Spaces:
Sleeping
Sleeping
Delete pages/2_Transformations.py
Browse files- pages/2_Transformations.py +0 -522
pages/2_Transformations.py
DELETED
|
@@ -1,522 +0,0 @@
|
|
| 1 |
-
# Importing necessary libraries
|
| 2 |
-
import streamlit as st
|
| 3 |
-
|
| 4 |
-
st.set_page_config(
|
| 5 |
-
page_title="Transformations",
|
| 6 |
-
page_icon=":shark:",
|
| 7 |
-
layout="wide",
|
| 8 |
-
initial_sidebar_state="collapsed",
|
| 9 |
-
)
|
| 10 |
-
|
| 11 |
-
import pickle
|
| 12 |
-
import numpy as np
|
| 13 |
-
import pandas as pd
|
| 14 |
-
from utilities import set_header, load_local_css
|
| 15 |
-
import streamlit_authenticator as stauth
|
| 16 |
-
import yaml
|
| 17 |
-
from yaml import SafeLoader
|
| 18 |
-
|
| 19 |
-
load_local_css("styles.css")
|
| 20 |
-
set_header()
|
| 21 |
-
|
| 22 |
-
# Check for authentication status
|
| 23 |
-
for k, v in st.session_state.items():
|
| 24 |
-
if k not in ["logout", "login", "config"] and not k.startswith(
|
| 25 |
-
"FormSubmitter"
|
| 26 |
-
):
|
| 27 |
-
st.session_state[k] = v
|
| 28 |
-
with open("config.yaml") as file:
|
| 29 |
-
config = yaml.load(file, Loader=SafeLoader)
|
| 30 |
-
st.session_state["config"] = config
|
| 31 |
-
authenticator = stauth.Authenticate(
|
| 32 |
-
config["credentials"],
|
| 33 |
-
config["cookie"]["name"],
|
| 34 |
-
config["cookie"]["key"],
|
| 35 |
-
config["cookie"]["expiry_days"],
|
| 36 |
-
config["preauthorized"],
|
| 37 |
-
)
|
| 38 |
-
st.session_state["authenticator"] = authenticator
|
| 39 |
-
name, authentication_status, username = authenticator.login("Login", "main")
|
| 40 |
-
auth_status = st.session_state.get("authentication_status")
|
| 41 |
-
|
| 42 |
-
if auth_status == True:
|
| 43 |
-
authenticator.logout("Logout", "main")
|
| 44 |
-
is_state_initiaized = st.session_state.get("initialized", False)
|
| 45 |
-
|
| 46 |
-
if not is_state_initiaized:
|
| 47 |
-
|
| 48 |
-
if 'session_name' not in st.session_state:
|
| 49 |
-
st.session_state['session_name']=None
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
# Deserialize and load the objects from the pickle file
|
| 53 |
-
with open("data_import.pkl", "rb") as f:
|
| 54 |
-
data = pickle.load(f)
|
| 55 |
-
|
| 56 |
-
# Accessing the loaded objects
|
| 57 |
-
final_df_loaded = data["final_df"]
|
| 58 |
-
bin_dict_loaded = data["bin_dict"]
|
| 59 |
-
|
| 60 |
-
# Initialize session state
|
| 61 |
-
if "transformed_columns_dict" not in st.session_state:
|
| 62 |
-
st.session_state["transformed_columns_dict"] = {} # Default empty dictionary
|
| 63 |
-
|
| 64 |
-
if "final_df" not in st.session_state:
|
| 65 |
-
st.session_state["final_df"] = final_df_loaded # Default as original dataframe
|
| 66 |
-
|
| 67 |
-
if "summary_string" not in st.session_state:
|
| 68 |
-
st.session_state["summary_string"] = None # Default as None
|
| 69 |
-
|
| 70 |
-
# Extract original columns for specified categories
|
| 71 |
-
original_columns = {
|
| 72 |
-
category: bin_dict_loaded[category]
|
| 73 |
-
for category in ["Media", "Internal", "Exogenous"]
|
| 74 |
-
if category in bin_dict_loaded
|
| 75 |
-
}
|
| 76 |
-
|
| 77 |
-
# Retrive Panel columns
|
| 78 |
-
panel_1 = bin_dict_loaded.get("Panel Level 1")
|
| 79 |
-
panel_2 = bin_dict_loaded.get("Panel Level 2")
|
| 80 |
-
|
| 81 |
-
# # For testing on non panel level
|
| 82 |
-
# final_df_loaded = final_df_loaded.drop("Panel_1", axis=1)
|
| 83 |
-
# final_df_loaded = final_df_loaded.groupby("date").mean().reset_index()
|
| 84 |
-
# panel_1 = None
|
| 85 |
-
|
| 86 |
-
# Apply transformations on panel level
|
| 87 |
-
st.write("")
|
| 88 |
-
if panel_1:
