Spaces:
Sleeping
Sleeping
Upload Data_Import.py
Browse files- Data_Import.py +172 -212
Data_Import.py
CHANGED
@@ -8,11 +8,10 @@ st.set_page_config(
|
|
8 |
initial_sidebar_state="collapsed",
|
9 |
)
|
10 |
|
|
|
11 |
import numpy as np
|
12 |
import pandas as pd
|
13 |
from utilities import set_header, load_local_css, load_authenticator
|
14 |
-
import pickle
|
15 |
-
|
16 |
|
17 |
load_local_css("styles.css")
|
18 |
set_header()
|
@@ -116,60 +115,6 @@ def files_to_dataframes(uploaded_files):
|
|
116 |
|
117 |
|
118 |
# Function to adjust dataframe granularity
|
119 |
-
# def adjust_dataframe_granularity(df, current_granularity, target_granularity):
|
120 |
-
# # Set index
|
121 |
-
# df.set_index("date", inplace=True)
|
122 |
-
|
123 |
-
# # Define aggregation rules for resampling
|
124 |
-
# aggregation_rules = {
|
125 |
-
# col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
|
126 |
-
# for col in df.columns
|
127 |
-
# }
|
128 |
-
|
129 |
-
# resampled_df = df
|
130 |
-
# if current_granularity == "daily" and target_granularity == "weekly":
|
131 |
-
# resampled_df = df.resample("W-MON").agg(aggregation_rules)
|
132 |
-
|
133 |
-
# elif current_granularity == "daily" and target_granularity == "monthly":
|
134 |
-
# resampled_df = df.resample("MS").agg(aggregation_rules)
|
135 |
-
|
136 |
-
# elif current_granularity == "daily" and target_granularity == "daily":
|
137 |
-
# resampled_df = df.resample("D").agg(aggregation_rules)
|
138 |
-
|
139 |
-
# elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
|
140 |
-
# # For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
|
141 |
-
# expanded_data = []
|
142 |
-
# for _, row in df.iterrows():
|
143 |
-
# if current_granularity == "weekly":
|
144 |
-
# period_range = pd.date_range(start=row.name, periods=7)
|
145 |
-
# elif current_granularity == "monthly":
|
146 |
-
# period_range = pd.date_range(
|
147 |
-
# start=row.name, periods=row.name.days_in_month
|
148 |
-
# )
|
149 |
-
|
150 |
-
# for date in period_range:
|
151 |
-
# new_row = {}
|
152 |
-
# for col in df.columns:
|
153 |
-
# if pd.api.types.is_numeric_dtype(df[col]):
|
154 |
-
# if current_granularity == "weekly":
|
155 |
-
# new_row[col] = row[col] / 7
|
156 |
-
# elif current_granularity == "monthly":
|
157 |
-
# new_row[col] = row[col] / row.name.days_in_month
|
158 |
-
# else:
|
159 |
-
# new_row[col] = row[col]
|
160 |
-
# expanded_data.append((date, new_row))
|
161 |
-
|
162 |
-
# resampled_df = pd.DataFrame(
|
163 |
-
# [data for _, data in expanded_data],
|
164 |
-
# index=[date for date, _ in expanded_data],
|
165 |
-
# )
|
166 |
-
|
167 |
-
# # Reset index
|
168 |
-
# resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
|
169 |
-
|
170 |
-
# return resampled_df
|
171 |
-
|
172 |
-
|
173 |
def adjust_dataframe_granularity(df, current_granularity, target_granularity):
|
174 |
# Set index
|
175 |
df.set_index("date", inplace=True)
|
@@ -229,39 +174,47 @@ def adjust_dataframe_granularity(df, current_granularity, target_granularity):
|
|
229 |
return resampled_df
|
230 |
|
231 |
|
232 |
-
# Function to clean and extract unique values of
|
233 |
st.cache_resource(show_spinner=False)
|
234 |
|
235 |
|
236 |
def clean_and_extract_unique_values(files_dict, selections):
|
237 |
-
|
238 |
-
|
239 |
|
240 |
for file_name, file_data in files_dict.items():
|
241 |
df = file_data["df"]
|
242 |
|
243 |
-
# '
|
244 |
-
|
245 |
-
|
246 |
|
247 |
-
# Clean and standardize
|
248 |
-
if
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
251 |
)
|
252 |
-
|
253 |
|
254 |
-
# Clean and standardize
|
255 |
-
if
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
258 |
)
|
259 |
-
|
260 |
|
261 |
# Update the processed DataFrame back in the dictionary
|
262 |
files_dict[file_name]["df"] = df
|
263 |
|
264 |
-
return
|
265 |
|
266 |
|
267 |
# Function to format values for display
|
@@ -302,19 +255,21 @@ def apply_granularity_to_all(files_dict, granularity_selection, selections):
