BlendMMM commited on
Commit
6132ee9
·
verified ·
1 Parent(s): 9ef9f11

Upload Data_Import.py

Browse files
Files changed (1) hide show
  1. Data_Import.py +172 -212
Data_Import.py CHANGED
@@ -8,11 +8,10 @@ st.set_page_config(
8
  initial_sidebar_state="collapsed",
9
  )
10
 
 
11
  import numpy as np
12
  import pandas as pd
13
  from utilities import set_header, load_local_css, load_authenticator
14
- import pickle
15
-
16
 
17
  load_local_css("styles.css")
18
  set_header()
@@ -116,60 +115,6 @@ def files_to_dataframes(uploaded_files):
116
 
117
 
118
  # Function to adjust dataframe granularity
119
- # def adjust_dataframe_granularity(df, current_granularity, target_granularity):
120
- # # Set index
121
- # df.set_index("date", inplace=True)
122
-
123
- # # Define aggregation rules for resampling
124
- # aggregation_rules = {
125
- # col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
126
- # for col in df.columns
127
- # }
128
-
129
- # resampled_df = df
130
- # if current_granularity == "daily" and target_granularity == "weekly":
131
- # resampled_df = df.resample("W-MON").agg(aggregation_rules)
132
-
133
- # elif current_granularity == "daily" and target_granularity == "monthly":
134
- # resampled_df = df.resample("MS").agg(aggregation_rules)
135
-
136
- # elif current_granularity == "daily" and target_granularity == "daily":
137
- # resampled_df = df.resample("D").agg(aggregation_rules)
138
-
139
- # elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
140
- # # For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
141
- # expanded_data = []
142
- # for _, row in df.iterrows():
143
- # if current_granularity == "weekly":
144
- # period_range = pd.date_range(start=row.name, periods=7)
145
- # elif current_granularity == "monthly":
146
- # period_range = pd.date_range(
147
- # start=row.name, periods=row.name.days_in_month
148
- # )
149
-
150
- # for date in period_range:
151
- # new_row = {}
152
- # for col in df.columns:
153
- # if pd.api.types.is_numeric_dtype(df[col]):
154
- # if current_granularity == "weekly":
155
- # new_row[col] = row[col] / 7
156
- # elif current_granularity == "monthly":
157
- # new_row[col] = row[col] / row.name.days_in_month
158
- # else:
159
- # new_row[col] = row[col]
160
- # expanded_data.append((date, new_row))
161
-
162
- # resampled_df = pd.DataFrame(
163
- # [data for _, data in expanded_data],
164
- # index=[date for date, _ in expanded_data],
165
- # )
166
-
167
- # # Reset index
168
- # resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
169
-
170
- # return resampled_df
171
-
172
-
173
  def adjust_dataframe_granularity(df, current_granularity, target_granularity):
174
  # Set index
175
  df.set_index("date", inplace=True)
@@ -229,39 +174,47 @@ def adjust_dataframe_granularity(df, current_granularity, target_granularity):
229
  return resampled_df
230
 
231
 
232
- # Function to clean and extract unique values of DMA and Panel
233
  st.cache_resource(show_spinner=False)
234
 
235
 
236
  def clean_and_extract_unique_values(files_dict, selections):
237
- all_dma_values = set()
238
- all_panel_values = set()
239
 
240
  for file_name, file_data in files_dict.items():
241
  df = file_data["df"]
242
 
243
- # 'DMA' and 'Panel' selections
244
- selected_dma = selections[file_name].get("DMA")
245
- selected_panel = selections[file_name].get("Panel")
246
 
247
- # Clean and standardize DMA column if it exists and is selected
248
- if selected_dma and selected_dma != "N/A" and selected_dma in df.columns:
249
- df[selected_dma] = (
250
- df[selected_dma].str.lower().str.strip().str.replace("_", " ")
 
 
 
 
251
  )
252
- all_dma_values.update(df[selected_dma].dropna().unique())
253
 
254
- # Clean and standardize Panel column if it exists and is selected
255
- if selected_panel and selected_panel != "N/A" and selected_panel in df.columns:
256
- df[selected_panel] = (
257
- df[selected_panel].str.lower().str.strip().str.replace("_", " ")
 
 
 
 
258
  )
259
- all_panel_values.update(df[selected_panel].dropna().unique())
260
 
261
  # Update the processed DataFrame back in the dictionary
262
  files_dict[file_name]["df"] = df
263
 
264
- return all_dma_values, all_panel_values
265
 
266
 
267
  # Function to format values for display
@@ -302,19 +255,21 @@ def apply_granularity_to_all(files_dict, granularity_selection, selections):
302
  for file_name, file_data in files_dict.items():
303
  df = file_data["df"].copy()
304
 
