File size: 69,888 Bytes
9938325 fde220d 9938325 fde220d 9938325 fde220d 9938325 fde220d 9938325 fde220d 9938325 fde220d 9938325 fde220d 9938325 fde220d 9938325 fde220d 9938325 fde220d 9938325 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 |
# Importing necessary libraries
import streamlit as st
st.set_page_config(
page_title="Data Import",
page_icon=":shark:",
layout="wide",
initial_sidebar_state="collapsed",
)
import os
import re
import pickle
import sqlite3
import pandas as pd
from utilities import set_header, load_local_css, update_db, project_selection
load_local_css("styles.css")
set_header()
if "project_name" not in st.session_state:
st.session_state["project_name"] = None
if "project_dct" not in st.session_state:
project_selection()
st.stop()
if "username" in st.session_state and st.session_state["username"] is not None:
cols1 = st.columns([2, 1])
with cols1[0]:
st.markdown(f"**Welcome {st.session_state['username']}**")
with cols1[1]:
st.markdown(f"**Current Project: {st.session_state['project_name']}**")
# Function to validate date column in dataframe
def validate_date_column(df):
try:
# Attempt to convert the 'Date' column to datetime
df["date"] = pd.to_datetime(df["date"], format="%d-%m-%Y")
return True
except:
return False
# Function to determine data interval
def determine_data_interval(common_freq):
if common_freq == 1:
return "daily"
elif common_freq == 7:
return "weekly"
elif 28 <= common_freq <= 31:
return "monthly"
else:
return "irregular"
# Function to read each uploaded Excel file into a pandas DataFrame and stores them in a dictionary
st.cache_resource(show_spinner=False)
def files_to_dataframes(uploaded_files):
df_dict = {}
for uploaded_file in uploaded_files:
# Extract file name without extension
file_name = uploaded_file.name.rsplit(".", 1)[0]
# Check for duplicate file names
if file_name in df_dict:
st.warning(
f"Duplicate File: {file_name}. This file will be skipped.",
icon="⚠️",
)
continue
# Read the file into a DataFrame
df = pd.read_excel(uploaded_file)
# Convert all column names to lowercase
df.columns = df.columns.str.lower().str.strip()
# Separate numeric and non-numeric columns
numeric_cols = list(df.select_dtypes(include=["number"]).columns)
non_numeric_cols = [
col
for col in df.select_dtypes(exclude=["number"]).columns
if col.lower() != "date"
]
# Check for 'Date' column
if not (validate_date_column(df) and len(numeric_cols) > 0):
st.warning(
f"File Name: {file_name} ➜ Please upload data with Date column in 'DD-MM-YYYY' format and at least one media/exogenous column. This file will be skipped.",
icon="⚠️",
)
continue
# Check for interval
common_freq = common_freq = (
pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]
)
# Calculate the data interval (daily, weekly, monthly or irregular)
interval = determine_data_interval(common_freq)
if interval == "irregular":
st.warning(
f"File Name: {file_name} ➜ Please upload data in daily, weekly or monthly interval. This file will be skipped.",
icon="⚠️",
)
continue
# Store both DataFrames in the dictionary under their respective keys
df_dict[file_name] = {
"numeric": numeric_cols,
"non_numeric": non_numeric_cols,
"interval": interval,
"df": df,
}
return df_dict
# Function to adjust dataframe granularity
def adjust_dataframe_granularity(df, current_granularity, target_granularity):
# Set index
df.set_index("date", inplace=True)
# Define aggregation rules for resampling
aggregation_rules = {
col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
for col in df.columns
}
# Initialize resampled_df
resampled_df = df
if current_granularity == "daily" and target_granularity == "weekly":
resampled_df = df.resample("W-MON", closed="left", label="left").agg(
aggregation_rules
)
elif current_granularity == "daily" and target_granularity == "monthly":
resampled_df = df.resample("MS", closed="left", label="left").agg(
aggregation_rules
)
elif current_granularity == "daily" and target_granularity == "daily":
resampled_df = df.resample("D").agg(aggregation_rules)
elif (
current_granularity in ["weekly", "monthly"]
and target_granularity == "daily"
):
# For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
expanded_data = []
for _, row in df.iterrows():
if current_granularity == "weekly":
period_range = pd.date_range(start=row.name, periods=7)
elif current_granularity == "monthly":
period_range = pd.date_range(
start=row.name, periods=row.name.days_in_month
)
for date in period_range:
new_row = {}
for col in df.columns:
if pd.api.types.is_numeric_dtype(df[col]):
if current_granularity == "weekly":
new_row[col] = row[col] / 7
elif current_granularity == "monthly":
new_row[col] = row[col] / row.name.days_in_month
else:
new_row[col] = row[col]
expanded_data.append((date, new_row))
resampled_df = pd.DataFrame(
[data for _, data in expanded_data],
index=[date for date, _ in expanded_data],
)
# Reset index
resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
return resampled_df
# Function to clean and extract unique values of Panel_1 and Panel_2
st.cache_resource(show_spinner=False)