|
|
302 |
for file_name, file_data in files_dict.items():
|
303 |
df = file_data["df"].copy()
|
304 |
|
305 |
-
# Handling when
|
306 |
-
|
307 |
-
|
308 |
|
309 |
# Correcting the segment selection logic & handling 'N/A'
|
310 |
-
if
|
311 |
-
unique_combinations = df[
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
|
|
|
|
318 |
else:
|
319 |
# If both are 'N/A', process the entire dataframe as is
|
320 |
df = adjust_dataframe_granularity(
|
@@ -325,15 +280,15 @@ def apply_granularity_to_all(files_dict, granularity_selection, selections):
|
|
325 |
|
326 |
transformed_segments = []
|
327 |
for _, combo in unique_combinations.iterrows():
|
328 |
-
if
|
329 |
segment = df[
|
330 |
-
(df[
|
331 |
-
& (df[
|
332 |
]
|
333 |
-
elif
|
334 |
-
segment = df[df[
|
335 |
-
elif
|
336 |
-
segment = df[df[
|
337 |
|
338 |
# Adjust granularity of the segment
|
339 |
transformed_segment = adjust_dataframe_granularity(
|
@@ -353,7 +308,7 @@ st.cache_resource(show_spinner=False)
|
|
353 |
|
354 |
|
355 |
def create_main_dataframe(
|
356 |
-
files_dict,
|
357 |
):
|
358 |
# Determine the global start and end dates across all DataFrames
|
359 |
global_start = min(df["df"]["date"].min() for df in files_dict.values())
|
@@ -369,18 +324,18 @@ def create_main_dataframe(
|
|
369 |
else: # Default to daily if not weekly or monthly
|
370 |
date_range = pd.date_range(start=global_start, end=global_end, freq="D")
|
371 |
|
372 |
-
# Collect all unique
|
373 |
-
|
374 |
-
|
375 |
|
376 |
-
# Dynamically build the list of dimensions (
|
377 |
dimensions, merge_keys = [], []
|
378 |
-
if
|
379 |
-
dimensions.append(
|
380 |
-
merge_keys.append("
|
381 |
-
if
|
382 |
-
dimensions.append(
|
383 |
-
merge_keys.append("
|
384 |
|
385 |
dimensions.append(date_range) # Date range is always included
|
386 |
merge_keys.append("date") # Date range is always included
|
@@ -402,28 +357,28 @@ def merge_into_main_df(main_df, files_dict, selections):
|
|
402 |
for file_name, file_data in files_dict.items():
|
403 |
df = file_data["df"].copy()
|
404 |
|
405 |
-
# Rename selected
|
406 |
-
|
407 |
-
|
408 |
-
if
|
409 |
-
df.rename(columns={
|
410 |
-
if
|
411 |
-
df.rename(columns={
|
412 |
|
413 |
-
# Merge current DataFrame into main_df based on 'date', and where applicable, '
|
414 |
merge_keys = ["date"]
|
415 |
-
if "
|
416 |
-
merge_keys.append("
|
417 |
-
if "
|
418 |
-
merge_keys.append("
|
419 |
main_df = pd.merge(main_df, df, on=merge_keys, how="left")
|
420 |
|
421 |
# After all merges, sort by 'date' and reset index for cleanliness
|
422 |
sort_by = ["date"]
|
423 |
-
if "
|
424 |
-
sort_by.append("
|
425 |
-
if "
|
426 |
-
sort_by.append("
|
427 |
main_df.sort_values(by=sort_by, inplace=True)
|
428 |
main_df.reset_index(drop=True, inplace=True)
|
429 |
|
@@ -478,16 +433,16 @@ def prepare_missing_stats_df(df):
|
|
478 |
missing_stats = []
|
479 |
for column in df.columns:
|
480 |
if (
|
481 |
-
column == "date" or column == "
|
482 |
-
): # Skip Date,
|
483 |
continue
|
484 |
|
485 |
missing = df[column].isnull().sum()
|
486 |
pct_missing = round((missing / len(df)) * 100, 2)
|
487 |
|
488 |
# Dynamically assign category based on column name
|
489 |
-
|
490 |
-
category = "Media"
|
491 |
|
492 |
missing_stats.append(
|
493 |
{
|
@@ -527,12 +482,21 @@ def add_api_dataframe_to_dict(main_df, files_dict):
|
|
527 |
# Function to reads an API into a DataFrame, parsing specified columns as datetime
|
528 |
@st.cache_resource(show_spinner=False)
|
529 |
def read_API_data():
|
530 |
-
return pd.read_excel(
|
531 |
|
532 |
|
533 |
-
# Function to set the '
|
534 |
-
def
|
535 |
-
st.session_state["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
|
537 |
|
538 |
# Initialize 'final_df' in session state
|
@@ -543,9 +507,9 @@ if "final_df" not in st.session_state:
|
|
543 |
if "bin_dict" not in st.session_state:
|
544 |
st.session_state["bin_dict"] = {}
|
545 |
|
546 |
-
# Initialize '
|
547 |
-
if "
|
548 |
-