305
- # Handling when DMA or Panel might be 'N/A'
306
- selected_dma = selections[file_name].get("DMA")
307
- selected_panel = selections[file_name].get("Panel")
308
 
309
  # Correcting the segment selection logic & handling 'N/A'
310
- if selected_dma != "N/A" and selected_panel != "N/A":
311
- unique_combinations = df[[selected_dma, selected_panel]].drop_duplicates()
312
- elif selected_dma != "N/A":
313
- unique_combinations = df[[selected_dma]].drop_duplicates()
314
- selected_panel = None # Ensure Panel is ignored if N/A
315
- elif selected_panel != "N/A":
316
- unique_combinations = df[[selected_panel]].drop_duplicates()
317
- selected_dma = None # Ensure DMA is ignored if N/A
 
 
318
  else:
319
  # If both are 'N/A', process the entire dataframe as is
320
  df = adjust_dataframe_granularity(
@@ -325,15 +280,15 @@ def apply_granularity_to_all(files_dict, granularity_selection, selections):
325
 
326
  transformed_segments = []
327
  for _, combo in unique_combinations.iterrows():
328
- if selected_dma and selected_panel:
329
  segment = df[
330
- (df[selected_dma] == combo[selected_dma])
331
- & (df[selected_panel] == combo[selected_panel])
332
  ]
333
- elif selected_dma:
334
- segment = df[df[selected_dma] == combo[selected_dma]]
335
- elif selected_panel:
336
- segment = df[df[selected_panel] == combo[selected_panel]]
337
 
338
  # Adjust granularity of the segment
339
  transformed_segment = adjust_dataframe_granularity(
@@ -353,7 +308,7 @@ st.cache_resource(show_spinner=False)
353
 
354
 
355
  def create_main_dataframe(
356
- files_dict, all_dma_values, all_panel_values, granularity_selection
357
  ):
358
  # Determine the global start and end dates across all DataFrames
359
  global_start = min(df["df"]["date"].min() for df in files_dict.values())
@@ -369,18 +324,18 @@ def create_main_dataframe(
369
  else: # Default to daily if not weekly or monthly
370
  date_range = pd.date_range(start=global_start, end=global_end, freq="D")
371
 
372
- # Collect all unique DMA and Panel values, excluding 'N/A'
373
- all_dmas = all_dma_values
374
- all_panels = all_panel_values
375
 
376
- # Dynamically build the list of dimensions (Panel, DMA) to include in the main DataFrame based on availability
377
  dimensions, merge_keys = [], []
378
- if all_panels:
379
- dimensions.append(all_panels)
380
- merge_keys.append("Panel")
381
- if all_dmas:
382
- dimensions.append(all_dmas)
383
- merge_keys.append("DMA")
384
 
385
  dimensions.append(date_range) # Date range is always included
386
  merge_keys.append("date") # Date range is always included
@@ -402,28 +357,28 @@ def merge_into_main_df(main_df, files_dict, selections):
402
  for file_name, file_data in files_dict.items():
403
  df = file_data["df"].copy()
404
 
405
- # Rename selected DMA and Panel columns if not 'N/A'
406
- selected_dma = selections[file_name].get("DMA", "N/A")
407
- selected_panel = selections[file_name].get("Panel", "N/A")
408
- if selected_dma != "N/A":
409
- df.rename(columns={selected_dma: "DMA"}, inplace=True)
410
- if selected_panel != "N/A":
411
- df.rename(columns={selected_panel: "Panel"}, inplace=True)
412
 
413
- # Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel' and 'DMA'
414
  merge_keys = ["date"]
415
- if "Panel" in df.columns:
416
- merge_keys.append("Panel")
417
- if "DMA" in df.columns:
418
- merge_keys.append("DMA")
419
  main_df = pd.merge(main_df, df, on=merge_keys, how="left")
420
 
421
  # After all merges, sort by 'date' and reset index for cleanliness
422
  sort_by = ["date"]
423
- if "Panel" in main_df.columns:
424
- sort_by.append("Panel")
425
- if "DMA" in main_df.columns:
426
- sort_by.append("DMA")
427
  main_df.sort_values(by=sort_by, inplace=True)
428
  main_df.reset_index(drop=True, inplace=True)
429
 
@@ -478,16 +433,16 @@ def prepare_missing_stats_df(df):
478
  missing_stats = []
479
  for column in df.columns:
480
  if (
481
- column == "date" or column == "DMA" or column == "Panel"
482
- ): # Skip Date, DMA and Panel column
483
  continue
484
 