|
| 89 |
-
panel = panel_1 + panel_2 if panel_2 else panel_1
|
| 90 |
-
else:
|
| 91 |
-
panel = []
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# Function to build transformation widgets
|
| 95 |
-
def transformation_widgets(category, transform_params, date_granularity):
|
| 96 |
-
# Transformation Options
|
| 97 |
-
transformation_options = {
|
| 98 |
-
"Media": ["Lag", "Moving Average", "Saturation", "Power", "Adstock"],
|
| 99 |
-
"Internal": ["Lead", "Lag", "Moving Average"],
|
| 100 |
-
"Exogenous": ["Lead", "Lag", "Moving Average"],
|
| 101 |
-
}
|
| 102 |
-
|
| 103 |
-
with st.expander(f"{category} Transformations"):
|
| 104 |
-
|
| 105 |
-
# Let users select which transformations to apply
|
| 106 |
-
transformations_to_apply = st.multiselect(
|
| 107 |
-
"Select transformations to apply",
|
| 108 |
-
options=transformation_options[category],
|
| 109 |
-
default=[],
|
| 110 |
-
key=f"transformation_{category}",
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
# Determine the number of transformations to put in each column
|
| 114 |
-
transformations_per_column = (
|
| 115 |
-
len(transformations_to_apply) // 2 + len(transformations_to_apply) % 2
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
# Create two columns
|
| 119 |
-
col1, col2 = st.columns(2)
|
| 120 |
-
|
| 121 |
-
# Assign transformations to each column
|
| 122 |
-
transformations_col1 = transformations_to_apply[:transformations_per_column]
|
| 123 |
-
transformations_col2 = transformations_to_apply[transformations_per_column:]
|
| 124 |
-
|
| 125 |
-
# Define a helper function to create widgets for each transformation
|
| 126 |
-
def create_transformation_widgets(column, transformations):
|
| 127 |
-
with column:
|
| 128 |
-
for transformation in transformations:
|
| 129 |
-
# Conditionally create widgets for selected transformations
|
| 130 |
-
if transformation == "Lead":
|
| 131 |
-
st.markdown(f"**Lead ({date_granularity})**")
|
| 132 |
-
lead = st.slider(
|
| 133 |
-
"Lead periods",
|
| 134 |
-
1,
|
| 135 |
-
10,
|
| 136 |
-
(1, 2),
|
| 137 |
-
1,
|
| 138 |
-
key=f"lead_{category}",
|
| 139 |
-
label_visibility="collapsed",
|
| 140 |
-
)
|
| 141 |
-
start = lead[0]
|
| 142 |
-
end = lead[1]
|
| 143 |
-
step = 1
|
| 144 |
-
transform_params[category]["Lead"] = np.arange(
|
| 145 |
-
start, end + step, step
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
if transformation == "Lag":
|
| 149 |
-
st.markdown(f"**Lag ({date_granularity})**")
|
| 150 |
-
lag = st.slider(
|
| 151 |
-
"Lag periods",
|
| 152 |
-
1,
|
| 153 |
-
10,
|
| 154 |
-
(1, 2),
|
| 155 |
-
1,
|
| 156 |
-
key=f"lag_{category}",
|
| 157 |
-
label_visibility="collapsed",
|
| 158 |
-
)
|
| 159 |
-
start = lag[0]
|
| 160 |
-
end = lag[1]
|
| 161 |
-
step = 1
|
| 162 |
-
transform_params[category]["Lag"] = np.arange(
|
| 163 |
-
start, end + step, step
|
| 164 |
-
)
|
| 165 |
-
|
| 166 |
-
if transformation == "Moving Average":
|
| 167 |
-
st.markdown(f"**Moving Average ({date_granularity})**")
|
| 168 |
-
window = st.slider(
|
| 169 |
-
"Window size for Moving Average",
|
| 170 |
-
1,
|
| 171 |
-
10,
|
| 172 |
-
(1, 2),
|
| 173 |
-
1,
|
| 174 |
-
key=f"ma_{category}",
|
| 175 |
-
label_visibility="collapsed",
|
| 176 |
-
)
|
| 177 |
-
start = window[0]
|
| 178 |
-
end = window[1]
|
| 179 |
-
step = 1
|
| 180 |
-
transform_params[category]["Moving Average"] = np.arange(
|
| 181 |
-
start, end + step, step
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
if transformation == "Saturation":
|
| 185 |
-
st.markdown("**Saturation (%)**")
|
| 186 |
-
saturation_point = st.slider(
