_granularity, target_granularity):
|
| 174 |
-
# Set index
|
| 175 |
-
df.set_index("date", inplace=True)
|
| 176 |
-
|
| 177 |
-
# Define aggregation rules for resampling
|
| 178 |
-
aggregation_rules = {
|
| 179 |
-
col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
|
| 180 |
-
for col in df.columns
|
| 181 |
-
}
|
| 182 |
-
|
| 183 |
-
# Initialize resampled_df
|
| 184 |
-
resampled_df = df
|
| 185 |
-
if current_granularity == "daily" and target_granularity == "weekly":
|
| 186 |
-
resampled_df = df.resample("W-MON", closed="left", label="left").agg(
|
| 187 |
-
aggregation_rules
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
elif current_granularity == "daily" and target_granularity == "monthly":
|
| 191 |
-
resampled_df = df.resample("MS", closed="left", label="left").agg(
|
| 192 |
-
aggregation_rules
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
elif current_granularity == "daily" and target_granularity == "daily":
|
| 196 |
-
resampled_df = df.resample("D").agg(aggregation_rules)
|
| 197 |
-
|
| 198 |
-
elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
|
| 199 |
-
# For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
|
| 200 |
-
expanded_data = []
|
| 201 |
-
for _, row in df.iterrows():
|
| 202 |
-
if current_granularity == "weekly":
|
| 203 |
-
period_range = pd.date_range(start=row.name, periods=7)
|
| 204 |
-
elif current_granularity == "monthly":
|
| 205 |
-
period_range = pd.date_range(
|
| 206 |
-
start=row.name, periods=row.name.days_in_month
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
for date in period_range:
|
| 210 |
-
new_row = {}
|
| 211 |
-
for col in df.columns:
|
| 212 |
-
if pd.api.types.is_numeric_dtype(df[col]):
|
| 213 |
-
if current_granularity == "weekly":
|
| 214 |
-
new_row[col] = row[col] / 7
|
| 215 |
-
elif current_granularity == "monthly":
|
| 216 |
-
new_row[col] = row[col] / row.name.days_in_month
|
| 217 |
-
else:
|
| 218 |
-
new_row[col] = row[col]
|
| 219 |
-
expanded_data.append((date, new_row))
|
| 220 |
-
|
| 221 |
-
resampled_df = pd.DataFrame(
|
| 222 |
-
[data for _, data in expanded_data],
|
| 223 |
-
index=[date for date, _ in expanded_data],
|
| 224 |
-
)
|
| 225 |
-
|
| 226 |
-
# Reset index
|
| 227 |
-
resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
|
| 228 |
-
|
| 229 |
-
return resampled_df
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
# Function to clean and extract unique values of DMA and Panel
|
| 233 |
-
st.cache_resource(show_spinner=False)
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
def clean_and_extract_unique_values(files_dict, selections):
|
| 237 |
-
all_dma_values = set()
|
| 238 |
-
all_panel_values = set()
|
| 239 |
-
|
| 240 |
-
for file_name, file_data in files_dict.items():
|
| 241 |
-
df = file_data["df"]
|
| 242 |
-
|
| 243 |
-
# 'DMA' and 'Panel' selections
|
| 244 |
-
selected_dma = selections[file_name].get("DMA")
|
| 245 |
-
selected_panel = selections[file_name].get("Panel")
|
| 246 |
-
|
| 247 |
-
# Clean and standardize DMA column if it exists and is selected
|
| 248 |
-
if selected_dma and selected_dma != "N/A" and selected_dma in df.columns:
|
| 249 |
-
df[selected_dma] = (
|
| 250 |
-
df[selected_dma].str.lower().str.strip().str.replace("_", " ")
|
| 251 |
-
)
|
| 252 |
-
all_dma_values.update(df[selected_dma].dropna().unique())
|
| 253 |
-
|
| 254 |
-
# Clean and standardize Panel column if it exists and is selected
|
| 255 |
-
if selected_panel and selected_panel != "N/A" and selected_panel in df.columns:
|
| 256 |
-
df[selected_panel] = (
|
| 257 |
-
df[selected_panel].str.lower().str.strip().str.replace("_", " ")
|
| 258 |
-
)
|
| 259 |
-
all_panel_values.update(df[selected_panel].dropna().unique())
|
| 260 |
-
|
| 261 |
-
# Update the processed DataFrame back in the dictionary
|
| 262 |
-
files_dict[file_name]["df"] = df
|
| 263 |
-
|
| 264 |
-