485
  missing = df[column].isnull().sum()
486
  pct_missing = round((missing / len(df)) * 100, 2)
487
 
488
  # Dynamically assign category based on column name
489
- # category = categorize_column(column)
490
- category = "Media"
491
 
492
  missing_stats.append(
493
  {
@@ -527,12 +482,21 @@ def add_api_dataframe_to_dict(main_df, files_dict):
527
  # Function to reads an API into a DataFrame, parsing specified columns as datetime
528
  @st.cache_resource(show_spinner=False)
529
  def read_API_data():
530
- return pd.read_excel(r"upf_data_converted.xlsx", parse_dates=["Date"])
531
 
532
 
533
- # Function to set the 'DMA_Panel_Selected' session state variable to False
534
- def set_DMA_Panel_Selected_false():
535
- st.session_state["DMA_Panel_Selected"] = False
 
 
 
 
 
 
 
 
 
536
 
537
 
538
  # Initialize 'final_df' in session state
@@ -543,9 +507,9 @@ if "final_df" not in st.session_state:
543
  if "bin_dict" not in st.session_state:
544
  st.session_state["bin_dict"] = {}
545
 
546
- # Initialize 'DMA_Panel_Selected' in session state
547
- if "DMA_Panel_Selected" not in st.session_state:
548
- st.session_state["DMA_Panel_Selected"] = False
549
 
550
  # Page Title
551
  st.write("") # Top padding
@@ -553,7 +517,7 @@ st.title("Data Import")
553
 
554
 
555
  #########################################################################################################################################################
556
- # Create a dictionary to hold all DataFrames and collect user input to specify "DMA" and "Panel" columns for each file
557
  #########################################################################################################################################################
558
 
559
 
@@ -568,25 +532,25 @@ uploaded_files = st.file_uploader(
568
  "Upload additional data",
569
  type=["xlsx"],
570
  accept_multiple_files=True,
571
- on_change=set_DMA_Panel_Selected_false,
572
  )
573
 
574
  # Custom HTML for upload instructions
575
  recommendation_html = f"""
576
  <div style="text-align: justify;">
577
- <strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including DMA, Panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
578
  </div>
579
  """
580
  st.markdown(recommendation_html, unsafe_allow_html=True)
581
 
582
- # Choose Date Granularity
583
- st.markdown("#### Choose Date Granularity")
584
  # Granularity Selection
585
  granularity_selection = st.selectbox(
586
  "Choose Date Granularity",
587
  ["Daily", "Weekly", "Monthly"],
588
  label_visibility="collapsed",
589
- on_change=set_DMA_Panel_Selected_false,
590
  )
591
  granularity_selection = str(granularity_selection).lower()
592
 
@@ -606,10 +570,10 @@ if not files_dict:
606
  st.stop() # Halts further execution until file is uploaded
607
 
608
 
609
- # Select DMA and Panel columns
610
- st.markdown("#### Select DMA and Panel columns")
611
  selections = {}
612
- with st.expander("Select DMA and Panel columns", expanded=False):
613
  count = 0 # Initialize counter to manage the visibility of labels and keys
614
  for file_name, file_data in files_dict.items():
615
  # Determine visibility of the label based on the count
@@ -621,22 +585,22 @@ with st.expander("Select DMA and Panel columns", expanded=False):
621
  # Extract non-numeric columns
622
  non_numeric_cols = file_data["non_numeric"]
623
 
624
- # Prepare DMA and Panel values for dropdown, adding "N/A" as an option
625
- dma_values = non_numeric_cols + ["N/A"]
626
- panel_values = non_numeric_cols + ["N/A"]
627
 
628
  # Skip if only one option is available
629
- if len(dma_values) == 1 and len(panel_values) == 1:
630
- selected_dma, selected_panel = "N/A", "N/A"
631
- # Update the selections for DMA and Panel for the current file
632
  selections[file_name] = {
633
- "DMA": selected_dma,
634
- "Panel": selected_panel,
635
  }
636
  continue
637
 
638
- # Create layout columns for File Name, DMA, and Panel selections
639
- file_name_col, DMA_col, Panel_col = st.columns([2, 4, 4])
640
 
641
  with file_name_col:
642
  # Display "File Name" label only for the first file
@@ -646,45 +610,45 @@ with st.expander("Select DMA and Panel columns", expanded=False):
646
  st.write("")
647
  st.write(file_name) # Display the file name
648
 
649
- with DMA_col:
650
- # Display a selectbox for DMA values
651
- selected_dma = st.selectbox(
652
- "Select DMA",
653
- dma_values,
654
- on_change=set_DMA_Panel_Selected_false,
655
  label_visibility=label_visibility, # Control visibility of the label
656
- key=f"DMA_selectbox{count}", # Ensure unique key for each selectbox
657
  )
658
 