|
| 187 |
-
f"Saturation Percentage",
|
| 188 |
-
0,
|
| 189 |
-
100,
|
| 190 |
-
(10, 20),
|
| 191 |
-
10,
|
| 192 |
-
key=f"sat_{category}",
|
| 193 |
-
label_visibility="collapsed",
|
| 194 |
-
)
|
| 195 |
-
start = saturation_point[0]
|
| 196 |
-
end = saturation_point[1]
|
| 197 |
-
step = 10
|
| 198 |
-
transform_params[category]["Saturation"] = np.arange(
|
| 199 |
-
start, end + step, step
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
if transformation == "Power":
|
| 203 |
-
st.markdown("**Power**")
|
| 204 |
-
power = st.slider(
|
| 205 |
-
f"Power",
|
| 206 |
-
0,
|
| 207 |
-
10,
|
| 208 |
-
(2, 4),
|
| 209 |
-
1,
|
| 210 |
-
key=f"power_{category}",
|
| 211 |
-
label_visibility="collapsed",
|
| 212 |
-
)
|
| 213 |
-
start = power[0]
|
| 214 |
-
end = power[1]
|
| 215 |
-
step = 1
|
| 216 |
-
transform_params[category]["Power"] = np.arange(
|
| 217 |
-
start, end + step, step
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
if transformation == "Adstock":
|
| 221 |
-
st.markdown("**Adstock**")
|
| 222 |
-
rate = st.slider(
|
| 223 |
-
f"Factor ({category})",
|
| 224 |
-
0.0,
|
| 225 |
-
1.0,
|
| 226 |
-
(0.5, 0.7),
|
| 227 |
-
0.05,
|
| 228 |
-
key=f"adstock_{category}",
|
| 229 |
-
label_visibility="collapsed",
|
| 230 |
-
)
|
| 231 |
-
start = rate[0]
|
| 232 |
-
end = rate[1]
|
| 233 |
-
step = 0.05
|
| 234 |
-
adstock_range = [
|
| 235 |
-
round(a, 3) for a in np.arange(start, end + step, step)
|
| 236 |
-
]
|
| 237 |
-
transform_params[category]["Adstock"] = adstock_range
|
| 238 |
-
|
| 239 |
-
# Create widgets in each column
|
| 240 |
-
create_transformation_widgets(col1, transformations_col1)
|
| 241 |
-
create_transformation_widgets(col2, transformations_col2)
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
# Function to apply Lag transformation
|
| 245 |
-
def apply_lag(df, lag):
|
| 246 |
-
return df.shift(lag)
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
# Function to apply Lead transformation
|
| 250 |
-
def apply_lead(df, lead):
|
| 251 |
-
return df.shift(-lead)
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
# Function to apply Moving Average transformation
|
| 255 |
-
def apply_moving_average(df, window_size):
|
| 256 |
-
return df.rolling(window=window_size).mean()
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
# Function to apply Saturation transformation
|
| 260 |
-
def apply_saturation(df, saturation_percent_100):
|
| 261 |
-
# Convert saturation percentage from 100-based to fraction
|
| 262 |
-
saturation_percent = saturation_percent_100 / 100.0
|
| 263 |
-
|
| 264 |
-
# Calculate saturation point and steepness
|
| 265 |
-
column_max = df.max()
|
| 266 |
-
column_min = df.min()
|
| 267 |
-
saturation_point = (column_min + column_max) / 2
|
| 268 |
-
|
| 269 |
-
numerator = np.log(
|
| 270 |
-
(1 / (saturation_percent if saturation_percent != 1 else 1 - 1e-9)) - 1
|
| 271 |
-
)
|
| 272 |
-
denominator = np.log(saturation_point / max(column_max, 1e-9))
|
| 273 |
-
|
| 274 |
-
steepness = numerator / max(
|
| 275 |
-
denominator, 1e-9
|
| 276 |
-
) # Avoid division by zero with a small constant
|
| 277 |
-
|
| 278 |
-
# Apply the saturation transformation
|
| 279 |
-
transformed_series = df.apply(
|
| 280 |
-
lambda x: (1 / (1 + (saturation_point / x) ** steepness)) * x
|
| 281 |
-
)
|
| 282 |
-
|
| 283 |
-
return transformed_series
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
# Function to apply Power transformation
|
| 287 |
-
def apply_power(df, power):
|
| 288 |
-
return df**power
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