def clean_and_extract_unique_values(files_dict, selections):
all_panel1_values = set()
all_panel2_values = set()
for file_name, file_data in files_dict.items():
df = file_data["df"]
# 'Panel_1' and 'Panel_2' selections
selected_panel1 = selections[file_name].get("Panel_1")
selected_panel2 = selections[file_name].get("Panel_2")
# Clean and standardize Panel_1 column if it exists and is selected
if (
selected_panel1
and selected_panel1 != "N/A"
and selected_panel1 in df.columns
):
df[selected_panel1] = (
df[selected_panel1].str.lower().str.strip().str.replace("_", " ")
)
all_panel1_values.update(df[selected_panel1].dropna().unique())
# Clean and standardize Panel_2 column if it exists and is selected
if (
selected_panel2
and selected_panel2 != "N/A"
and selected_panel2 in df.columns
):
df[selected_panel2] = (
df[selected_panel2].str.lower().str.strip().str.replace("_", " ")
)
all_panel2_values.update(df[selected_panel2].dropna().unique())
# Update the processed DataFrame back in the dictionary
files_dict[file_name]["df"] = df
return all_panel1_values, all_panel2_values
# Function to format values for display
st.cache_resource(show_spinner=False)
def format_values_for_display(values_list):
# Capitalize the first letter of each word and replace underscores with spaces
formatted_list = [value.replace("_", " ").title() for value in values_list]
# Join values with commas and 'and' before the last value
if len(formatted_list) > 1:
return ", ".join(formatted_list[:-1]) + ", and " + formatted_list[-1]
elif formatted_list:
return formatted_list[0]
return "No values available"
# Function to normalizes all data within files_dict to a daily granularity
st.cache(show_spinner=False, allow_output_mutation=True)
def standardize_data_to_daily(files_dict, selections):
# Normalize all data to a daily granularity using a provided function
files_dict = apply_granularity_to_all(files_dict, "daily", selections)
# Update the "interval" attribute for each dataset to indicate the new granularity
for files_name, files_data in files_dict.items():
files_data["interval"] = "daily"
return files_dict
# Function to apply granularity transformation to all DataFrames in files_dict
st.cache_resource(show_spinner=False)
def apply_granularity_to_all(files_dict, granularity_selection, selections):
for file_name, file_data in files_dict.items():
df = file_data["df"].copy()
# Handling when Panel_1 or Panel_2 might be 'N/A'
selected_panel1 = selections[file_name].get("Panel_1")
selected_panel2 = selections[file_name].get("Panel_2")
# Correcting the segment selection logic & handling 'N/A'
if selected_panel1 != "N/A" and selected_panel2 != "N/A":
unique_combinations = df[
[selected_panel1, selected_panel2]
].drop_duplicates()
elif selected_panel1 != "N/A":
unique_combinations = df[[selected_panel1]].drop_duplicates()
selected_panel2 = None # Ensure Panel_2 is ignored if N/A
elif selected_panel2 != "N/A":
unique_combinations = df[[selected_panel2]].drop_duplicates()
selected_panel1 = None # Ensure Panel_1 is ignored if N/A
else:
# If both are 'N/A', process the entire dataframe as is
df = adjust_dataframe_granularity(
df, file_data["interval"], granularity_selection
)
files_dict[file_name]["df"] = df
continue # Skip to the next file
transformed_segments = []
for _, combo in unique_combinations.iterrows():
if selected_panel1 and selected_panel2:
segment = df[
(df[selected_panel1] == combo[selected_panel1])
& (df[selected_panel2] == combo[selected_panel2])
]
elif selected_panel1:
segment = df[df[selected_panel1] == combo[selected_panel1]]
elif selected_panel2:
segment = df[df[selected_panel2] == combo[selected_panel2]]
# Adjust granularity of the segment
transformed_segment = adjust_dataframe_granularity(
segment, file_data["interval"], granularity_selection
)
transformed_segments.append(transformed_segment)
# Combine all transformed segments into a single DataFrame for this file
transformed_df = pd.concat(transformed_segments, ignore_index=True)
files_dict[file_name]["df"] = transformed_df
return files_dict
# Function to create main dataframe structure
st.cache_resource(show_spinner=False)
def create_main_dataframe(
files_dict, all_panel1_values, all_panel2_values, granularity_selection
):
# Determine the global start and end dates across all DataFrames
global_start = min(df["df"]["date"].min() for df in files_dict.values())
global_end = max(df["df"]["date"].max() for df in files_dict.values())
# Adjust the date_range generation based on the granularity_selection
if granularity_selection == "weekly":
# Generate a weekly range, with weeks starting on Monday
date_range = pd.date_range(start=global_start, end=global_end, freq="W-MON")
elif granularity_selection == "monthly":
# Generate a monthly range, starting from the first day of each month
date_range = pd.date_range(start=global_start, end=global_end, freq="MS")
else: # Default to daily if not weekly or monthly
date_range = pd.date_range(start=global_start, end=global_end, freq="D")