659
- with Panel_col:
660
- # Display a selectbox for Panel values
661
- selected_panel = st.selectbox(
662
- "Select Panel",
663
- panel_values,
664
- on_change=set_DMA_Panel_Selected_false,
665
  label_visibility=label_visibility, # Control visibility of the label
666
- key=f"Panel_selectbox{count}", # Ensure unique key for each selectbox
667
  )
668
 
669
- # Skip processing if the same column is selected for both Panel and DMA due to potential data integrity issues
670
- if selected_panel == selected_dma and not (
671
- selected_panel == "N/A" and selected_dma == "N/A"
672
  ):
673
  st.warning(
674
- f"File: {file_name} → The same column cannot serve as both Panel and DMA. Please adjust your selections.",
675
  )
676
- selected_dma, selected_panel = "N/A", "N/A"
677
  st.stop()
678
 
679
- # Update the selections for DMA and Panel for the current file
680
  selections[file_name] = {
681
- "DMA": selected_dma,
682
- "Panel": selected_panel,
683
  }
684
 
685
  count += 1 # Increment the counter after processing each file
686
 
687
- # Accept DMA and Panel selection
688
  if st.button("Accept and Process", use_container_width=True):
689
 
690
  # Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
@@ -697,38 +661,38 @@ with st.expander("Select DMA and Panel columns", expanded=False):
697
  )
698
 
699
  st.session_state["files_dict"] = files_dict
700
- st.session_state["DMA_Panel_Selected"] = True
701
 
702
 
703
  #########################################################################################################################################################
704
- # Display unique DMA and Panel values
705
  #########################################################################################################################################################
706
 
707
 
708
- # Halts further execution until DMA and Panel columns are selected
709
- if "files_dict" in st.session_state and st.session_state["DMA_Panel_Selected"]:
710
  files_dict = st.session_state["files_dict"]
711
  else:
712
  st.stop()
713
 
714
- # Set to store unique values of DMA and Panel
715
- with st.spinner("Fetching DMA and Panel values..."):
716
- all_dma_values, all_panel_values = clean_and_extract_unique_values(
717
  files_dict, selections
718
  )
719
 
720
- # List of DMA and Panel columns unique values
721
- list_of_all_dma_values = list(all_dma_values)
722
- list_of_all_panel_values = list(all_panel_values)
723
 
724
- # Format DMA and Panel values for display
725
- formatted_dma_values = format_values_for_display(list_of_all_dma_values)
726
- formatted_panel_values = format_values_for_display(list_of_all_panel_values)
727
 
728
- # Unique DMA and Panel values
729
- st.markdown("#### Unique DMA and Panel values")
730
- # Display DMA and Panel values
731
- with st.expander("Unique DMA and Panel values"):
732
  st.write("")
733
  st.markdown(
734
  f"""
@@ -738,20 +702,20 @@ with st.expander("Unique DMA and Panel values"):
738
  }}
739
  </style>
740
  <div class="justify-text">
741
- <strong>Panel Values:</strong> {formatted_panel_values}<br>
742
- <strong>DMA Values:</strong> {formatted_dma_values}
743
  </div>
744
  """,
745
  unsafe_allow_html=True,
746
  )
747
 
748
- # Display total DMA and Panel
749
  st.write("")
750
  st.markdown(
751
  f"""
752
  <div style="text-align: justify;">
753
- <strong>Number of DMAs detected:</strong> {len(list_of_all_dma_values)}<br>
754
- <strong>Number of Panels detected:</strong> {len(list_of_all_panel_values)}
755
  </div>
756
  """,
757
  unsafe_allow_html=True,
@@ -766,12 +730,12 @@ with st.expander("Unique DMA and Panel values"):
766
 
767
  # Merge all DataFrames selected
768
  main_df = create_main_dataframe(
769
- files_dict, all_dma_values, all_panel_values, granularity_selection
770
  )
771
  merged_df = merge_into_main_df(main_df, files_dict, selections)
772
 
773
  # # Display the merged DataFrame
774
- # st.markdown("#### Merged DataFrame based on selected DMA and Panel")
775
  # st.dataframe(merged_df)
776
 
777
 
@@ -804,7 +768,7 @@ edited_stats_df = st.data_editor(
804
  "Media",
805
  "Exogenous",
806
  "Internal",
807
- "Response_Metric"
808
  ],
809
  required=True,
810
  default="Media",
@@ -851,13 +815,12 @@ for i, row in edited_stats_df.iterrows():
851
  # If it exists, append the current column to the list of variables under this category
852
  category_dict[category].append(column)
853
 