# Function to apply Adstock transformation
|
| 292 |
-
def apply_adstock(df, factor):
|
| 293 |
-
x = 0
|
| 294 |
-
# Use the walrus operator to update x iteratively with the Adstock formula
|
| 295 |
-
adstock_var = [x := x * factor + v for v in df]
|
| 296 |
-
ans = pd.Series(adstock_var, index=df.index)
|
| 297 |
-
return ans
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
# Function to generate transformed columns names
|
| 301 |
-
@st.cache_resource(show_spinner=False)
|
| 302 |
-
def generate_transformed_columns(original_columns, transform_params):
|
| 303 |
-
transformed_columns, summary = {}, {}
|
| 304 |
-
|
| 305 |
-
for category, columns in original_columns.items():
|
| 306 |
-
for column in columns:
|
| 307 |
-
transformed_columns[column] = []
|
| 308 |
-
summary_details = (
|
| 309 |
-
[]
|
| 310 |
-
) # List to hold transformation details for the current column
|
| 311 |
-
|
| 312 |
-
if category in transform_params:
|
| 313 |
-
for transformation, values in transform_params[category].items():
|
| 314 |
-
# Generate transformed column names for each value
|
| 315 |
-
for value in values:
|
| 316 |
-
transformed_name = f"{column}@{transformation}_{value}"
|
| 317 |
-
transformed_columns[column].append(transformed_name)
|
| 318 |
-
|
| 319 |
-
# Format the values list as a string with commas and "and" before the last item
|
| 320 |
-
if len(values) > 1:
|
| 321 |
-
formatted_values = (
|
| 322 |
-
", ".join(map(str, values[:-1])) + " and " + str(values[-1])
|
| 323 |
-
)
|
| 324 |
-
else:
|
| 325 |
-
formatted_values = str(values[0])
|
| 326 |
-
|
| 327 |
-
# Add transformation details
|
| 328 |
-
summary_details.append(f"{transformation} ({formatted_values})")
|
| 329 |
-
|
| 330 |
-
# Only add to summary if there are transformation details for the column
|
| 331 |
-
if summary_details:
|
| 332 |
-
formatted_summary = "⮕ ".join(summary_details)
|
| 333 |
-
# Use <strong> tags to make the column name bold
|
| 334 |
-
summary[column] = f"<strong>{column}</strong>: {formatted_summary}"
|
| 335 |
-
|
| 336 |
-
# Generate a comprehensive summary string for all columns
|
| 337 |
-
summary_items = [
|
| 338 |
-
f"{idx + 1}. {details}" for idx, details in enumerate(summary.values())
|
| 339 |
-
]
|
| 340 |
-
|
| 341 |
-
summary_string = "\n".join(summary_items)
|
| 342 |
-
|
| 343 |
-
return transformed_columns, summary_string
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
# Function to apply transformations to DataFrame slices based on specified categories and parameters
|
| 347 |
-
@st.cache_resource(show_spinner=False)
|
| 348 |
-
def apply_category_transformations(df, bin_dict, transform_params, panel):
|
| 349 |
-
# Dictionary for function mapping
|
| 350 |
-
transformation_functions = {
|
| 351 |
-
"Lead": apply_lead,
|
| 352 |
-
"Lag": apply_lag,
|
| 353 |
-
"Moving Average": apply_moving_average,
|
| 354 |
-
"Saturation": apply_saturation,
|
| 355 |
-
"Power": apply_power,
|
| 356 |
-
"Adstock": apply_adstock,
|
| 357 |
-
}
|
| 358 |
-
|
| 359 |
-
# Initialize category_df as an empty DataFrame
|
| 360 |
-
category_df = pd.DataFrame()
|
| 361 |
-
|
| 362 |
-
# Iterate through each category specified in transform_params
|
| 363 |
-
for category in ["Media", "Internal", "Exogenous"]:
|
| 364 |
-
if (
|
| 365 |
-
category not in transform_params
|
| 366 |
-
or category not in bin_dict
|
| 367 |
-
or not transform_params[category]
|
| 368 |
-
):
|
| 369 |
-
continue # Skip categories without transformations
|
| 370 |
-
|
| 371 |
-
# Slice the DataFrame based on the columns specified in bin_dict for the current category
|