return all_dma_values, all_panel_values
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
# Function to format values for display
|
| 268 |
-
st.cache_resource(show_spinner=False)
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
def format_values_for_display(values_list):
|
| 272 |
-
# Capitalize the first letter of each word and replace underscores with spaces
|
| 273 |
-
formatted_list = [value.replace("_", " ").title() for value in values_list]
|
| 274 |
-
# Join values with commas and 'and' before the last value
|
| 275 |
-
if len(formatted_list) > 1:
|
| 276 |
-
return ", ".join(formatted_list[:-1]) + ", and " + formatted_list[-1]
|
| 277 |
-
elif formatted_list:
|
| 278 |
-
return formatted_list[0]
|
| 279 |
-
return "No values available"
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
# Function to normalizes all data within files_dict to a daily granularity
|
| 283 |
-
st.cache(show_spinner=False, allow_output_mutation=True)
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
def standardize_data_to_daily(files_dict, selections):
|
| 287 |
-
# Normalize all data to a daily granularity using a provided function
|
| 288 |
-
files_dict = apply_granularity_to_all(files_dict, "daily", selections)
|
| 289 |
-
|
| 290 |
-
# Update the "interval" attribute for each dataset to indicate the new granularity
|
| 291 |
-
for files_name, files_data in files_dict.items():
|
| 292 |
-
files_data["interval"] = "daily"
|
| 293 |
-
|
| 294 |
-
return files_dict
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
# Function to apply granularity transformation to all DataFrames in files_dict
|
| 298 |
-
st.cache_resource(show_spinner=False)
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
def apply_granularity_to_all(files_dict, granularity_selection, selections):
|
| 302 |
-
for file_name, file_data in files_dict.items():
|
| 303 |
-
df = file_data["df"].copy()
|
| 304 |
-
|
| 305 |
-
# Handling when DMA or Panel might be 'N/A'
|
| 306 |
-
selected_dma = selections[file_name].get("DMA")
|
| 307 |
-
selected_panel = selections[file_name].get("Panel")
|
| 308 |
-
|
| 309 |
-
# Correcting the segment selection logic & handling 'N/A'
|
| 310 |
-
if selected_dma != "N/A" and selected_panel != "N/A":
|
| 311 |
-
unique_combinations = df[[selected_dma, selected_panel]].drop_duplicates()
|
| 312 |
-
elif selected_dma != "N/A":
|
| 313 |
-
unique_combinations = df[[selected_dma]].drop_duplicates()
|
| 314 |
-
selected_panel = None # Ensure Panel is ignored if N/A
|
| 315 |
-
elif selected_panel != "N/A":
|
| 316 |
-
unique_combinations = df[[selected_panel]].drop_duplicates()
|
| 317 |
-
selected_dma = None # Ensure DMA is ignored if N/A
|
| 318 |
-
else:
|
| 319 |
-
# If both are 'N/A', process the entire dataframe as is
|
| 320 |
-
df = adjust_dataframe_granularity(
|
| 321 |
-
df, file_data["interval"], granularity_selection
|
| 322 |
-
)
|
| 323 |
-
files_dict[file_name]["df"] = df
|
| 324 |
-
continue # Skip to the next file
|
| 325 |
-
|
| 326 |
-
transformed_segments = []
|
| 327 |
-
for _, combo in unique_combinations.iterrows():
|
| 328 |
-
if selected_dma and selected_panel:
|
| 329 |
-
segment = df[
|
| 330 |
-
(df[selected_dma] == combo[selected_dma])
|
| 331 |
-
& (df[selected_panel] == combo[selected_panel])
|
| 332 |
-
]
|
| 333 |
-
elif selected_dma:
|
| 334 |
-
segment = df[df[selected_dma] == combo[selected_dma]]
|
| 335 |
-
elif selected_panel:
|
| 336 |
-
segment = df[df[selected_panel] == combo[selected_panel]]
|
| 337 |
-
|
| 338 |
-
# Adjust granularity of the segment
|
| 339 |
-
transformed_segment = adjust_dataframe_granularity(
|
| 340 |
-
segment, file_data["interval"], granularity_selection
|
| 341 |
-
)
|
| 342 |
-
transformed_segments.append(transformed_segment)
|
| 343 |
-
|
| 344 |
-
# Combine all transformed segments into a single DataFrame for this file
|
| 345 |
-
transformed_df = pd.concat(transformed_segments, ignore_index=True)