854
- # Add Date, DMA and Panel in category dictionary
855
  category_dict.update({"Date": ["date"]})
856
- if "DMA" in final_df.columns:
857
- category_dict["DMA"] = ["DMA"]
858
-
859
- if "Panel" in final_df.columns:
860
- category_dict["Panel"] = ["Panel"]
861
 
862
  # Display the dictionary
863
  st.markdown("#### Variable Category")
@@ -879,13 +842,10 @@ for category, variables in category_dict.items():
879
  # Store final dataframe and bin dictionary into session state
880
  st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict
881
 
882
- if st.button('Save Changes'):
883
-
884
- with open("Pickle_files/main_df", 'wb') as f:
885
- pickle.dump(st.session_state["final_df"], f)
886
- with open("Pickle_files/category_dict",'wb') as c:
887
- pickle.dump(st.session_state["bin_dict"],c)
888
- st.success('Changes Saved!')
889
-
890
-
891
-
 
8
  initial_sidebar_state="collapsed",
9
  )
10
 
11
+ import pickle
12
  import numpy as np
13
  import pandas as pd
14
  from utilities import set_header, load_local_css, load_authenticator
 
 
15
 
16
  load_local_css("styles.css")
17
  set_header()
 
115
 
116
 
117
  # Function to adjust dataframe granularity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  def adjust_dataframe_granularity(df, current_granularity, target_granularity):
119
  # Set index
120
  df.set_index("date", inplace=True)
 
174
  return resampled_df
175
 
176
 
177
+ # Function to clean and extract unique values of Panel_1 and Panel_2
178
  st.cache_resource(show_spinner=False)
179
 
180
 
181
  def clean_and_extract_unique_values(files_dict, selections):
182
+ all_panel1_values = set()
183
+ all_panel2_values = set()
184
 
185
  for file_name, file_data in files_dict.items():
186
  df = file_data["df"]
187
 
188
+ # 'Panel_1' and 'Panel_2' selections
189
+ selected_panel1 = selections[file_name].get("Panel_1")
190
+ selected_panel2 = selections[file_name].get("Panel_2")
191
 
192
+ # Clean and standardize Panel_1 column if it exists and is selected
193
+ if (
194
+ selected_panel1
195
+ and selected_panel1 != "N/A"
196
+ and selected_panel1 in df.columns
197
+ ):
198
+ df[selected_panel1] = (
199
+ df[selected_panel1].str.lower().str.strip().str.replace("_", " ")
200
  )
201
+ all_panel1_values.update(df[selected_panel1].dropna().unique())
202
 
203
+ # Clean and standardize Panel_2 column if it exists and is selected
204
+ if (
205
+ selected_panel2
206
+ and selected_panel2 != "N/A"
207
+ and selected_panel2 in df.columns
208
+ ):
209
+ df[selected_panel2] = (
210
+ df[selected_panel2].str.lower().str.strip().str.replace("_", " ")
211
  )
212
+ all_panel2_values.update(df[selected_panel2].dropna().unique())
213
 
214
  # Update the processed DataFrame back in the dictionary
215
  files_dict[file_name]["df"] = df
216
 
217
+ return all_panel1_values, all_panel2_values
218
 
219
 
220
  # Function to format values for display
 
255
  for file_name, file_data in files_dict.items():
256
  df = file_data["df"].copy()
257
 
258
+ # Handling when Panel_1 or Panel_2 might be 'N/A'
259
+ selected_panel1 = selections[file_name].get("Panel_1")
260
+ selected_panel2 = selections[file_name].get("Panel_2")
261
 
262
  # Correcting the segment selection logic & handling 'N/A'
263
+ if selected_panel1 != "N/A" and selected_panel2 != "N/A":
264
+ unique_combinations = df[
265
+ [selected_panel1, selected_panel2]
266
+ ].drop_duplicates()
267
+ elif selected_panel1 != "N/A":
268
+ unique_combinations = df[[selected_panel1]].drop_duplicates()
269
+ selected_panel2 = None # Ensure Panel_2 is ignored if N/A
270
+ elif selected_panel2 != "N/A":
271
+ unique_combinations = df[[selected_panel2]].drop_duplicates()
272
+ selected_panel1 = None # Ensure Panel_1 is ignored if N/A
273
  else:
274
  # If both are 'N/A', process the entire dataframe as is
275
  df = adjust_dataframe_granularity(
 