st.session_state["
|
549 |
|
550 |
# Page Title
|
551 |
st.write("") # Top padding
|
@@ -553,7 +517,7 @@ st.title("Data Import")
|
|
553 |
|
554 |
|
555 |
#########################################################################################################################################################
|
556 |
-
# Create a dictionary to hold all DataFrames and collect user input to specify "
|
557 |
#########################################################################################################################################################
|
558 |
|
559 |
|
@@ -568,25 +532,25 @@ uploaded_files = st.file_uploader(
|
|
568 |
"Upload additional data",
|
569 |
type=["xlsx"],
|
570 |
accept_multiple_files=True,
|
571 |
-
on_change=
|
572 |
)
|
573 |
|
574 |
# Custom HTML for upload instructions
|
575 |
recommendation_html = f"""
|
576 |
<div style="text-align: justify;">
|
577 |
-
<strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including
|
578 |
</div>
|
579 |
"""
|
580 |
st.markdown(recommendation_html, unsafe_allow_html=True)
|
581 |
|
582 |
-
# Choose
|
583 |
-
st.markdown("#### Choose
|
584 |
# Granularity Selection
|
585 |
granularity_selection = st.selectbox(
|
586 |
"Choose Date Granularity",
|
587 |
["Daily", "Weekly", "Monthly"],
|
588 |
label_visibility="collapsed",
|
589 |
-
on_change=
|
590 |
)
|
591 |
granularity_selection = str(granularity_selection).lower()
|
592 |
|
@@ -606,10 +570,10 @@ if not files_dict:
|
|
606 |
st.stop() # Halts further execution until file is uploaded
|
607 |
|
608 |
|
609 |
-
# Select
|
610 |
-
st.markdown("#### Select
|
611 |
selections = {}
|
612 |
-
with st.expander("Select
|
613 |
count = 0 # Initialize counter to manage the visibility of labels and keys
|
614 |
for file_name, file_data in files_dict.items():
|
615 |
# Determine visibility of the label based on the count
|
@@ -621,22 +585,22 @@ with st.expander("Select DMA and Panel columns", expanded=False):
|
|
621 |
# Extract non-numeric columns
|
622 |
non_numeric_cols = file_data["non_numeric"]
|
623 |
|
624 |
-
# Prepare
|
625 |
-
|
626 |
-
|
627 |
|
628 |
# Skip if only one option is available
|
629 |
-
if len(
|
630 |
-
|
631 |
-
# Update the selections for
|
632 |
selections[file_name] = {
|
633 |
-
"
|
634 |
-
"
|
635 |
}
|
636 |
continue
|
637 |
|
638 |
-
# Create layout columns for File Name,
|
639 |
-
file_name_col,
|
640 |
|
641 |
with file_name_col:
|
642 |
# Display "File Name" label only for the first file
|
@@ -646,45 +610,45 @@ with st.expander("Select DMA and Panel columns", expanded=False):
|
|
646 |
st.write("")
|
647 |
st.write(file_name) # Display the file name
|
648 |
|
649 |
-
with
|
650 |
-
# Display a selectbox for
|
651 |
-
|
652 |
-
"Select
|
653 |
-
|
654 |
-
on_change=
|
655 |
label_visibility=label_visibility, # Control visibility of the label
|
656 |
-
key=f"
|
657 |
)
|
658 |
|
659 |
-
with
|
660 |
-
# Display a selectbox for
|
661 |
-
|
662 |
-
"Select Panel",
|
663 |
-
|
664 |
-
on_change=
|
665 |
label_visibility=label_visibility, # Control visibility of the label
|
666 |
-
key=f"
|
667 |
)
|
668 |
|
669 |
-
# Skip processing if the same column is selected for both
|
670 |
-
if
|
671 |
-
|
672 |
):
|
673 |
st.warning(
|
674 |
-
f"File: {file_name} → The same column cannot serve as both
|
675 |
)
|
676 |
-
|
677 |
st.stop()
|
678 |
|
679 |
-
# Update the selections for
|
680 |
selections[file_name] = {
|
681 |
-
"
|
682 |
-
"
|
683 |
}
|
684 |
|
685 |
count += 1 # Increment the counter after processing each file
|
686 |
|
687 |
-
# Accept
|
688 |
if st.button("Accept and Process", use_container_width=True):
|
689 |
|
690 |
# Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
|
@@ -697,38 +661,38 @@ with st.expander("Select DMA and Panel columns", expanded=False):
|
|
697 |
)
|
698 |
|
699 |
st.session_state["files_dict"] = files_dict
|
700 |
-
st.session_state["
|
701 |
|
702 |
|
703 |