|
| 346 |
-
files_dict[file_name]["df"] = transformed_df
|
| 347 |
-
|
| 348 |
-
return files_dict
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
# Function to create main dataframe structure
|
| 352 |
-
st.cache_resource(show_spinner=False)
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
def create_main_dataframe(
|
| 356 |
-
files_dict, all_dma_values, all_panel_values, granularity_selection
|
| 357 |
-
):
|
| 358 |
-
# Determine the global start and end dates across all DataFrames
|
| 359 |
-
global_start = min(df["df"]["date"].min() for df in files_dict.values())
|
| 360 |
-
global_end = max(df["df"]["date"].max() for df in files_dict.values())
|
| 361 |
-
|
| 362 |
-
# Adjust the date_range generation based on the granularity_selection
|
| 363 |
-
if granularity_selection == "weekly":
|
| 364 |
-
# Generate a weekly range, with weeks starting on Monday
|
| 365 |
-
date_range = pd.date_range(start=global_start, end=global_end, freq="W-MON")
|
| 366 |
-
elif granularity_selection == "monthly":
|
| 367 |
-
# Generate a monthly range, starting from the first day of each month
|
| 368 |
-
date_range = pd.date_range(start=global_start, end=global_end, freq="MS")
|
| 369 |
-
else: # Default to daily if not weekly or monthly
|
| 370 |
-
date_range = pd.date_range(start=global_start, end=global_end, freq="D")
|
| 371 |
-
|
| 372 |
-
# Collect all unique DMA and Panel values, excluding 'N/A'
|
| 373 |
-
all_dmas = all_dma_values
|
| 374 |
-
all_panels = all_panel_values
|
| 375 |
-
|
| 376 |
-
# Dynamically build the list of dimensions (Panel, DMA) to include in the main DataFrame based on availability
|
| 377 |
-
dimensions, merge_keys = [], []
|
| 378 |
-
if all_panels:
|
| 379 |
-
dimensions.append(all_panels)
|
| 380 |
-
merge_keys.append("Panel")
|
| 381 |
-
if all_dmas:
|
| 382 |
-
dimensions.append(all_dmas)
|
| 383 |
-
merge_keys.append("DMA")
|
| 384 |
-
|
| 385 |
-
dimensions.append(date_range) # Date range is always included
|
| 386 |
-
merge_keys.append("date") # Date range is always included
|
| 387 |
-
|
| 388 |
-
# Create a main DataFrame template with the dimensions
|
| 389 |
-
main_df = pd.MultiIndex.from_product(
|
| 390 |
-
dimensions,
|
| 391 |
-
names=[name for name, _ in zip(merge_keys, dimensions)],
|
| 392 |
-
).to_frame(index=False)
|
| 393 |
-
|
| 394 |
-
return main_df.reset_index(drop=True)
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
# Function to prepare and merge dataFrames
|
| 398 |
-
st.cache_resource(show_spinner=False)
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
def merge_into_main_df(main_df, files_dict, selections):
|
| 402 |
-
for file_name, file_data in files_dict.items():
|
| 403 |
-
df = file_data["df"].copy()
|
| 404 |
-
|
| 405 |
-
# Rename selected DMA and Panel columns if not 'N/A'
|
| 406 |
-
selected_dma = selections[file_name].get("DMA", "N/A")
|
| 407 |
-
selected_panel = selections[file_name].get("Panel", "N/A")
|
| 408 |
-
if selected_dma != "N/A":
|
| 409 |
-
df.rename(columns={selected_dma: "DMA"}, inplace=True)
|
| 410 |
-
if selected_panel != "N/A":
|
| 411 |
-
df.rename(columns={selected_panel: "Panel"}, inplace=True)
|
| 412 |
-
|
| 413 |
-
# Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel' and 'DMA'
|
| 414 |
-
merge_keys = ["date"]
|
| 415 |
-
if "Panel" in df.columns:
|
| 416 |
-
merge_keys.append("Panel")
|
| 417 |
-
if "DMA" in df.columns:
|
| 418 |
-
merge_keys.append("DMA")
|
| 419 |
-
main_df = pd.merge(main_df, df, on=merge_keys, how="left")
|
| 420 |
-
|
| 421 |
-
# After all merges, sort by 'date' and reset index for cleanliness
|
| 422 |
-
sort_by = ["date"]
|
| 423 |
-
if "Panel" in main_df.columns:
|
| 424 |
-
sort_by.append("Panel")
|
| 425 |
-
if "DMA" in main_df.columns:
|
| 426 |
-
sort_by.append("DMA")
|
| 427 |
-
main_df.sort_values(by=sort_by, inplace=True)
|
| 428 |
-