280
 
281
  transformed_segments = []
282
  for _, combo in unique_combinations.iterrows():
283
+ if selected_panel1 and selected_panel2:
284
  segment = df[
285
+ (df[selected_panel1] == combo[selected_panel1])
286
+ & (df[selected_panel2] == combo[selected_panel2])
287
  ]
288
+ elif selected_panel1:
289
+ segment = df[df[selected_panel1] == combo[selected_panel1]]
290
+ elif selected_panel2:
291
+ segment = df[df[selected_panel2] == combo[selected_panel2]]
292
 
293
  # Adjust granularity of the segment
294
  transformed_segment = adjust_dataframe_granularity(
 
308
 
309
 
310
  def create_main_dataframe(
311
+ files_dict, all_panel1_values, all_panel2_values, granularity_selection
312
  ):
313
  # Determine the global start and end dates across all DataFrames
314
  global_start = min(df["df"]["date"].min() for df in files_dict.values())
 
324
  else: # Default to daily if not weekly or monthly
325
  date_range = pd.date_range(start=global_start, end=global_end, freq="D")
326
 
327
+ # Collect all unique Panel_1 and Panel_2 values, excluding 'N/A'
328
+ all_panel1s = all_panel1_values
329
+ all_panel2s = all_panel2_values
330
 
331
+ # Dynamically build the list of dimensions (Panel_1, Panel_2) to include in the main DataFrame based on availability
332
  dimensions, merge_keys = [], []
333
+ if all_panel1s:
334
+ dimensions.append(all_panel1s)
335
+ merge_keys.append("Panel_1")
336
+ if all_panel2s:
337
+ dimensions.append(all_panel2s)
338
+ merge_keys.append("Panel_2")
339
 
340
  dimensions.append(date_range) # Date range is always included
341
  merge_keys.append("date") # Date range is always included
 
357
  for file_name, file_data in files_dict.items():
358
  df = file_data["df"].copy()
359
 
360
+ # Rename selected Panel_1 and Panel_2 columns if not 'N/A'
361
+ selected_panel1 = selections[file_name].get("Panel_1", "N/A")
362
+ selected_panel2 = selections[file_name].get("Panel_2", "N/A")
363
+ if selected_panel1 != "N/A":
364
+ df.rename(columns={selected_panel1: "Panel_1"}, inplace=True)
365
+ if selected_panel2 != "N/A":
366
+ df.rename(columns={selected_panel2: "Panel_2"}, inplace=True)
367
 
368
+ # Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel_1' and 'Panel_2'
369
  merge_keys = ["date"]
370
+ if "Panel_1" in df.columns:
371
+ merge_keys.append("Panel_1")
372
+ if "Panel_2" in df.columns:
373
+ merge_keys.append("Panel_2")
374
  main_df = pd.merge(main_df, df, on=merge_keys, how="left")
375
 
376
  # After all merges, sort by 'date' and reset index for cleanliness
377
  sort_by = ["date"]
378
+ if "Panel_1" in main_df.columns:
379
+ sort_by.append("Panel_1")
380
+ if "Panel_2" in main_df.columns:
381
+ sort_by.append("Panel_2")
382
  main_df.sort_values(by=sort_by, inplace=True)
383
  main_df.reset_index(drop=True, inplace=True)
384
 
 
433
  missing_stats = []
434
  for column in df.columns:
435
  if (
436
+ column == "date" or column == "Panel_2" or column == "Panel_1"
437
+ ): # Skip Date, Panel_1 and Panel_2 column
438
  continue
439
 
440
  missing = df[column].isnull().sum()
441
  pct_missing = round((missing / len(df)) * 100, 2)
442
 
443
  # Dynamically assign category based on column name
444
+ category = categorize_column(column)
445
+ # category = "Media" # Keep default bin as Media
446
 
447
  missing_stats.append(
448
  {
 
482
  # Function to reads an API into a DataFrame, parsing specified columns as datetime
483
  @st.cache_resource(show_spinner=False)
484
  def read_API_data():
485
+ return pd.read_excel("upf_data_converted.xlsx", parse_dates=["Date"])
486
 
487
 
488
+ # Function to set the 'Panel_1_Panel_2_Selected' session state variable to False
489
+ def set_Panel_1_Panel_2_Selected_false():
490
+ st.session_state["Panel_1_Panel_2_Selected"] = False
491
+
492
+
493
+ # Function to serialize and save the objects into a pickle file
494
+ @st.cache_resource(show_spinner=False)
495
+ def save_to_pickle(file_path, final_df, bin_dict):
496
+ # Open the file in write-binary mode and dump the objects
497
+ with open(file_path, "wb") as f:
498
+ pickle.dump({"final_df": final_df, "bin_dict": bin_dict}, f)
499
+ # Data is now saved to file
500
 