# Collect all unique Panel_1 and Panel_2 values, excluding 'N/A'
all_panel1s = all_panel1_values
all_panel2s = all_panel2_values
# Dynamically build the list of dimensions (Panel_1, Panel_2) to include in the main DataFrame based on availability
dimensions, merge_keys = [], []
if all_panel1s:
dimensions.append(all_panel1s)
merge_keys.append("Panel_1")
if all_panel2s:
dimensions.append(all_panel2s)
merge_keys.append("Panel_2")
dimensions.append(date_range) # Date range is always included
merge_keys.append("date") # Date range is always included
# Create a main DataFrame template with the dimensions
main_df = pd.MultiIndex.from_product(
dimensions,
names=[name for name, _ in zip(merge_keys, dimensions)],
).to_frame(index=False)
return main_df.reset_index(drop=True)
# Function to prepare and merge dataFrames
st.cache_resource(show_spinner=False)
def merge_into_main_df(main_df, files_dict, selections):
for file_name, file_data in files_dict.items():
df = file_data["df"].copy()
# Rename selected Panel_1 and Panel_2 columns if not 'N/A'
selected_panel1 = selections[file_name].get("Panel_1", "N/A")
selected_panel2 = selections[file_name].get("Panel_2", "N/A")
if selected_panel1 != "N/A":
df.rename(columns={selected_panel1: "Panel_1"}, inplace=True)
if selected_panel2 != "N/A":
df.rename(columns={selected_panel2: "Panel_2"}, inplace=True)
# Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel_1' and 'Panel_2'
merge_keys = ["date"]
if "Panel_1" in df.columns:
merge_keys.append("Panel_1")
if "Panel_2" in df.columns:
merge_keys.append("Panel_2")
main_df = pd.merge(main_df, df, on=merge_keys, how="left")
# After all merges, sort by 'date' and reset index for cleanliness
sort_by = ["date"]
if "Panel_1" in main_df.columns:
sort_by.append("Panel_1")
if "Panel_2" in main_df.columns:
sort_by.append("Panel_2")
main_df.sort_values(by=sort_by, inplace=True)
main_df.reset_index(drop=True, inplace=True)
return main_df
# Function to categorize column
def categorize_column(column_name):
# Define keywords for each category
internal_keywords = [
"Internal",
"Price",
"Discount",
"product_price",
"cost",
"margin",
"inventory",
"sales",
"revenue",
"turnover",
"expense",
]
exogenous_keywords = [
"Exogenous",
"GDP",
"Tax",
"Inflation",
"interest_rate",
"employment_rate",
"exchange_rate",
"consumer_spending",
"retail_sales",
"oil_prices",
"weather",
]
# Check if the column name matches any of the keywords for Internal or Exogenous categories
if (
column_name
in st.session_state["project_dct"]["data_import"]["cat_dct"].keys()
and st.session_state["project_dct"]["data_import"]["cat_dct"][column_name]
is not None
):
return st.session_state["project_dct"]["data_import"]["cat_dct"][
column_name
]
else:
for keyword in ["Response", "Metric"]:
if keyword.lower() in column_name.lower():
return "Response Metrics"
for keyword in ["Spend", "Cost"]:
if keyword.lower() in column_name.lower():
return "Spends"
for keyword in internal_keywords:
if keyword.lower() in column_name.lower():
return "Internal"
for keyword in exogenous_keywords:
if keyword.lower() in column_name.lower():
return "Exogenous"
# Default to Media if no match found
return "Media"
# Function to calculate missing stats and prepare for editable DataFrame
st.cache_resource(show_spinner=False)
def prepare_missing_stats_df(df):
missing_stats = []
for column in df.columns:
if (
column == "date" or column == "Panel_2" or column == "Panel_1"
): # Skip Date, Panel_1 and Panel_2 column
continue
missing = df[column].isnull().sum()
pct_missing = round((missing / len(df)) * 100, 2)
# Dynamically assign category based on column name
category = categorize_column(column)
# category = "Media" # Keep default bin as Media
missing_stats.append(
{
"Column": column,
"Missing Values": missing,
"Missing Percentage": pct_missing,
"Impute Method": "Fill with 0", # Default value
"Category": category,
}
)
stats_df = pd.DataFrame(missing_stats)
return stats_df
# Function to add API DataFrame details to the files dictionary
st.cache_resource(show_spinner=False)
def add_api_dataframe_to_dict(main_df, files_dict):
files_dict["API"] = {
"numeric": list(main_df.select_dtypes(include=["number"]).columns),
"non_numeric": [
col
for col in main_df.select_dtypes(exclude=["number"]).columns
if col.lower() != "date"
],
"interval": determine_data_interval(
pd.Series(main_df["date"].unique()).diff().dt.days.dropna().mode()[0]
),
"df": main_df,
}
return files_dict
# Function to reads an API into a DataFrame, parsing specified columns as datetime
# @st.cache_resource(show_spinner=False)
def read_API_data(project_folder_path, file_path, file_name):
# Paths using os.path
file_path_os = os.path.join(os.getcwd(), "API_data", file_name)
project_folder_path_os = os.path.normpath(project_folder_path)
# Construct the full path of the file in the project folder
project_file_path = os.path.join(project_folder_path_os, file_name)
# Check if the file with the same name exists in the project path
if os.path.exists(project_file_path):