main_df.reset_index(drop=True, inplace=True)
|
| 429 |
-
|
| 430 |
-
return main_df
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
# Function to categorize column
|
| 434 |
-
def categorize_column(column_name):
|
| 435 |
-
# Define keywords for each category
|
| 436 |
-
internal_keywords = [
|
| 437 |
-
"Price",
|
| 438 |
-
"Discount",
|
| 439 |
-
"product_price",
|
| 440 |
-
"cost",
|
| 441 |
-
"margin",
|
| 442 |
-
"inventory",
|
| 443 |
-
"sales",
|
| 444 |
-
"revenue",
|
| 445 |
-
"turnover",
|
| 446 |
-
"expense",
|
| 447 |
-
]
|
| 448 |
-
exogenous_keywords = [
|
| 449 |
-
"GDP",
|
| 450 |
-
"Tax",
|
| 451 |
-
"Inflation",
|
| 452 |
-
"interest_rate",
|
| 453 |
-
"employment_rate",
|
| 454 |
-
"exchange_rate",
|
| 455 |
-
"consumer_spending",
|
| 456 |
-
"retail_sales",
|
| 457 |
-
"oil_prices",
|
| 458 |
-
"weather",
|
| 459 |
-
]
|
| 460 |
-
|
| 461 |
-
# Check if the column name matches any of the keywords for Internal or Exogenous categories
|
| 462 |
-
for keyword in internal_keywords:
|
| 463 |
-
if keyword.lower() in column_name.lower():
|
| 464 |
-
return "Internal"
|
| 465 |
-
for keyword in exogenous_keywords:
|
| 466 |
-
if keyword.lower() in column_name.lower():
|
| 467 |
-
return "Exogenous"
|
| 468 |
-
|
| 469 |
-
# Default to Media if no match found
|
| 470 |
-
return "Media"
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
# Function to calculate missing stats and prepare for editable DataFrame
|
| 474 |
-
st.cache_resource(show_spinner=False)
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
def prepare_missing_stats_df(df):
|
| 478 |
-
missing_stats = []
|
| 479 |
-
for column in df.columns:
|
| 480 |
-
if (
|
| 481 |
-
column == "date" or column == "DMA" or column == "Panel"
|
| 482 |
-
): # Skip Date, DMA and Panel column
|
| 483 |
-
continue
|
| 484 |
-
|
| 485 |
-
missing = df[column].isnull().sum()
|
| 486 |
-
pct_missing = round((missing / len(df)) * 100, 2)
|
| 487 |
-
|
| 488 |
-
# Dynamically assign category based on column name
|
| 489 |
-
# category = categorize_column(column)
|
| 490 |
-
category = "Media"
|
| 491 |
-
|
| 492 |
-
missing_stats.append(
|
| 493 |
-
{
|
| 494 |
-
"Column": column,
|
| 495 |
-
"Missing Values": missing,
|
| 496 |
-
"Missing Percentage": pct_missing,
|
| 497 |
-
"Impute Method": "Fill with 0", # Default value
|
| 498 |
-
"Category": category,
|
| 499 |
-
}
|
| 500 |
-
)
|
| 501 |
-
stats_df = pd.DataFrame(missing_stats)
|
| 502 |
-
|
| 503 |
-
return stats_df
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
# Function to add API DataFrame details to the files dictionary
|
| 507 |
-
st.cache_resource(show_spinner=False)
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
def add_api_dataframe_to_dict(main_df, files_dict):
|
| 511 |
-
files_dict["API"] = {
|
| 512 |
-
"numeric": list(main_df.select_dtypes(include=["number"]).columns),
|
| 513 |
-
"non_numeric": [
|
| 514 |
-
col
|
| 515 |
-
for col in main_df.select_dtypes(exclude=["number"]).columns
|
| 516 |
-
if col.lower() != "date"
|
| 517 |
-
],
|
| 518 |
-
"interval": determine_data_interval(
|
| 519 |
-
pd.Series(main_df["date"].unique()).diff().dt.days.dropna().mode()[0]
|
| 520 |
-
),
|
| 521 |
-
"df": main_df,
|
| 522 |
-
}
|
| 523 |
-
|
| 524 |
-
return files_dict
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
# Function to reads an API into a DataFrame, parsing specified columns as datetime
|
| 528 |
-
@st.cache_resource(show_spinner=False)
|
| 529 |
-
def read_API_data():
|
| 530 |
-
return pd.read_excel(r"upf_data_converted.xlsx", parse_dates=["Date"])
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
# Function to set the 'DMA_Panel_Selected' session state variable to False
|
| 534 |
-
def set_DMA_Panel_Selected_false():
|
| 535 |
-
st.session_state["DMA_Panel_Selected"] = False
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
# Initialize 'final_df' in session state
|