#########################################################################################################################################################
|
704 |
-
# Display unique
|
705 |
#########################################################################################################################################################
|
706 |
|
707 |
|
708 |
-
# Halts further execution until
|
709 |
-
if "files_dict" in st.session_state and st.session_state["
|
710 |
files_dict = st.session_state["files_dict"]
|
711 |
else:
|
712 |
st.stop()
|
713 |
|
714 |
-
# Set to store unique values of
|
715 |
-
with st.spinner("Fetching
|
716 |
-
|
717 |
files_dict, selections
|
718 |
)
|
719 |
|
720 |
-
# List of
|
721 |
-
|
722 |
-
|
723 |
|
724 |
-
# Format
|
725 |
-
|
726 |
-
|
727 |
|
728 |
-
# Unique
|
729 |
-
st.markdown("#### Unique
|
730 |
-
# Display
|
731 |
-
with st.expander("Unique
|
732 |
st.write("")
|
733 |
st.markdown(
|
734 |
f"""
|
@@ -738,20 +702,20 @@ with st.expander("Unique DMA and Panel values"):
|
|
738 |
}}
|
739 |
</style>
|
740 |
<div class="justify-text">
|
741 |
-
<strong>Panel Values:</strong> {
|
742 |
-
<strong>
|
743 |
</div>
|
744 |
""",
|
745 |
unsafe_allow_html=True,
|
746 |
)
|
747 |
|
748 |
-
# Display total
|
749 |
st.write("")
|
750 |
st.markdown(
|
751 |
f"""
|
752 |
<div style="text-align: justify;">
|
753 |
-
<strong>Number of
|
754 |
-
<strong>Number of Panels detected:</strong> {len(
|
755 |
</div>
|
756 |
""",
|
757 |
unsafe_allow_html=True,
|
@@ -766,12 +730,12 @@ with st.expander("Unique DMA and Panel values"):
|
|
766 |
|
767 |
# Merge all DataFrames selected
|
768 |
main_df = create_main_dataframe(
|
769 |
-
files_dict,
|
770 |
)
|
771 |
merged_df = merge_into_main_df(main_df, files_dict, selections)
|
772 |
|
773 |
# # Display the merged DataFrame
|
774 |
-
# st.markdown("#### Merged DataFrame based on selected
|
775 |
# st.dataframe(merged_df)
|
776 |
|
777 |
|
@@ -804,7 +768,7 @@ edited_stats_df = st.data_editor(
|
|
804 |
"Media",
|
805 |
"Exogenous",
|
806 |
"Internal",
|
807 |
-
"
|
808 |
],
|
809 |
required=True,
|
810 |
default="Media",
|
@@ -851,13 +815,12 @@ for i, row in edited_stats_df.iterrows():
|
|
851 |
# If it exists, append the current column to the list of variables under this category
|
852 |
category_dict[category].append(column)
|
853 |
|
854 |
-
# Add Date,
|
855 |
category_dict.update({"Date": ["date"]})
|
856 |
-
if "
|
857 |
-
category_dict["
|
858 |
-
|
859 |
-
|
860 |
-
category_dict["Panel"] = ["Panel"]
|
861 |
|
862 |
# Display the dictionary
|
863 |
st.markdown("#### Variable Category")
|
@@ -879,13 +842,10 @@ for category, variables in category_dict.items():
|
|
879 |
# Store final dataframe and bin dictionary into session state
|
880 |
st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict
|
881 |
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
st.
|
889 |
-
|
890 |
-
|
891 |
-
|
|
|
8 |
initial_sidebar_state="collapsed",
|
9 |
)
|
10 |
|
11 |
+
import pickle
|
12 |
import numpy as np
|
13 |
import pandas as pd
|
14 |
from utilities import set_header, load_local_css, load_authenticator
|
|
|
|
|
15 |
|
16 |
load_local_css("styles.css")
|
17 |
set_header()
|
|
|
115 |
|
116 |
|
117 |
# Function to adjust dataframe granularity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
def adjust_dataframe_granularity(df, current_granularity, target_granularity):
|
119 |
# Set index
|
120 |
df.set_index("date", inplace=True)
|
|
|
174 |
return resampled_df
|
175 |
|
176 |
|
177 |
+
# Function to clean and extract unique values of Panel_1 and Panel_2
|
178 |
st.cache_resource(show_spinner=False)
|
179 |
|
180 |
|
181 |
def clean_and_extract_unique_values(files_dict, selections):
|
182 |
+
all_panel1_values = set()
|
183 |
+
all_panel2_values = set()
|
184 |
|
185 |
for file_name, file_data in files_dict.items():
|
186 |
df = file_data["df"]
|
187 |
|
188 |
+
# 'Panel_1' and 'Panel_2' selections
|
189 |
+
selected_panel1 = selections[file_name].get("Panel_1")
|
190 |
+