# If the file exists, load and return the existing file
return pd.read_excel(project_file_path, parse_dates=["Date"])
else:
# If the file does not exist, read the new file
data = pd.read_excel(file_path_os, parse_dates=["Date"])
# Save the new file to the project folder
data.to_excel(project_file_path, index=False)
# Return the data
return data
# Function to set the 'Panel_1_Panel_2_Selected' session state variable to False
def set_Panel_1_Panel_2_Selected_false():
st.session_state["Panel_1_Panel_2_Selected"] = False
# Restoring project_dct to default values when user modify any widgets
st.session_state["project_dct"]["data_import"]["edited_stats_df"] = None
st.session_state["project_dct"]["data_import"]["merged_df"] = None
st.session_state["project_dct"]["data_import"]["missing_stats_df"] = None
st.session_state["project_dct"]["data_import"]["cat_dct"] = {}
st.session_state["project_dct"]["data_import"]["numeric_columns"] = None
st.session_state["project_dct"]["data_import"]["default_df"] = None
st.session_state["project_dct"]["data_import"]["final_df"] = None
st.session_state["project_dct"]["data_import"]["edited_df"] = None
# Function to serialize and save the objects into a pickle file
@st.cache_resource(show_spinner=False)
def save_to_pickle(file_path, final_df, bin_dict):
# Open the file in write-binary mode and dump the objects
with open(file_path, "wb") as f:
pickle.dump(
{"final_df": final_df, "bin_dict": bin_dict}, f
) # Data is now saved to file
# Function to processes the merged_df DataFrame based on operations defined in edited_df
@st.cache_resource(show_spinner=False)
def process_dataframes(merged_df, edited_df, edited_stats_df):
# Ensure there are operations defined by the user
if edited_df.empty:
return merged_df, edited_stats_df # No operations to apply
# Perform operations as defined by the user
else:
for index, row in edited_df.iterrows():
result_column_name = (
f"{row['Column 1']}{row['Operator']}{row['Column 2']}"
)
col1 = row["Column 1"]
col2 = row["Column 2"]
op = row["Operator"]
# Apply the specified operation
if op == "+":
merged_df[result_column_name] = merged_df[col1] + merged_df[col2]
elif op == "-":
merged_df[result_column_name] = merged_df[col1] - merged_df[col2]
elif op == "*":
merged_df[result_column_name] = merged_df[col1] * merged_df[col2]
elif op == "/":
merged_df[result_column_name] = merged_df[col1] / merged_df[
col2
].replace(0, 1e-9)
# Add summary of operation to edited_stats_df
new_row = {
"Column": result_column_name,
"Missing Values": None,
"Missing Percentage": None,
"Impute Method": None,
"Category": row["Category"],
}
new_row_df = pd.DataFrame([new_row])
# Use pd.concat to add the new_row_df to edited_stats_df
edited_stats_df = pd.concat(
[edited_stats_df, new_row_df], ignore_index=True, axis=0
)
# Combine column names from edited_df for cleanup
combined_columns = set(edited_df["Column 1"]).union(
set(edited_df["Column 2"])
)
# Filter out rows in edited_stats_df and drop columns from merged_df
edited_stats_df = edited_stats_df[
~edited_stats_df["Column"].isin(combined_columns)
]
merged_df.drop(
columns=list(combined_columns), errors="ignore", inplace=True
)
return merged_df, edited_stats_df
# Function to prepare a list of numeric column names and initialize an empty DataFrame with predefined structure
st.cache_resource(show_spinner=False)
def prepare_numeric_columns_and_default_df(merged_df, edited_stats_df):
# Get columns categorized as 'Response Metrics'
columns_response_metrics = edited_stats_df[
edited_stats_df["Category"] == "Response Metrics"
]["Column"].tolist()
# Filter numeric columns, excluding those categorized as 'Response Metrics'
numeric_columns = [
col
for col in merged_df.select_dtypes(include=["number"]).columns
if col not in columns_response_metrics
]
# Define the structure of the empty DataFrame
data = {
"Column 1": pd.Series([], dtype="str"),
"Operator": pd.Series([], dtype="str"),
"Column 2": pd.Series([], dtype="str"),
"Category": pd.Series([], dtype="str"),
}
default_df = pd.DataFrame(data)
return numeric_columns, default_df
# function to reset to default values in project_dct:
# Initialize 'final_df' in session state
if "final_df" not in st.session_state:
st.session_state["final_df"] = pd.DataFrame()
# Initialize 'bin_dict' in session state
if "bin_dict" not in st.session_state:
st.session_state["bin_dict"] = {}
# Initialize 'Panel_1_Panel_2_Selected' in session state
if "Panel_1_Panel_2_Selected" not in st.session_state:
st.session_state["Panel_1_Panel_2_Selected"] = False
# Page Title
st.write("") # Top padding
st.title("Data Import")
conn = sqlite3.connect(
r"DB\User.db", check_same_thread=False
) # connection with sql db
c = conn.cursor()
#########################################################################################################################################################
# Create a dictionary to hold all DataFrames and collect user input to specify "Panel_2" and "Panel_1" columns for each file
#########################################################################################################################################################