| 539 |
-
if "final_df" not in st.session_state:
|
| 540 |
-
st.session_state["final_df"] = pd.DataFrame()
|
| 541 |
-
|
| 542 |
-
# Initialize 'bin_dict' in session state
|
| 543 |
-
if "bin_dict" not in st.session_state:
|
| 544 |
-
st.session_state["bin_dict"] = {}
|
| 545 |
-
|
| 546 |
-
# Initialize 'DMA_Panel_Selected' in session state
|
| 547 |
-
if "DMA_Panel_Selected" not in st.session_state:
|
| 548 |
-
st.session_state["DMA_Panel_Selected"] = False
|
| 549 |
-
|
| 550 |
-
# Page Title
|
| 551 |
-
st.write("") # Top padding
|
| 552 |
-
st.title("Data Import")
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
#########################################################################################################################################################
|
| 556 |
-
# Create a dictionary to hold all DataFrames and collect user input to specify "DMA" and "Panel" columns for each file
|
| 557 |
-
#########################################################################################################################################################
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
# Read the Excel file, parsing 'Date' column as datetime
|
| 561 |
-
main_df = read_API_data()
|
| 562 |
-
|
| 563 |
-
# Convert all column names to lowercase
|
| 564 |
-
main_df.columns = main_df.columns.str.lower().str.strip()
|
| 565 |
-
|
| 566 |
-
# File uploader
|
| 567 |
-
uploaded_files = st.file_uploader(
|
| 568 |
-
"Upload additional data",
|
| 569 |
-
type=["xlsx"],
|
| 570 |
-
accept_multiple_files=True,
|
| 571 |
-
on_change=set_DMA_Panel_Selected_false,
|
| 572 |
-
)
|
| 573 |
-
|
| 574 |
-
# Custom HTML for upload instructions
|
| 575 |
-
recommendation_html = f"""
|
| 576 |
-
<div style="text-align: justify;">
|
| 577 |
-
<strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including DMA, Panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
|
| 578 |
-
</div>
|
| 579 |
-
"""
|
| 580 |
-
st.markdown(recommendation_html, unsafe_allow_html=True)
|
| 581 |
-
|
| 582 |
-
# Choose Date Granularity
|
| 583 |
-
st.markdown("#### Choose Date Granularity")
|
| 584 |
-
# Granularity Selection
|
| 585 |
-
granularity_selection = st.selectbox(
|
| 586 |
-
"Choose Date Granularity",
|
| 587 |
-
["Daily", "Weekly", "Monthly"],
|
| 588 |
-
label_visibility="collapsed",
|
| 589 |
-
on_change=set_DMA_Panel_Selected_false,
|
| 590 |
-
)
|
| 591 |
-
granularity_selection = str(granularity_selection).lower()
|
| 592 |
-
|
| 593 |
-
# Convert files to dataframes
|
| 594 |
-
files_dict = files_to_dataframes(uploaded_files)
|
| 595 |
-
|
| 596 |
-
# Add API Dataframe
|
| 597 |
-
if main_df is not None:
|
| 598 |
-
files_dict = add_api_dataframe_to_dict(main_df, files_dict)
|
| 599 |
-
|
| 600 |
-
# Display a warning message if no files have been uploaded and halt further execution
|
| 601 |
-
if not files_dict:
|
| 602 |
-
st.warning(
|
| 603 |
-
"Please upload at least one file to proceed.",
|
| 604 |
-
icon="⚠️",
|
| 605 |
-
)
|
| 606 |
-
st.stop() # Halts further execution until file is uploaded
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
# Select DMA and Panel columns
|
| 610 |
-
st.markdown("#### Select DMA and Panel columns")
|
| 611 |
-
selections = {}
|
| 612 |
-
with st.expander("Select DMA and Panel columns", expanded=False):
|
| 613 |
-
count = 0 # Initialize counter to manage the visibility of labels and keys
|
| 614 |
-
for file_name, file_data in files_dict.items():
|
| 615 |
-
# Determine visibility of the label based on the count
|
| 616 |
-
if count == 0:
|
| 617 |
-
label_visibility = "visible"
|
| 618 |
-
else:
|
| 619 |
-
label_visibility = "collapsed"
|
| 620 |
-
|
| 621 |
-
# Extract non-numeric columns
|
| 622 |
-
non_numeric_cols = file_data["non_numeric"]
|
| 623 |
-
|
| 624 |
-
# Prepare DMA and Panel values for dropdown, adding "N/A" as an option
|
| 625 |
-