| 372 |
-
df_slice = df[bin_dict[category] + panel]
|
| 373 |
-
|
| 374 |
-
# Iterate through each transformation and its parameters for the current category
|
| 375 |
-
for transformation, parameters in transform_params[category].items():
|
| 376 |
-
transformation_function = transformation_functions[transformation]
|
| 377 |
-
|
| 378 |
-
# Check if there is panel data to group by
|
| 379 |
-
if len(panel) > 0:
|
| 380 |
-
# Apply the transformation to each group
|
| 381 |
-
category_df = pd.concat(
|
| 382 |
-
[
|
| 383 |
-
df_slice.groupby(panel)
|
| 384 |
-
.transform(transformation_function, p)
|
| 385 |
-
.add_suffix(f"@{transformation}_{p}")
|
| 386 |
-
for p in parameters
|
| 387 |
-
],
|
| 388 |
-
axis=1,
|
| 389 |
-
)
|
| 390 |
-
|
| 391 |
-
# Replace all NaN or null values in category_df with 0
|
| 392 |
-
category_df.fillna(0, inplace=True)
|
| 393 |
-
|
| 394 |
-
# Update df_slice
|
| 395 |
-
df_slice = pd.concat(
|
| 396 |
-
[df[panel], category_df],
|
| 397 |
-
axis=1,
|
| 398 |
-
)
|
| 399 |
-
|
| 400 |
-
else:
|
| 401 |
-
for p in parameters:
|
| 402 |
-
# Apply the transformation function to each column
|
| 403 |
-
temp_df = df_slice.apply(
|
| 404 |
-
lambda x: transformation_function(x, p), axis=0
|
| 405 |
-
).rename(lambda x: f"{x}@{transformation}_{p}", axis="columns")
|
| 406 |
-
# Concatenate the transformed DataFrame slice to the category DataFrame
|
| 407 |
-
category_df = pd.concat([category_df, temp_df], axis=1)
|
| 408 |
-
|
| 409 |
-
# Replace all NaN or null values in category_df with 0
|
| 410 |
-
category_df.fillna(0, inplace=True)
|
| 411 |
-
|
| 412 |
-
# Update df_slice
|
| 413 |
-
df_slice = pd.concat(
|
| 414 |
-
[df[panel], category_df],
|
| 415 |
-
axis=1,
|
| 416 |
-
)
|
| 417 |
-
|
| 418 |
-
# If category_df has been modified, concatenate it with the panel and response metrics from the original DataFrame
|
| 419 |
-
if not category_df.empty:
|
| 420 |
-
final_df = pd.concat([df, category_df], axis=1)
|
| 421 |
-
else:
|
| 422 |
-
# If no transformations were applied, use the original DataFrame
|
| 423 |
-
final_df = df
|
| 424 |
-
|
| 425 |
-
return final_df
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
# Function to infers the granularity of the date column in a DataFrame
|
| 429 |
-
@st.cache_resource(show_spinner=False)
|
| 430 |
-
def infer_date_granularity(df):
|
| 431 |
-
# Find the most common difference
|
| 432 |
-
common_freq = pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]
|
| 433 |
-
|
| 434 |
-
# Map the most common difference to a granularity
|
| 435 |
-
if common_freq == 1:
|
| 436 |
-
return "daily"
|
| 437 |
-
elif common_freq == 7:
|
| 438 |
-
return "weekly"
|
| 439 |
-
elif 28 <= common_freq <= 31:
|
| 440 |
-
return "monthly"
|
| 441 |
-
else:
|
| 442 |
-
return "irregular"
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
#########################################################################################################################################################
|
| 446 |
-
# User input for transformations
|
| 447 |
-
#########################################################################################################################################################
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
# Infer date granularity
|
| 451 |
-
date_granularity = infer_date_granularity(final_df_loaded)
|
| 452 |
-
|
| 453 |
-
# Initialize the main dictionary to store the transformation parameters for each category
|
| 454 |
-
transform_params = {"Media": {}, "Internal": {}, "Exogenous": {}}
|
| 455 |
-
|
| 456 |