selected_panel2 = selections[file_name].get("Panel_2")
|
191 |
|
192 |
+
# Clean and standardize Panel_1 column if it exists and is selected
|
193 |
+
if (
|
194 |
+
selected_panel1
|
195 |
+
and selected_panel1 != "N/A"
|
196 |
+
and selected_panel1 in df.columns
|
197 |
+
):
|
198 |
+
df[selected_panel1] = (
|
199 |
+
df[selected_panel1].str.lower().str.strip().str.replace("_", " ")
|
200 |
)
|
201 |
+
all_panel1_values.update(df[selected_panel1].dropna().unique())
|
202 |
|
203 |
+
# Clean and standardize Panel_2 column if it exists and is selected
|
204 |
+
if (
|
205 |
+
selected_panel2
|
206 |
+
and selected_panel2 != "N/A"
|
207 |
+
and selected_panel2 in df.columns
|
208 |
+
):
|
209 |
+
df[selected_panel2] = (
|
210 |
+
df[selected_panel2].str.lower().str.strip().str.replace("_", " ")
|
211 |
)
|
212 |
+
all_panel2_values.update(df[selected_panel2].dropna().unique())
|
213 |
|
214 |
# Update the processed DataFrame back in the dictionary
|
215 |
files_dict[file_name]["df"] = df
|
216 |
|
217 |
+
return all_panel1_values, all_panel2_values
|
218 |
|
219 |
|
220 |
# Function to format values for display
|
|
|
255 |
for file_name, file_data in files_dict.items():
|
256 |
df = file_data["df"].copy()
|
257 |
|
258 |
+
# Handling when Panel_1 or Panel_2 might be 'N/A'
|
259 |
+
selected_panel1 = selections[file_name].get("Panel_1")
|
260 |
+
selected_panel2 = selections[file_name].get("Panel_2")
|
261 |
|
262 |
# Correcting the segment selection logic & handling 'N/A'
|
263 |
+
if selected_panel1 != "N/A" and selected_panel2 != "N/A":
|
264 |
+
unique_combinations = df[
|
265 |
+
[selected_panel1, selected_panel2]
|
266 |
+
].drop_duplicates()
|
267 |
+
elif selected_panel1 != "N/A":
|
268 |
+
unique_combinations = df[[selected_panel1]].drop_duplicates()
|
269 |
+
selected_panel2 = None # Ensure Panel_2 is ignored if N/A
|
270 |
+
elif selected_panel2 != "N/A":
|
271 |
+
unique_combinations = df[[selected_panel2]].drop_duplicates()
|
272 |
+
selected_panel1 = None # Ensure Panel_1 is ignored if N/A
|
273 |
else:
|
274 |
# If both are 'N/A', process the entire dataframe as is
|
275 |
df = adjust_dataframe_granularity(
|
|
|
280 |
|
281 |
transformed_segments = []
|
282 |
for _, combo in unique_combinations.iterrows():
|
283 |
+
if selected_panel1 and selected_panel2:
|
284 |
segment = df[
|
285 |
+
(df[selected_panel1] == combo[selected_panel1])
|
286 |
+
& (df[selected_panel2] == combo[selected_panel2])
|
287 |
]
|
288 |
+
elif selected_panel1:
|
289 |
+
segment = df[df[selected_panel1] == combo[selected_panel1]]
|
290 |
+
elif selected_panel2:
|
291 |
+
segment = df[df[selected_panel2] == combo[selected_panel2]]
|
292 |
|
293 |
# Adjust granularity of the segment
|
294 |
transformed_segment = adjust_dataframe_granularity(
|
|
|
308 |
|
309 |
|
310 |
def create_main_dataframe(
|
311 |
+
files_dict, all_panel1_values, all_panel2_values, granularity_selection
|
312 |
):
|
313 |
# Determine the global start and end dates across all DataFrames
|
314 |
global_start = min(df["df"]["date"].min() for df in files_dict.values())
|
|
|
324 |
else: # Default to daily if not weekly or monthly
|
325 |
date_range = pd.date_range(start=global_start, end=global_end, freq="D")
|
326 |
|
327 |
+
# Collect all unique Panel_1 and Panel_2 values, excluding 'N/A'
|
328 |
+
all_panel1s = all_panel1_values
|
329 |
+
all_panel2s = all_panel2_values
|
330 |
|
331 |
+
# Dynamically build the list of dimensions (Panel_1, Panel_2) to include in the main DataFrame based on availability
|
332 |
dimensions, merge_keys = [], []
|
333 |
+
if all_panel1s:
|
334 |
+
dimensions.append(all_panel1s)
|
335 |
+
merge_keys.append("Panel_1")
|
336 |
+
if all_panel2s:
|
337 |
+
dimensions.append(all_panel2s)
|
338 |
+
merge_keys.append("Panel_2")
|
339 |
|
340 |
dimensions.append(date_range) # Date range is always included
|
341 |
merge_keys.append("date") # Date range is always included
|
|
|
357 |
for file_name, file_data in files_dict.items():