501
 
502
  # Initialize 'final_df' in session state
 
507
  if "bin_dict" not in st.session_state:
508
  st.session_state["bin_dict"] = {}
509
 
510
+ # Initialize 'Panel_1_Panel_2_Selected' in session state
511
+ if "Panel_1_Panel_2_Selected" not in st.session_state:
512
+ st.session_state["Panel_1_Panel_2_Selected"] = False
513
 
514
  # Page Title
515
  st.write("") # Top padding
 
517
 
518
 
519
  #########################################################################################################################################################
520
+ # Create a dictionary to hold all DataFrames and collect user input to specify "Panel_2" and "Panel_1" columns for each file
521
  #########################################################################################################################################################
522
 
523
 
 
532
  "Upload additional data",
533
  type=["xlsx"],
534
  accept_multiple_files=True,
535
+ on_change=set_Panel_1_Panel_2_Selected_false,
536
  )
537
 
538
  # Custom HTML for upload instructions
539
  recommendation_html = f"""
540
  <div style="text-align: justify;">
541
+ <strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
542
  </div>
543
  """
544
  st.markdown(recommendation_html, unsafe_allow_html=True)
545
 
546
+ # Choose Desired Granularity
547
+ st.markdown("#### Choose Desired Granularity")
548
  # Granularity Selection
549
  granularity_selection = st.selectbox(
550
  "Choose Date Granularity",
551
  ["Daily", "Weekly", "Monthly"],
552
  label_visibility="collapsed",
553
+ on_change=set_Panel_1_Panel_2_Selected_false,
554
  )
555
  granularity_selection = str(granularity_selection).lower()
556
 
 
570
  st.stop() # Halts further execution until file is uploaded
571
 
572
 
573
+ # Select Panel_1 and Panel_2 columns
574
+ st.markdown("#### Select Panel columns")
575
  selections = {}
576
+ with st.expander("Select Panel columns", expanded=False):
577
  count = 0 # Initialize counter to manage the visibility of labels and keys
578
  for file_name, file_data in files_dict.items():
579
  # Determine visibility of the label based on the count
 
585
  # Extract non-numeric columns
586
  non_numeric_cols = file_data["non_numeric"]
587
 
588
+ # Prepare Panel_1 and Panel_2 values for dropdown, adding "N/A" as an option
589
+ panel1_values = non_numeric_cols + ["N/A"]
590
+ panel2_values = non_numeric_cols + ["N/A"]
591
 
592
  # Skip if only one option is available
593
+ if len(panel1_values) == 1 and len(panel2_values) == 1:
594
+ selected_panel1, selected_panel2 = "N/A", "N/A"
595
+ # Update the selections for Panel_1 and Panel_2 for the current file
596
  selections[file_name] = {
597
+ "Panel_1": selected_panel1,
598
+ "Panel_2": selected_panel2,
599
  }
600
  continue
601
 
602
+ # Create layout columns for File Name, Panel_2, and Panel_1 selections
603
+ file_name_col, Panel_1_col, Panel_2_col = st.columns([2, 4, 4])
604
 
605
  with file_name_col:
606
  # Display "File Name" label only for the first file
 
610
  st.write("")
611
  st.write(file_name) # Display the file name
612
 
613
+ with Panel_1_col:
614
+ # Display a selectbox for Panel_1 values
615
+ selected_panel1 = st.selectbox(
616
+ "Select Panel Level 1",
617
+ panel2_values,
618
+ on_change=set_Panel_1_Panel_2_Selected_false,
619
  label_visibility=label_visibility, # Control visibility of the label
620
+ key=f"Panel_1_selectbox{count}", # Ensure unique key for each selectbox
621
  )
622
 
623
+ with Panel_2_col:
624
+ # Display a selectbox for Panel_2 values
625
+ selected_panel2 = st.selectbox(
626
+ "Select Panel Level 2",
627
+ panel1_values,
628
+ on_change=set_Panel_1_Panel_2_Selected_false,
629
  label_visibility=label_visibility, # Control visibility of the label
630
+ key=f"Panel_2_selectbox{count}", # Ensure unique key for each selectbox
631
  )
632
 
633
+ # Skip processing if the same column is selected for both Panel_1 and Panel_2 due to potential data integrity issues
634
+ if selected_panel2 == selected_panel1 and not (
635
+ selected_panel2 == "N/A" and selected_panel1 == "N/A"
636
  ):
637
  st.warning(
638
+ f"File: {file_name} → The same column cannot serve as both Panel_1 and Panel_2. Please adjust your selections.",
639
  )
640
+ selected_panel1, selected_panel2 = "N/A", "N/A"
641
  st.stop()
642
 