dma_values = non_numeric_cols + ["N/A"]
|
| 626 |
-
panel_values = non_numeric_cols + ["N/A"]
|
| 627 |
-
|
| 628 |
-
# Skip if only one option is available
|
| 629 |
-
if len(dma_values) == 1 and len(panel_values) == 1:
|
| 630 |
-
selected_dma, selected_panel = "N/A", "N/A"
|
| 631 |
-
# Update the selections for DMA and Panel for the current file
|
| 632 |
-
selections[file_name] = {
|
| 633 |
-
"DMA": selected_dma,
|
| 634 |
-
"Panel": selected_panel,
|
| 635 |
-
}
|
| 636 |
-
continue
|
| 637 |
-
|
| 638 |
-
# Create layout columns for File Name, DMA, and Panel selections
|
| 639 |
-
file_name_col, DMA_col, Panel_col = st.columns([2, 4, 4])
|
| 640 |
-
|
| 641 |
-
with file_name_col:
|
| 642 |
-
# Display "File Name" label only for the first file
|
| 643 |
-
if count == 0:
|
| 644 |
-
st.write("File Name")
|
| 645 |
-
else:
|
| 646 |
-
st.write("")
|
| 647 |
-
st.write(file_name) # Display the file name
|
| 648 |
-
|
| 649 |
-
with DMA_col:
|
| 650 |
-
# Display a selectbox for DMA values
|
| 651 |
-
selected_dma = st.selectbox(
|
| 652 |
-
"Select DMA",
|
| 653 |
-
dma_values,
|
| 654 |
-
on_change=set_DMA_Panel_Selected_false,
|
| 655 |
-
label_visibility=label_visibility, # Control visibility of the label
|
| 656 |
-
key=f"DMA_selectbox{count}", # Ensure unique key for each selectbox
|
| 657 |
-
)
|
| 658 |
-
|
| 659 |
-
with Panel_col:
|
| 660 |
-
# Display a selectbox for Panel values
|
| 661 |
-
selected_panel = st.selectbox(
|
| 662 |
-
"Select Panel",
|
| 663 |
-
panel_values,
|
| 664 |
-
on_change=set_DMA_Panel_Selected_false,
|
| 665 |
-
label_visibility=label_visibility, # Control visibility of the label
|
| 666 |
-
key=f"Panel_selectbox{count}", # Ensure unique key for each selectbox
|
| 667 |
-
)
|
| 668 |
-
|
| 669 |
-
# Skip processing if the same column is selected for both Panel and DMA due to potential data integrity issues
|
| 670 |
-
if selected_panel == selected_dma and not (
|
| 671 |
-
selected_panel == "N/A" and selected_dma == "N/A"
|
| 672 |
-
):
|
| 673 |
-
st.warning(
|
| 674 |
-
f"File: {file_name} → The same column cannot serve as both Panel and DMA. Please adjust your selections.",
|
| 675 |
-
)
|
| 676 |
-
selected_dma, selected_panel = "N/A", "N/A"
|
| 677 |
-
st.stop()
|
| 678 |
-
|
| 679 |
-
# Update the selections for DMA and Panel for the current file
|
| 680 |
-
selections[file_name] = {
|
| 681 |
-
"DMA": selected_dma,
|
| 682 |
-
"Panel": selected_panel,
|
| 683 |
-
}
|
| 684 |
-
|
| 685 |
-
count += 1 # Increment the counter after processing each file
|
| 686 |
-
|
| 687 |
-
# Accept DMA and Panel selection
|
| 688 |
-
if st.button("Accept and Process", use_container_width=True):
|
| 689 |
-
|
| 690 |
-
# Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
|
| 691 |
-
with st.spinner("Processing...", cache=True):
|
| 692 |
-
files_dict = standardize_data_to_daily(files_dict, selections)
|
| 693 |
-
|
| 694 |
-
# Convert all data to daily level granularity
|
| 695 |
-
files_dict = apply_granularity_to_all(
|
| 696 |
-
files_dict, granularity_selection, selections
|
| 697 |
-
)
|
| 698 |
-
|
| 699 |
-
st.session_state["files_dict"] = files_dict
|
| 700 |
-
st.session_state["DMA_Panel_Selected"] = True
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
#########################################################################################################################################################
|
| 704 |
-
# Display unique DMA and Panel values
|
| 705 |
-
#########################################################################################################################################################
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
# Halts further execution until DMA and Panel columns are selected
|
| 709 |
-
if "files_dict" in st.session_state and st.session_state["DMA_Panel_Selected"]:
|
| 710 |
-
files_dict = st.session_state["files_dict"]
