File size: 9,277 Bytes
9938325 fde220d 9938325 fde220d 9938325 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Importing necessary libraries
import streamlit as st
st.set_page_config(
page_title="Saved Scenarios",
page_icon="⚖️",
layout="wide",
initial_sidebar_state="collapsed",
)
import io
import os
import json
import pickle
import sqlite3
import zipfile
import numpy as np
import pandas as pd
from classes import numerize
from openpyxl import Workbook
from collections import OrderedDict
from utilities import (
project_selection,
initialize_data,
set_header,
load_local_css,
name_formating,
)
# Styling
load_local_css("styles.css")
set_header()
# Create project_dct
if "project_dct" not in st.session_state:
project_selection()
st.stop()
database_file = r"DB\User.db"
conn = sqlite3.connect(
database_file, check_same_thread=False
) # connection with sql db
c = conn.cursor()
# Display project info
col_project_data = st.columns([2, 1])
with col_project_data[0]:
st.markdown(f"**Welcome {st.session_state['username']}**")
with col_project_data[1]:
st.markdown(f"**Current Project: {st.session_state['project_name']}**")
# Page Title
st.title("Saved Scenarios")
scenarios_name_placeholder = st.empty()
# Function to get saved scenarios dictionary
def get_saved_scenarios_dict():
# Path to the saved scenarios file
saved_scenarios_dict_path = os.path.join(
st.session_state["project_path"], "saved_scenarios.pkl"
)
# Load existing scenarios if the file exists
if os.path.exists(saved_scenarios_dict_path):
with open(saved_scenarios_dict_path, "rb") as f:
saved_scenarios_dict = pickle.load(f)
else:
saved_scenarios_dict = OrderedDict()
return saved_scenarios_dict
# Function to format values based on their size
def format_value(value):
return round(value, 4) if value < 1 else round(value, 1)
# Function to recursively convert non-serializable types to serializable ones
def convert_to_serializable(obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, dict):
return {key: convert_to_serializable(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [convert_to_serializable(element) for element in obj]
elif isinstance(obj, (int, float, str, bool, type(None))):
return obj
else:
# Fallback: convert the object to a string
return str(obj)
# Function to generate zip file of current scenario
@st.cache_data(show_spinner=False)
def download_as_zip(
df,
scenario_data,
excel_name="optimization_results.xlsx",
json_name="scenario_params.json",
):
# Create an in-memory bytes buffer for the ZIP file
buffer = io.BytesIO()
# Create a ZipFile object in memory
with zipfile.ZipFile(buffer, "w") as zip_file:
# Save the DataFrame to an Excel file in the zip using openpyxl
excel_buffer = io.BytesIO()
workbook = Workbook()
sheet = workbook.active
sheet.title = "Results"
# Write DataFrame headers
for col_num, column_title in enumerate(df.columns, 1):
sheet.cell(row=1, column=col_num, value=column_title)
# Write DataFrame data
for row_num, row_data in enumerate(df.values, 2):
for col_num, cell_value in enumerate(row_data, 1):
sheet.cell(row=row_num, column=col_num, value=cell_value)
# Save the workbook to the in-memory buffer
workbook.save(excel_buffer)
excel_buffer.seek(0) # Rewind the buffer to the beginning
zip_file.writestr(excel_name, excel_buffer.getvalue())
# Save the dictionary to a JSON file in the zip
json_buffer = io.BytesIO()
json_buffer.write(
json.dumps(convert_to_serializable(scenario_data), indent=4).encode("utf-8")
)
json_buffer.seek(0) # Rewind the buffer to the beginning
zip_file.writestr(json_name, json_buffer.getvalue())
buffer.seek(0) # Rewind the buffer to the beginning
return buffer
# Function to delete the selected scenario from the saved scenarios dictionary
def delete_selected_scenarios(selected_scenario):
# Path to the saved scenarios file
saved_scenarios_dict_path = os.path.join(
st.session_state["project_path"], "saved_scenarios.pkl"
)
# Load existing scenarios if the file exists
if os.path.exists(saved_scenarios_dict_path):
with open(saved_scenarios_dict_path, "rb") as f:
saved_scenarios_dict = pickle.load(f)
else:
saved_scenarios_dict = OrderedDict()
try:
# Attempt to delete the selected scenario
del saved_scenarios_dict[selected_scenario]
# Save the updated dictionary back to the file
with open(saved_scenarios_dict_path, "wb") as f:
pickle.dump(saved_scenarios_dict, f)
except KeyError:
# If the scenario is not found in the dictionary, ignore the error
pass
# Get saved scenarios dictionary and scenario name list
saved_scenarios_dict = get_saved_scenarios_dict()
scenarios_list = list(saved_scenarios_dict.keys())
# Check if the list of saved scenarios is empty
if len(scenarios_list) == 0:
# Display a warning message if no scenarios are saved
st.warning("No scenarios saved. Please save a scenario to load.", icon="⚠️")
st.stop()
# Display a dropdown saved scenario list
selected_scenario = st.selectbox(
"Pick a Scenario", sorted(scenarios_list), key="selected_scenario"
)
selected_scenario_data = saved_scenarios_dict[selected_scenario]
# Scenarios Name
metrics_name = selected_scenario_data["metrics_selected"]
panel_name = selected_scenario_data["panel_selected"]
optimization_name = selected_scenario_data["optimization"]
# Display the scenario details with bold "Metric," "Panel," and "Optimization"
scenarios_name_placeholder.markdown(
f"**Metric**: {name_formating(metrics_name)}; **Panel**: {name_formating(panel_name)}; **Optimization**: {name_formating(optimization_name)}"
)
# Create columns for download and delete buttons
download_col, delete_col = st.columns(2)
channels_list = list(selected_scenario_data["channels"].keys())
# List to hold data for all channels
channels_data = []
# Iterate through each channel and gather required data
for channel in channels_list:
channel_conversion_rate = selected_scenario_data["channels"][channel][
"conversion_rate"
]
channel_actual_spends = (
selected_scenario_data["channels"][channel]["actual_total_spends"]
* channel_conversion_rate
)
channel_optimized_spends = (
selected_scenario_data["channels"][channel]["modified_total_spends"]
* channel_conversion_rate
)
channel_actual_metrics = selected_scenario_data["channels"][channel][
"actual_total_sales"
]
channel_optimized_metrics = selected_scenario_data["channels"][channel][
"modified_total_sales"
]
channel_roi_mroi_data = selected_scenario_data["channel_roi_mroi"][channel]
# Extract the ROI and MROI data
actual_roi = channel_roi_mroi_data["actual_roi"]
optimized_roi = channel_roi_mroi_data["optimized_roi"]
actual_mroi = channel_roi_mroi_data["actual_mroi"]
optimized_mroi = channel_roi_mroi_data["optimized_mroi"]
# Calculate spends per metric
spends_per_metrics_actual = channel_actual_spends / channel_actual_metrics
spends_per_metrics_optimized = channel_optimized_spends / channel_optimized_metrics
# Append the collected data as a dictionary to the list
channels_data.append(
{
"Channel Name": channel,
"Spends Actual": numerize(channel_actual_spends),
"Spends Optimized": numerize(channel_optimized_spends),
f"{name_formating(metrics_name)} Actual": numerize(channel_actual_metrics),
f"{name_formating(metrics_name)} Optimized": numerize(
channel_optimized_metrics
),
"ROI Actual": format_value(actual_roi),
"ROI Optimized": format_value(optimized_roi),
"MROI Actual": format_value(actual_mroi),
"MROI Optimized": format_value(optimized_mroi),
f"Spends per {name_formating(metrics_name)} Actual": round(
spends_per_metrics_actual, 2
),
f"Spends per {name_formating(metrics_name)} Optimized": round(
spends_per_metrics_optimized, 2
),
}
)
# Create a DataFrame from the collected data
df = pd.DataFrame(channels_data)
# Display the DataFrame
st.dataframe(df, hide_index=True)
# Generate download able data for selected scenario
buffer = download_as_zip(
df,
selected_scenario_data,
excel_name="optimization_results.xlsx",
json_name="scenario_params.json",
)
# Provide the buffer as a downloadable ZIP file in Streamlit
download_col.download_button(
label="Download",
data=buffer,
file_name=f"{selected_scenario}_scenario_data.zip",
mime="application/zip",
use_container_width=True,
)
# Button to trigger the deletion of the selected scenario
delete_col.button(
"Delete",
use_container_width=True,
on_click=delete_selected_scenarios,
args=(selected_scenario,),
)
|