-
# User input for transformations
|
| 457 |
-
st.markdown("### Select Transformations to Apply")
|
| 458 |
-
for category in ["Media", "Internal", "Exogenous"]:
|
| 459 |
-
# Skip Internal
|
| 460 |
-
if category == "Internal":
|
| 461 |
-
continue
|
| 462 |
-
|
| 463 |
-
transformation_widgets(category, transform_params, date_granularity)
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
#########################################################################################################################################################
|
| 467 |
-
# Apply transformations
|
| 468 |
-
#########################################################################################################################################################
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
# Apply category-based transformations to the DataFrame
|
| 472 |
-
if st.button("Accept and Proceed", use_container_width=True):
|
| 473 |
-
with st.spinner("Applying transformations..."):
|
| 474 |
-
final_df = apply_category_transformations(
|
| 475 |
-
final_df_loaded, bin_dict_loaded, transform_params, panel
|
| 476 |
-
)
|
| 477 |
-
|
| 478 |
-
# Generate a dictionary mapping original column names to lists of transformed column names
|
| 479 |
-
transformed_columns_dict, summary_string = generate_transformed_columns(
|
| 480 |
-
original_columns, transform_params
|
| 481 |
-
)
|
| 482 |
-
|
| 483 |
-
# Store into transformed dataframe and summary session state
|
| 484 |
-
st.session_state["final_df"] = final_df
|
| 485 |
-
st.session_state["summary_string"] = summary_string
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
#########################################################################################################################################################
|
| 489 |
-
# Display the transformed DataFrame and summary
|
| 490 |
-
#########################################################################################################################################################
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
# Display the transformed DataFrame in the Streamlit app
|
| 494 |
-
st.markdown("### Transformed DataFrame")
|
| 495 |
-
st.dataframe(st.session_state["final_df"], hide_index=True)
|
| 496 |
-
|
| 497 |
-
# Total rows and columns
|
| 498 |
-
total_rows, total_columns = st.session_state["final_df"].shape
|
| 499 |
-
st.markdown(
|
| 500 |
-
f"<p style='text-align: justify;'>The transformed DataFrame contains <strong>{total_rows}</strong> rows and <strong>{total_columns}</strong> columns.</p>",
|
| 501 |
-
unsafe_allow_html=True,
|
| 502 |
-
)
|
| 503 |
-
|
| 504 |
-
# Display the summary of transformations as markdown
|
| 505 |
-
if st.session_state["summary_string"]:
|
| 506 |
-
with st.expander("Summary of Transformations"):
|
| 507 |
-
st.markdown("### Summary of Transformations")
|
| 508 |
-
st.markdown(st.session_state["summary_string"], unsafe_allow_html=True)
|
| 509 |
-
|
| 510 |
-
@st.cache_resource(show_spinner=False)
|
| 511 |
-
def save_to_pickle(file_path, final_df):
|
| 512 |
-
# Open the file in write-binary mode and dump the objects
|
| 513 |
-
with open(file_path, "wb") as f:
|
| 514 |
-
pickle.dump({"final_df_transformed": final_df}, f)
|
| 515 |
-
# Data is now saved to file
|
| 516 |
-
|
| 517 |
-
if st.button("Accept and Save", use_container_width=True):
|
| 518 |
-
|
| 519 |
-
save_to_pickle(
|
| 520 |
-
"final_df_transformed.pkl", st.session_state["final_df"]
|
| 521 |
-
)
|
| 522 |
-
st.toast("💾 Saved Successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|