|
358 |
df = file_data["df"].copy()
|
359 |
|
360 |
+
# Rename selected Panel_1 and Panel_2 columns if not 'N/A'
|
361 |
+
selected_panel1 = selections[file_name].get("Panel_1", "N/A")
|
362 |
+
selected_panel2 = selections[file_name].get("Panel_2", "N/A")
|
363 |
+
if selected_panel1 != "N/A":
|
364 |
+
df.rename(columns={selected_panel1: "Panel_1"}, inplace=True)
|
365 |
+
if selected_panel2 != "N/A":
|
366 |
+
df.rename(columns={selected_panel2: "Panel_2"}, inplace=True)
|
367 |
|
368 |
+
# Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel_1' and 'Panel_2'
|
369 |
merge_keys = ["date"]
|
370 |
+
if "Panel_1" in df.columns:
|
371 |
+
merge_keys.append("Panel_1")
|
372 |
+
if "Panel_2" in df.columns:
|
373 |
+
merge_keys.append("Panel_2")
|
374 |
main_df = pd.merge(main_df, df, on=merge_keys, how="left")
|
375 |
|
376 |
# After all merges, sort by 'date' and reset index for cleanliness
|
377 |
sort_by = ["date"]
|
378 |
+
if "Panel_1" in main_df.columns:
|
379 |
+
sort_by.append("Panel_1")
|
380 |
+
if "Panel_2" in main_df.columns:
|
381 |
+
sort_by.append("Panel_2")
|
382 |
main_df.sort_values(by=sort_by, inplace=True)
|
383 |
main_df.reset_index(drop=True, inplace=True)
|
384 |
|
|
|
433 |
missing_stats = []
|
434 |
for column in df.columns:
|
435 |
if (
|
436 |
+
column == "date" or column == "Panel_2" or column == "Panel_1"
|
437 |
+
): # Skip Date, Panel_1 and Panel_2 column
|
438 |
continue
|
439 |
|
440 |
missing = df[column].isnull().sum()
|
441 |
pct_missing = round((missing / len(df)) * 100, 2)
|
442 |
|
443 |
# Dynamically assign category based on column name
|
444 |
+
category = categorize_column(column)
|
445 |
+
# category = "Media" # Keep default bin as Media
|
446 |
|
447 |
missing_stats.append(
|
448 |
{
|
|
|
482 |
# Function to reads an API into a DataFrame, parsing specified columns as datetime
|
483 |
@st.cache_resource(show_spinner=False)
|
484 |
def read_API_data():
|
485 |
+
return pd.read_excel("upf_data_converted.xlsx", parse_dates=["Date"])
|
486 |
|
487 |
|
488 |
+
# Function to set the 'Panel_1_Panel_2_Selected' session state variable to False
|
489 |
+
def set_Panel_1_Panel_2_Selected_false():
|
490 |
+
st.session_state["Panel_1_Panel_2_Selected"] = False
|
491 |
+
|
492 |
+
|
493 |
+
# Function to serialize and save the objects into a pickle file
|
494 |
+
@st.cache_resource(show_spinner=False)
|
495 |
+
def save_to_pickle(file_path, final_df, bin_dict):
|
496 |
+
# Open the file in write-binary mode and dump the objects
|
497 |
+
with open(file_path, "wb") as f:
|
498 |
+
pickle.dump({"final_df": final_df, "bin_dict": bin_dict}, f)
|
499 |
+
# Data is now saved to file
|
500 |
|
501 |
|
502 |
# Initialize 'final_df' in session state
|
|
|
507 |
if "bin_dict" not in st.session_state:
|
508 |
st.session_state["bin_dict"] = {}
|
509 |
|
510 |
+
# Initialize 'Panel_1_Panel_2_Selected' in session state
|
511 |
+
if "Panel_1_Panel_2_Selected" not in st.session_state:
|
512 |
+
st.session_state["Panel_1_Panel_2_Selected"] = False
|
513 |
|
514 |
# Page Title
|
515 |
st.write("") # Top padding
|
|
|
517 |
|
518 |
|
519 |
#########################################################################################################################################################
|
520 |
+
# Create a dictionary to hold all DataFrames and collect user input to specify "Panel_2" and "Panel_1" columns for each file
|
521 |
#########################################################################################################################################################
|
522 |
|
523 |
|
|
|
532 |
"Upload additional data",
|
533 |
type=["xlsx"],
|
534 |
accept_multiple_files=True,
|
535 |
+
on_change=set_Panel_1_Panel_2_Selected_false,
|
536 |
)
|
537 |
|
538 |
# Custom HTML for upload instructions
|
539 |
recommendation_html = f"""
|
540 |
<div style="text-align: justify;">
|
541 |
+
<strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
|
542 |
</div>
|
543 |