|
| 711 |
-
else:
|
| 712 |
-
st.stop()
|
| 713 |
-
|
| 714 |
-
# Set to store unique values of DMA and Panel
|
| 715 |
-
with st.spinner("Fetching DMA and Panel values..."):
|
| 716 |
-
all_dma_values, all_panel_values = clean_and_extract_unique_values(
|
| 717 |
-
files_dict, selections
|
| 718 |
-
)
|
| 719 |
-
|
| 720 |
-
# List of DMA and Panel columns unique values
|
| 721 |
-
list_of_all_dma_values = list(all_dma_values)
|
| 722 |
-
list_of_all_panel_values = list(all_panel_values)
|
| 723 |
-
|
| 724 |
-
# Format DMA and Panel values for display
|
| 725 |
-
formatted_dma_values = format_values_for_display(list_of_all_dma_values)
|
| 726 |
-
formatted_panel_values = format_values_for_display(list_of_all_panel_values)
|
| 727 |
-
|
| 728 |
-
# Unique DMA and Panel values
|
| 729 |
-
st.markdown("#### Unique DMA and Panel values")
|
| 730 |
-
# Display DMA and Panel values
|
| 731 |
-
with st.expander("Unique DMA and Panel values"):
|
| 732 |
-
st.write("")
|
| 733 |
-
st.markdown(
|
| 734 |
-
f"""
|
| 735 |
-
<style>
|
| 736 |
-
.justify-text {{
|
| 737 |
-
text-align: justify;
|
| 738 |
-
}}
|
| 739 |
-
</style>
|
| 740 |
-
<div class="justify-text">
|
| 741 |
-
<strong>Panel Values:</strong> {formatted_panel_values}<br>
|
| 742 |
-
<strong>DMA Values:</strong> {formatted_dma_values}
|
| 743 |
-
</div>
|
| 744 |
-
""",
|
| 745 |
-
unsafe_allow_html=True,
|
| 746 |
-
)
|
| 747 |
-
|
| 748 |
-
# Display total DMA and Panel
|
| 749 |
-
st.write("")
|
| 750 |
-
st.markdown(
|
| 751 |
-
f"""
|
| 752 |
-
<div style="text-align: justify;">
|
| 753 |
-
<strong>Number of DMAs detected:</strong> {len(list_of_all_dma_values)}<br>
|
| 754 |
-
<strong>Number of Panels detected:</strong> {len(list_of_all_panel_values)}
|
| 755 |
-
</div>
|
| 756 |
-
""",
|
| 757 |
-
unsafe_allow_html=True,
|
| 758 |
-
)
|
| 759 |
-
st.write("")
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
#########################################################################################################################################################
|
| 763 |
-
# Merge all DataFrames
|
| 764 |
-
#########################################################################################################################################################
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
# Merge all DataFrames selected
|
| 768 |
-
main_df = create_main_dataframe(
|
| 769 |
-
files_dict, all_dma_values, all_panel_values, granularity_selection
|
| 770 |
-
)
|
| 771 |
-
merged_df = merge_into_main_df(main_df, files_dict, selections)
|
| 772 |
-
|
| 773 |
-
# # Display the merged DataFrame
|
| 774 |
-
# st.markdown("#### Merged DataFrame based on selected DMA and Panel")
|
| 775 |
-
# st.dataframe(merged_df)
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
#########################################################################################################################################################
|
| 779 |
-
# Categorize Variables and Impute Missing Values
|
| 780 |
-
#########################################################################################################################################################
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
# Create an editable DataFrame in Streamlit
|
| 784 |
-
st.markdown("#### Select Variables Category & Impute Missing Values")
|
| 785 |
-
|
| 786 |
-
# Prepare missing stats DataFrame for editing
|
| 787 |
-
missing_stats_df = prepare_missing_stats_df(merged_df)
|
| 788 |
-
|
| 789 |
-
edited_stats_df = st.data_editor(
|
| 790 |
-
missing_stats_df,
|
| 791 |
-
column_config={
|
| 792 |
-
"Impute Method": st.column_config.SelectboxColumn(
|
| 793 |
-
options=[
|
| 794 |
-
"Drop Column",
|
| 795 |
-
"Fill with Mean",
|
| 796 |
-
"Fill with Median",
|
| 797 |
-
"Fill with 0",
|
| 798 |
-
],
|
| 799 |
-
required=True,
|
| 800 |
-
default="Fill with 0",
|