# Read the Excel file, parsing 'Date' column as datetime
main_df = read_API_data(
project_folder_path=st.session_state["project_path"],
file_path=st.session_state["project_dct"]["data_import"]["api_path"],
file_name=st.session_state["project_dct"]["data_import"]["api_name"] + ".xlsx",
)
# Convert all column names to lowercase
main_df.columns = main_df.columns.str.lower().str.strip()
# File uploader
uploaded_files = st.file_uploader(
"Upload additional data",
type=["xlsx"],
accept_multiple_files=True,
on_change=set_Panel_1_Panel_2_Selected_false,
)
# Custom HTML for upload instructions
recommendation_html = f"""
<div style="text-align: justify;">
<strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
</div>
"""
st.markdown(recommendation_html, unsafe_allow_html=True)
# RAW API DATA
st.markdown("#### API Data")
with st.expander("API Data", expanded=False):
st.dataframe(main_df, hide_index=True)
# Choose Desired Granularity
st.markdown("#### Choose Desired Granularity")
# Granularity Selection
granularity_selection = st.selectbox(
"Choose Date Granularity",
["Daily", "Weekly", "Monthly"],
label_visibility="collapsed",
on_change=set_Panel_1_Panel_2_Selected_false,
index=st.session_state["project_dct"]["data_import"][
"granularity_selection"
], # resume
)
# st.write(st.session_state['project_dct']['data_import']['granularity_selection'])
st.session_state["project_dct"]["data_import"]["granularity_selection"] = [
"Daily",
"Weekly",
"Monthly",
].index(granularity_selection)
# st.write(st.session_state['project_dct']['data_import']['granularity_selection'])
granularity_selection = str(granularity_selection).lower()
# Convert files to dataframes
files_dict = files_to_dataframes(uploaded_files)
# Add API Dataframe
if main_df is not None:
files_dict = add_api_dataframe_to_dict(main_df, files_dict)
# Display a warning message if no files have been uploaded and halt further execution
if not files_dict:
st.warning(
"Please upload at least one file to proceed.",
icon="⚠️",
)
st.stop() # Halts further execution until file is uploaded
# Select Panel_1 and Panel_2 columns
st.markdown("#### Select Panel columns")
selections = {}
with st.expander("Select Panel columns", expanded=False):
count = 0 # Initialize counter to manage the visibility of labels and keys
unique_numeric_columns = (
set()
) # Initialize a set to keep track of unique numeric column names
for file_name, file_data in files_dict.items():
# Extract the numeric column names from the current file
numeric_columns = file_data["numeric"]
# Regular expression pattern to match valid column names (letters, numbers, and underscores)
valid_column_pattern = re.compile(r"^[A-Za-z0-9_]+$")
# Check for duplicates
for column in numeric_columns:
if column in unique_numeric_columns:
# If a duplicate is found, display a warning and halt execution
st.warning(
f"Duplicate column name '{column}' found in file '{file_name}'. Each column name must be unique across all files.",
icon="⚠️",
)
st.stop()
# Add the column to the set if it's not already there
unique_numeric_columns.add(column)
# Check if the column name is valid
if not valid_column_pattern.match(column):
st.warning(
f"Column name '{column}' in file '{file_name}' contains invalid characters. "
f"Column names should only contain letters (A-Z, a-z), numbers (0-9), and underscores (_).",
icon="⚠️",
)
st.stop()
# Generatimg project dct keys dynamically
if (
f"Panel_1_selectbox{file_name}"
not in st.session_state["project_dct"]["data_import"].keys()
):
st.session_state["project_dct"]["data_import"][
f"Panel_1_selectbox{file_name}"
] = 0
if (
f"Panel_2_selectbox{file_name}"
not in st.session_state["project_dct"]["data_import"].keys()
):
st.session_state["project_dct"]["data_import"][
f"Panel_2_selectbox{file_name}"
] = 0
# Determine visibility of the label based on the count
if count == 0:
label_visibility = "visible"
else:
label_visibility = "collapsed"
# Extract non-numeric columns
non_numeric_cols = file_data["non_numeric"]
# Prepare Panel_1 and Panel_2 values for dropdown, adding "N/A" as an option
panel1_values = non_numeric_cols + ["N/A"]
panel2_values = non_numeric_cols + ["N/A"]
# Skip if only one option is available
if len(panel1_values) == 1 and len(panel2_values) == 1:
selected_panel1, selected_panel2 = "N/A", "N/A"
# Update the selections for Panel_1 and Panel_2 for the current file
selections[file_name] = {
"Panel_1": selected_panel1,
"Panel_2": selected_panel2,
}
continue
# Create layout columns for File Name, Panel_2, and Panel_1 selections
file_name_col, Panel_1_col, Panel_2_col = st.columns([2, 4, 4])
with file_name_col:
# Display "File Name" label only for the first file
if count == 0:
st.write("File Name")
else:
st.write("")
st.write(file_name) # Display the file name
with Panel_1_col:
# Display a selectbox for Panel_1 values
selected_panel1 = st.selectbox(
"Select Panel Level 1",
panel2_values,
on_change=set_Panel_1_Panel_2_Selected_false,