"""
|
544 |
st.markdown(recommendation_html, unsafe_allow_html=True)
|
545 |
|
546 |
+
# Choose Desired Granularity
|
547 |
+
st.markdown("#### Choose Desired Granularity")
|
548 |
# Granularity Selection
|
549 |
granularity_selection = st.selectbox(
|
550 |
"Choose Date Granularity",
|
551 |
["Daily", "Weekly", "Monthly"],
|
552 |
label_visibility="collapsed",
|
553 |
+
on_change=set_Panel_1_Panel_2_Selected_false,
|
554 |
)
|
555 |
granularity_selection = str(granularity_selection).lower()
|
556 |
|
|
|
570 |
st.stop() # Halts further execution until file is uploaded
|
571 |
|
572 |
|
573 |
+
# Select Panel_1 and Panel_2 columns
|
574 |
+
st.markdown("#### Select Panel columns")
|
575 |
selections = {}
|
576 |
+
with st.expander("Select Panel columns", expanded=False):
|
577 |
count = 0 # Initialize counter to manage the visibility of labels and keys
|
578 |
for file_name, file_data in files_dict.items():
|
579 |
# Determine visibility of the label based on the count
|
|
|
585 |
# Extract non-numeric columns
|
586 |
non_numeric_cols = file_data["non_numeric"]
|
587 |
|
588 |
+
# Prepare Panel_1 and Panel_2 values for dropdown, adding "N/A" as an option
|
589 |
+
panel1_values = non_numeric_cols + ["N/A"]
|
590 |
+
panel2_values = non_numeric_cols + ["N/A"]
|
591 |
|
592 |
# Skip if only one option is available
|
593 |
+
if len(panel1_values) == 1 and len(panel2_values) == 1:
|
594 |
+
selected_panel1, selected_panel2 = "N/A", "N/A"
|
595 |
+
# Update the selections for Panel_1 and Panel_2 for the current file
|
596 |
selections[file_name] = {
|
597 |
+
"Panel_1": selected_panel1,
|
598 |
+
"Panel_2": selected_panel2,
|
599 |
}
|
600 |
continue
|
601 |
|
602 |
+
# Create layout columns for File Name, Panel_2, and Panel_1 selections
|
603 |
+
file_name_col, Panel_1_col, Panel_2_col = st.columns([2, 4, 4])
|
604 |
|
605 |
with file_name_col:
|
606 |
# Display "File Name" label only for the first file
|
|
|
610 |
st.write("")
|
611 |
st.write(file_name) # Display the file name
|
612 |
|
613 |
+
with Panel_1_col:
|
614 |
+
# Display a selectbox for Panel_1 values
|
615 |
+
selected_panel1 = st.selectbox(
|
616 |
+
"Select Panel Level 1",
|
617 |
+
panel2_values,
|
618 |
+
on_change=set_Panel_1_Panel_2_Selected_false,
|
619 |
label_visibility=label_visibility, # Control visibility of the label
|
620 |
+
key=f"Panel_1_selectbox{count}", # Ensure unique key for each selectbox
|
621 |
)
|
622 |
|
623 |
+
with Panel_2_col:
|
624 |
+
# Display a selectbox for Panel_2 values
|
625 |
+
selected_panel2 = st.selectbox(
|
626 |
+
"Select Panel Level 2",
|
627 |
+
panel1_values,
|
628 |
+
on_change=set_Panel_1_Panel_2_Selected_false,
|
629 |
label_visibility=label_visibility, # Control visibility of the label
|
630 |
+
key=f"Panel_2_selectbox{count}", # Ensure unique key for each selectbox
|
631 |
)
|
632 |
|
633 |
+
# Skip processing if the same column is selected for both Panel_1 and Panel_2 due to potential data integrity issues
|
634 |
+
if selected_panel2 == selected_panel1 and not (
|
635 |
+
selected_panel2 == "N/A" and selected_panel1 == "N/A"
|
636 |
):
|
637 |
st.warning(
|
638 |
+
f"File: {file_name} → The same column cannot serve as both Panel_1 and Panel_2. Please adjust your selections.",
|
639 |
)
|
640 |
+
selected_panel1, selected_panel2 = "N/A", "N/A"
|
641 |
st.stop()
|
642 |
|
643 |
+
# Update the selections for Panel_1 and Panel_2 for the current file
|
644 |
selections[file_name] = {
|
645 |
+
"Panel_1": selected_panel1,
|
646 |
+
"Panel_2": selected_panel2,
|
647 |
}
|
648 |
|
649 |
count += 1 # Increment the counter after processing each file
|
650 |
|
651 |
+
# Accept Panel_1 and Panel_2 selection
|
652 |
if st.button("Accept and Process", use_container_width=True):
|
653 |
|
654 |
# Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
|
|
|
661 |
)
|
662 |
|
663 |
st.session_state["files_dict"] = files_dict
|
664 |
+
st.session_state["Panel_1_Panel_2_Selected"] = True
|
665 |
|