| 801 |
-
),
|
| 802 |
-
"Category": st.column_config.SelectboxColumn(
|
| 803 |
-
options=[
|
| 804 |
-
"Media",
|
| 805 |
-
"Exogenous",
|
| 806 |
-
"Internal",
|
| 807 |
-
"Response_Metric"
|
| 808 |
-
],
|
| 809 |
-
required=True,
|
| 810 |
-
default="Media",
|
| 811 |
-
),
|
| 812 |
-
},
|
| 813 |
-
disabled=["Column", "Missing Values", "Missing Percentage"],
|
| 814 |
-
hide_index=True,
|
| 815 |
-
use_container_width=True,
|
| 816 |
-
)
|
| 817 |
-
|
| 818 |
-
# Apply changes based on edited DataFrame
|
| 819 |
-
for i, row in edited_stats_df.iterrows():
|
| 820 |
-
column = row["Column"]
|
| 821 |
-
if row["Impute Method"] == "Drop Column":
|
| 822 |
-
merged_df.drop(columns=[column], inplace=True)
|
| 823 |
-
|
| 824 |
-
elif row["Impute Method"] == "Fill with Mean":
|
| 825 |
-
merged_df[column].fillna(merged_df[column].mean(), inplace=True)
|
| 826 |
-
|
| 827 |
-
elif row["Impute Method"] == "Fill with Median":
|
| 828 |
-
merged_df[column].fillna(merged_df[column].median(), inplace=True)
|
| 829 |
-
|
| 830 |
-
elif row["Impute Method"] == "Fill with 0":
|
| 831 |
-
merged_df[column].fillna(0, inplace=True)
|
| 832 |
-
|
| 833 |
-
# Display the Final DataFrame and exogenous variables
|
| 834 |
-
st.markdown("#### Final DataFrame")
|
| 835 |
-
final_df = merged_df
|
| 836 |
-
st.dataframe(final_df, hide_index=True)
|
| 837 |
-
|
| 838 |
-
# Initialize an empty dictionary to hold categories and their variables
|
| 839 |
-
category_dict = {}
|
| 840 |
-
|
| 841 |
-
# Iterate over each row in the edited DataFrame to populate the dictionary
|
| 842 |
-
for i, row in edited_stats_df.iterrows():
|
| 843 |
-
column = row["Column"]
|
| 844 |
-
category = row["Category"] # The category chosen by the user for this variable
|
| 845 |
-
|
| 846 |
-
# Check if the category already exists in the dictionary
|
| 847 |
-
if category not in category_dict:
|
| 848 |
-
# If not, initialize it with the current column as its first element
|
| 849 |
-
category_dict[category] = [column]
|
| 850 |
-
else:
|
| 851 |
-
# If it exists, append the current column to the list of variables under this category
|
| 852 |
-
category_dict[category].append(column)
|
| 853 |
-
|
| 854 |
-
# Add Date, DMA and Panel in category dictionary
|
| 855 |
-
category_dict.update({"Date": ["date"]})
|
| 856 |
-
if "DMA" in final_df.columns:
|
| 857 |
-
category_dict["DMA"] = ["DMA"]
|
| 858 |
-
|
| 859 |
-
if "Panel" in final_df.columns:
|
| 860 |
-
category_dict["Panel"] = ["Panel"]
|
| 861 |
-
|
| 862 |
-
# Display the dictionary
|
| 863 |
-
st.markdown("#### Variable Category")
|
| 864 |
-
for category, variables in category_dict.items():
|
| 865 |
-
# Check if there are multiple variables to handle "and" insertion correctly
|
| 866 |
-
if len(variables) > 1:
|
| 867 |
-
# Join all but the last variable with ", ", then add " and " before the last variable
|
| 868 |
-
variables_str = ", ".join(variables[:-1]) + " and " + variables[-1]
|
| 869 |
-
else:
|
| 870 |
-
# If there's only one variable, no need for "and"
|
| 871 |
-
variables_str = variables[0]
|
| 872 |
-
|
| 873 |
-
# Display the category and its variables in the desired format
|
| 874 |
-
st.markdown(
|
| 875 |
-
f"<div style='text-align: justify;'><strong>{category}:</strong> {variables_str}</div>",
|
| 876 |
-
unsafe_allow_html=True,
|
| 877 |
-
)
|
| 878 |
-
|
| 879 |
-
# Store final dataframe and bin dictionary into session state
|
| 880 |
-
st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict
|
| 881 |
-
|
| 882 |
-
if st.button('Save Changes'):
|
| 883 |
-
|
| 884 |
-
with open("Pickle_files/main_df", 'wb') as f:
|
| 885 |
-
pickle.dump(st.session_state["final_df"], f)
|
| 886 |
-
with open("Pickle_files/category_dict",'wb') as c:
|
| 887 |
-
pickle.dump(st.session_state["bin_dict"],c)
|
| 888 |
-
st.success('Changes Saved!')
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|