label_visibility=label_visibility, # Control visibility of the label
key=f"Panel_1_selectbox{count}", # Ensure unique key for each selectbox
index=st.session_state["project_dct"]["data_import"][
f"Panel_1_selectbox{file_name}"
],
)
st.session_state["project_dct"]["data_import"][
f"Panel_1_selectbox{file_name}"
] = panel2_values.index(selected_panel1)
with Panel_2_col:
# Display a selectbox for Panel_2 values
selected_panel2 = st.selectbox(
"Select Panel Level 2",
panel1_values,
on_change=set_Panel_1_Panel_2_Selected_false,
label_visibility=label_visibility, # Control visibility of the label
key=f"Panel_2_selectbox{count}", # Ensure unique key for each selectbox
index=st.session_state["project_dct"]["data_import"][
f"Panel_2_selectbox{file_name}"
],
)
st.session_state["project_dct"]["data_import"][
f"Panel_2_selectbox{file_name}"
] = panel1_values.index(selected_panel2)
# Check for potential data integrity issues
if selected_panel2 == selected_panel1 and not (
selected_panel2 == "N/A" and selected_panel1 == "N/A"
):
st.warning(
f"File: {file_name} → The same column cannot serve as both Panel_1 and Panel_2. Please adjust your selections.",
)
selected_panel1, selected_panel2 = "N/A", "N/A"
st.stop()
# Check for potential data integrity issues
if len(non_numeric_cols) > 2:
st.warning(
f"File: {file_name} → The input file contains more than two non-numeric/panel columns. Please verify the file's contents.",
)
st.stop()
# Total selected panel level
selected_panels_count = (1 if selected_panel1 != "N/A" else 0) + (
1 if selected_panel2 != "N/A" else 0
)
# Check for potential data integrity issues
if len(non_numeric_cols) != selected_panels_count:
st.warning(
f"File: {file_name} → The number of non-numeric columns selected does not match the expected panel count. Please ensure all required columns are selected.",
)
st.stop()
# Update the selections for Panel_1 and Panel_2 for the current file
selections[file_name] = {
"Panel_1": selected_panel1,
"Panel_2": selected_panel2,
}
count += 1 # Increment the counter after processing each file
st.write()
# Accept Panel_1 and Panel_2 selection
accept = st.button("Accept and Process", use_container_width=True)
if (
accept == False
and st.session_state["project_dct"]["data_import"]["edited_stats_df"]
is not None
):
# st.write(st.session_state['project_dct'])
st.markdown("#### Unique Panel values")
# Display Panel_1 and Panel_2 values
with st.expander("Unique Panel values"):
st.write("")
st.markdown(
f"""
<style>
.justify-text {{
text-align: justify;
}}
</style>
<div class="justify-text">
<strong>Panel Level 1 Values:</strong> {st.session_state['project_dct']['data_import']['formatted_panel1_values']}<br>
<strong>Panel Level 2 Values:</strong> {st.session_state['project_dct']['data_import']['formatted_panel2_values']}
</div>
""",
unsafe_allow_html=True,
)
# Display total Panel_1 and Panel_2
st.write("")
st.markdown(
f"""
<div style="text-align: justify;">
<strong>Number of Level 1 Panels detected:</strong> {len(st.session_state['project_dct']['data_import']['formatted_panel2_values'])}<br>
<strong>Number of Level 2 Panels detected:</strong> {len(st.session_state['project_dct']['data_import']['formatted_panel2_values'])}
</div>
""",
unsafe_allow_html=True,
)
st.write("")
# Create an editable DataFrame in Streamlit
st.markdown("#### Select Variables Category & Impute Missing Values")
merged_df = st.session_state["project_dct"]["data_import"]["merged_df"].copy()
missing_stats_df = st.session_state["project_dct"]["data_import"][
"missing_stats_df"
]
editable_df = st.session_state["project_dct"]["data_import"]["edited_stats_df"]
sorted_editable_df = editable_df.sort_values(
by="Missing Values", ascending=False, na_position="first"
)
edited_stats_df = st.data_editor(
sorted_editable_df,
column_config={
"Impute Method": st.column_config.SelectboxColumn(
options=[
"Drop Column",
"Fill with Mean",
"Fill with Median",
"Fill with 0",
],
required=True,
default="Fill with 0",
),
"Category": st.column_config.SelectboxColumn(
options=[
"Spends",
"Media",
"Exogenous",
"Internal",
"Response Metrics",
],
required=True,
default="Media",
),
},
disabled=["Column", "Missing Values", "Missing Percentage"],
hide_index=True,
use_container_width=True,
key="data-editor-1",
)
st.session_state["project_dct"]["data_import"]["cat_dct"] = {
col: cat
for col, cat in zip(edited_stats_df["Column"], edited_stats_df["Category"])
if col in merged_df.columns
}
for i, row in edited_stats_df.iterrows():
column = row["Column"]
if (
column
not in st.session_state["project_dct"]["data_import"]["cat_dct"].keys()
):
continue
if row["Impute Method"] == "Drop Column":
merged_df.drop(columns=[column], inplace=True)
elif row["Impute Method"] == "Fill with Mean":
merged_df[column].fillna(
st.session_state["project_dct"]["data_import"]["merged_df"][
column
].mean(),
inplace=True,
)
elif row["Impute Method"] == "Fill with Median":
merged_df[column].fillna(
st.session_state["project_dct"]["data_import"]["merged_df"][