666 |
|
667 |
#########################################################################################################################################################
|
668 |
+
# Display unique Panel_1 and Panel_2 values
|
669 |
#########################################################################################################################################################
|
670 |
|
671 |
|
672 |
+
# Halts further execution until Panel_1 and Panel_2 columns are selected
|
673 |
+
if "files_dict" in st.session_state and st.session_state["Panel_1_Panel_2_Selected"]:
|
674 |
files_dict = st.session_state["files_dict"]
|
675 |
else:
|
676 |
st.stop()
|
677 |
|
678 |
+
# Set to store unique values of Panel_1 and Panel_2
|
679 |
+
with st.spinner("Fetching Panel values..."):
|
680 |
+
all_panel1_values, all_panel2_values = clean_and_extract_unique_values(
|
681 |
files_dict, selections
|
682 |
)
|
683 |
|
684 |
+
# List of Panel_1 and Panel_2 columns unique values
|
685 |
+
list_of_all_panel1_values = list(all_panel1_values)
|
686 |
+
list_of_all_panel2_values = list(all_panel2_values)
|
687 |
|
688 |
+
# Format Panel_1 and Panel_2 values for display
|
689 |
+
formatted_panel1_values = format_values_for_display(list_of_all_panel1_values)
|
690 |
+
formatted_panel2_values = format_values_for_display(list_of_all_panel2_values)
|
691 |
|
692 |
+
# Unique Panel_1 and Panel_2 values
|
693 |
+
st.markdown("#### Unique Panel values")
|
694 |
+
# Display Panel_1 and Panel_2 values
|
695 |
+
with st.expander("Unique Panel values"):
|
696 |
st.write("")
|
697 |
st.markdown(
|
698 |
f"""
|
|
|
702 |
}}
|
703 |
</style>
|
704 |
<div class="justify-text">
|
705 |
+
<strong>Panel Level 1 Values:</strong> {formatted_panel1_values}<br>
|
706 |
+
<strong>Panel Level 2 Values:</strong> {formatted_panel2_values}
|
707 |
</div>
|
708 |
""",
|
709 |
unsafe_allow_html=True,
|
710 |
)
|
711 |
|
712 |
+
# Display total Panel_1 and Panel_2
|
713 |
st.write("")
|
714 |
st.markdown(
|
715 |
f"""
|
716 |
<div style="text-align: justify;">
|
717 |
+
<strong>Number of Level 1 Panels detected:</strong> {len(list_of_all_panel1_values)}<br>
|
718 |
+
<strong>Number of Level 2 Panels detected:</strong> {len(list_of_all_panel2_values)}
|
719 |
</div>
|
720 |
""",
|
721 |
unsafe_allow_html=True,
|
|
|
730 |
|
731 |
# Merge all DataFrames selected
|
732 |
main_df = create_main_dataframe(
|
733 |
+
files_dict, all_panel1_values, all_panel2_values, granularity_selection
|
734 |
)
|
735 |
merged_df = merge_into_main_df(main_df, files_dict, selections)
|
736 |
|
737 |
# # Display the merged DataFrame
|
738 |
+
# st.markdown("#### Merged DataFrame based on selected Panel_1 and Panel_2")
|
739 |
# st.dataframe(merged_df)
|
740 |
|
741 |
|
|
|
768 |
"Media",
|
769 |
"Exogenous",
|
770 |
"Internal",
|
771 |
+
"Response Metrics",
|
772 |
],
|
773 |
required=True,
|
774 |
default="Media",
|
|
|
815 |
# If it exists, append the current column to the list of variables under this category
|
816 |
category_dict[category].append(column)
|
817 |
|
818 |
+
# Add Date, Panel_1 and Panel_12 in category dictionary
|
819 |
category_dict.update({"Date": ["date"]})
|
820 |
+
if "Panel_1" in final_df.columns:
|
821 |
+
category_dict["Panel Level 1"] = ["Panel_1"]
|
822 |
+
if "Panel_2" in final_df.columns:
|
823 |
+
category_dict["Panel Level 2"] = ["Panel_2"]
|
|
|
824 |
|
825 |
# Display the dictionary
|
826 |
st.markdown("#### Variable Category")
|
|
|
842 |
# Store final dataframe and bin dictionary into session state
|
843 |
st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict
|
844 |
|
845 |
+
# Save the DataFrame and dictionary from the session state to the pickle file
|
846 |
+
st.write("")
|
847 |
+
if st.button("Accept and Save", use_container_width=True):
|
848 |
+
save_to_pickle(
|
849 |
+
"data_import.pkl", st.session_state["final_df"], st.session_state["bin_dict"]
|
850 |
+
)
|
851 |
+
st.toast("💾 Saved Successfully!")
|
|
|
|
|
|