643
+ # Update the selections for Panel_1 and Panel_2 for the current file
644
  selections[file_name] = {
645
+ "Panel_1": selected_panel1,
646
+ "Panel_2": selected_panel2,
647
  }
648
 
649
  count += 1 # Increment the counter after processing each file
650
 
651
+ # Accept Panel_1 and Panel_2 selection
652
  if st.button("Accept and Process", use_container_width=True):
653
 
654
  # Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
 
661
  )
662
 
663
  st.session_state["files_dict"] = files_dict
664
+ st.session_state["Panel_1_Panel_2_Selected"] = True
665
 
666
 
667
  #########################################################################################################################################################
668
+ # Display unique Panel_1 and Panel_2 values
669
  #########################################################################################################################################################
670
 
671
 
672
+ # Halts further execution until Panel_1 and Panel_2 columns are selected
673
+ if "files_dict" in st.session_state and st.session_state["Panel_1_Panel_2_Selected"]:
674
  files_dict = st.session_state["files_dict"]
675
  else:
676
  st.stop()
677
 
678
+ # Set to store unique values of Panel_1 and Panel_2
679
+ with st.spinner("Fetching Panel values..."):
680
+ all_panel1_values, all_panel2_values = clean_and_extract_unique_values(
681
  files_dict, selections
682
  )
683
 
684
+ # List of Panel_1 and Panel_2 columns unique values
685
+ list_of_all_panel1_values = list(all_panel1_values)
686
+ list_of_all_panel2_values = list(all_panel2_values)
687
 
688
+ # Format Panel_1 and Panel_2 values for display
689
+ formatted_panel1_values = format_values_for_display(list_of_all_panel1_values)
690
+ formatted_panel2_values = format_values_for_display(list_of_all_panel2_values)
691
 
692
+ # Unique Panel_1 and Panel_2 values
693
+ st.markdown("#### Unique Panel values")
694
+ # Display Panel_1 and Panel_2 values
695
+ with st.expander("Unique Panel values"):
696
  st.write("")
697
  st.markdown(
698
  f"""
 
702
  }}
703
  </style>
704
  <div class="justify-text">
705
+ <strong>Panel Level 1 Values:</strong> {formatted_panel1_values}<br>
706
+ <strong>Panel Level 2 Values:</strong> {formatted_panel2_values}
707
  </div>
708
  """,
709
  unsafe_allow_html=True,
710
  )
711
 
712
+ # Display total Panel_1 and Panel_2
713
  st.write("")
714
  st.markdown(
715
  f"""
716
  <div style="text-align: justify;">
717
+ <strong>Number of Level 1 Panels detected:</strong> {len(list_of_all_panel1_values)}<br>
718
+ <strong>Number of Level 2 Panels detected:</strong> {len(list_of_all_panel2_values)}
719
  </div>
720
  """,
721
  unsafe_allow_html=True,
 
730
 
731
  # Merge all DataFrames selected
732
  main_df = create_main_dataframe(
733
+ files_dict, all_panel1_values, all_panel2_values, granularity_selection
734
  )
735
  merged_df = merge_into_main_df(main_df, files_dict, selections)
736
 
737
  # # Display the merged DataFrame
738
+ # st.markdown("#### Merged DataFrame based on selected Panel_1 and Panel_2")
739
  # st.dataframe(merged_df)
740
 
741
 
 
768
  "Media",
769
  "Exogenous",
770
  "Internal",
771
+ "Response Metrics",
772
  ],
773
  required=True,
774
  default="Media",
 
815
  # If it exists, append the current column to the list of variables under this category
816
  category_dict[category].append(column)
817
 
818
+ # Add Date, Panel_1 and Panel_12 in category dictionary
819
  category_dict.update({"Date": ["date"]})
820
+ if "Panel_1" in final_df.columns:
821
+ category_dict["Panel Level 1"] = ["Panel_1"]
822
+ if "Panel_2" in final_df.columns:
823
+ category_dict["Panel Level 2"] = ["Panel_2"]
 
824
 
825
  # Display the dictionary
826
  st.markdown("#### Variable Category")
 
842
  # Store final dataframe and bin dictionary into session state
843
  st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict
844
 
845
+ # Save the DataFrame and dictionary from the session state to the pickle file
846
+ st.write("")
847
+ if st.button("Accept and Save", use_container_width=True):
848
+ save_to_pickle(
849
+ "data_import.pkl", st.session_state["final_df"], st.session_state["bin_dict"]
850
+ )
851
+ st.toast("💾 Saved Successfully!")