column
].median(),
inplace=True,
)
elif row["Impute Method"] == "Fill with 0":
merged_df[column].fillna(0, inplace=True)
#########################################################################################################################################################
# Group columns
#########################################################################################################################################################
# Display Group columns header
numeric_columns = st.session_state["project_dct"]["data_import"][
"numeric_columns"
]
default_df = st.session_state["project_dct"]["data_import"]["default_df"]
st.markdown("#### Feature engineering")
edited_df = st.data_editor(
st.session_state["project_dct"]["data_import"]["edited_df"],
column_config={
"Column 1": st.column_config.SelectboxColumn(
options=numeric_columns,
required=True,
width=400,
),
"Operator": st.column_config.SelectboxColumn(
options=["+", "-", "*", "/"],
required=True,
default="+",
width=100,
),
"Column 2": st.column_config.SelectboxColumn(
options=numeric_columns,
required=True,
default=numeric_columns[0],
width=400,
),
"Category": st.column_config.SelectboxColumn(
options=[
"Media",
"Exogenous",
"Internal",
"Response Metrics",
],
required=True,
default="Media",
width=200,
),
},
num_rows="dynamic",
key="data-editor-4",
)
final_df, edited_stats_df = process_dataframes(
merged_df, edited_df, edited_stats_df
)
st.markdown("#### Final DataFrame")
sort_col = []
for col in final_df.columns:
if col in ["Panel_1", "Panel_2", "date"]:
sort_col.append(col)
sorted_final_df = final_df.sort_values(
by=sort_col, ascending=True, na_position="first"
)
st.dataframe(sorted_final_df, hide_index=True)
# Initialize an empty dictionary to hold categories and their variables
category_dict = {
"Spends": [],
"Media": [],
"Exogenous": [],
"Internal": [],
"Response Metrics": [],
}
# Iterate over each row in the edited DataFrame to populate the dictionary
for i, row in edited_stats_df.iterrows():
column = row["Column"]
category = row[
"Category"
] # The category chosen by the user for this variable
if column not in list(final_df.columns): # Skip columns that are dropped
continue
# Check if the category already exists in the dictionary
if category not in category_dict:
# If not, initialize it with the current column as its first element
category_dict[category] = [column]
else:
# If it exists, append the current column to the list of variables under this category
category_dict[category].append(column)
# Add Date, Panel_1 and Panel_12 in category dictionary
category_dict.update({"Date": ["date"]})
if "Panel_1" in final_df.columns:
category_dict["Panel Level 1"] = ["Panel_1"]
if "Panel_2" in final_df.columns:
category_dict["Panel Level 2"] = ["Panel_2"]
###################################### Group Media Channels ######################################
with st.expander("Group Media Channels"):
media_channels = category_dict["Media"]
spends_channels = category_dict["Spends"]
allowed_channels_bin = media_channels + spends_channels
group_selection_placeholder = st.container()
total_groups = st.number_input("Total Groups", value=0)
try:
total_groups = int(total_groups)
except:
total_groups = 0
group_dict = {}
channels_added = set()
with group_selection_placeholder:
for i in range(total_groups):
group_name_inp_col, group_col = st.columns([1, 4])
group_name = group_name_inp_col.text_input(
"Group name", key=f"group_name_{i}"
)
# Filter the allowed channels by removing those already added, then sort the list
allowed_channels = sorted(
[
channel
for channel in allowed_channels_bin
if channel not in channels_added
],
key=lambda x: x.split("_")[
0
], # Split each string by '_' and sort by the first part
)
selected_channels = group_col.multiselect(
"Select channels to group",
options=allowed_channels,
key=f"selected_channels_key_{i}",
)
if ((group_name is not None) and (group_name != "")) and (
len(selected_channels) > 0
):
group_dict[group_name] = selected_channels
channels_added.update(selected_channels)
###################################### Group Media Channels ######################################
# Display the dictionary
st.markdown("#### Variable Category")
for category, variables in category_dict.items():
# Check if there are multiple variables to handle "and" insertion correctly
if len(variables) > 1:
# Join all but the last variable with ", ", then add " and " before the last variable
variables_str = ", ".join(variables[:-1]) + " and " + variables[-1]
else:
# Skip empty category
if len(variables) == 0:
variables_str = ""
else:
# If there's only one variable, no need for "and"
variables_str = variables[0]
# Display the category and its variables in the desired format
st.markdown(
f"<div style='text-align: justify;'><strong>{category}:</strong> {variables_str}</div>",
unsafe_allow_html=True,
)
# Function to check if Response Metrics is selected
st.write("")
# Define the required column categories to check.
required_categories = ["Response Metrics", "Spends", "Media"]
# Iterate over the required categories to check for missing columns.
for category in required_categories:
category_columns = category_dict.get(category, [])
if len(category_columns) == 0:
st.warning(
f"Please select at least one column for the {category} category",
icon="⚠️",
)
st.stop()
# Filter channels that are in category_dict["Media"] / category_dict["Spends"] and in final_df.columns
filtered_channels = [
channel
for channel in category_dict["Media"] + category_dict["Spends"]
if channel in final_df.columns
]
# Combine all channels into a single list using a list comprehension
all_added_channels = []
for channels in group_dict:
all_added_channels += group_dict[channels]
# Check for duplicated channels across groups
if len(all_added_channels) != len(set(all_added_channels)):
st.warning(
"A channel can only be grouped once, and duplicate groupings are not permitted",
icon="⚠️",
)
st.stop()
# Check if all filtered channels are present in group_dict
if not set(filtered_channels) == set(all_added_channels):
st.warning("Please group all media channels", icon="⚠️")
st.stop()
# Store final dataframe and bin dictionary into session state
st.session_state["final_df"], st.session_state["bin_dict"] = (
final_df,
category_dict,
)
# Save the DataFrame and dictionary from the session state to the pickle file
if st.button(
"Accept and Save",
use_container_width=True,
key="data-editor-button",
):
update_db("1_Data_Import.py")
final_df = final_df.loc[:, ~final_df.columns.duplicated()]
project_dct_path = os.path.join(
st.session_state["project_path"], "project_dct.pkl"
)
with open(project_dct_path, "wb") as f:
pickle.dump(st.session_state["project_dct"], f)
data_path = os.path.join(
st.session_state["project_path"], "data_import.pkl"
)
st.session_state["data_path"] = data_path
save_to_pickle(
data_path,
st.session_state["final_df"],
st.session_state["bin_dict"],
)
st.session_state["project_dct"]["data_import"][
"edited_stats_df"
] = edited_stats_df
st.session_state["project_dct"]["data_import"]["merged_df"] = merged_df
st.session_state["project_dct"]["data_import"][
"missing_stats_df"
] = missing_stats_df
st.session_state["project_dct"]["data_import"]["cat_dct"] = {
col: cat
for col, cat in zip(
edited_stats_df["Column"], edited_stats_df["Category"]
)
}
st.session_state["project_dct"]["data_import"][
"numeric_columns"
] = numeric_columns
st.session_state["project_dct"]["data_import"]["default_df"] = default_df
st.session_state["project_dct"]["data_import"]["final_df"] = final_df
st.session_state["project_dct"]["data_import"]["edited_df"] = edited_df
st.toast("💾 Saved Successfully!")
if accept:
# Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
with st.spinner("Processing..."):
files_dict = standardize_data_to_daily(files_dict, selections)
# Convert all data to daily level granularity
files_dict = apply_granularity_to_all(
files_dict, granularity_selection, selections
)
# Update the 'files_dict' in the session state
st.session_state["files_dict"] = files_dict
# Set a flag in the session state to indicate that selection has been made
st.session_state["Panel_1_Panel_2_Selected"] = True
#########################################################################################################################################################
# Display unique Panel_1 and Panel_2 values
#########################################################################################################################################################
# Halts further execution until Panel_1 and Panel_2 columns are selected
if st.session_state["project_dct"]["data_import"]["edited_stats_df"] is None:
if (
"files_dict" in st.session_state
and st.session_state["Panel_1_Panel_2_Selected"]
):
files_dict = st.session_state["files_dict"]
st.session_state["project_dct"]["data_import"][
"files_dict"
] = files_dict # resume
else:
st.stop()
# Set to store unique values of Panel_1 and Panel_2
with st.spinner("Fetching Panel values..."):
all_panel1_values, all_panel2_values = clean_and_extract_unique_values(
files_dict, selections
)
# List of Panel_1 and Panel_2 columns unique values
list_of_all_panel1_values = list(all_panel1_values)
list_of_all_panel2_values = list(all_panel2_values)
# Format Panel_1 and Panel_2 values for display
formatted_panel1_values = format_values_for_display(
list_of_all_panel1_values
)
formatted_panel2_values = format_values_for_display(
list_of_all_panel2_values
)
st.session_state["project_dct"]["data_import"][
"formatted_panel1_values"
] = formatted_panel1_values
st.session_state["project_dct"]["data_import"][
"formatted_panel2_values"
] = formatted_panel2_values
# Unique Panel_1 and Panel_2 values
st.markdown("#### Unique Panel values")
# Display Panel_1 and Panel_2 values
with st.expander("Unique Panel values"):
st.write("")
st.markdown(
f"""
<style>
.justify-text {{
text-align: justify;
}}
</style>
<div class="justify-text">
<strong>Panel Level 1 Values:</strong> {formatted_panel1_values}<br>
<strong>Panel Level 2 Values:</strong> {formatted_panel2_values}
</div>
""",
unsafe_allow_html=True,
)
# Display total Panel_1 and Panel_2
st.write("")
st.markdown(
f"""
<div style="text-align: justify;">
<strong>Number of Level 1 Panels detected:</strong> {len(list_of_all_panel1_values)}<br>
<strong>Number of Level 2 Panels detected:</strong> {len(list_of_all_panel2_values)}
</div>
""",
unsafe_allow_html=True,
)
st.write("")
#########################################################################################################################################################
# Merge all DataFrames
#########################################################################################################################################################
# Merge all DataFrames selected
main_df = create_main_dataframe(
files_dict,
all_panel1_values,
all_panel2_values,
granularity_selection,
)
merged_df = merge_into_main_df(main_df, files_dict, selections)
#########################################################################################################################################################
# Categorize Variables and Impute Missing Values
#########################################################################################################################################################
# Create an editable DataFrame in Streamlit
st.markdown("#### Select Variables Category & Impute Missing Values")
# Prepare missing stats DataFrame for editing
missing_stats_df = prepare_missing_stats_df(merged_df)
sorted_missing_stats_df = missing_stats_df.sort_values(
by="Missing Values", ascending=False, na_position="first"
)
edited_stats_df = st.data_editor(
sorted_missing_stats_df,
column_config={
"Impute Method": st.column_config.SelectboxColumn(
options=[
"Drop Column",
"Fill with Mean",
"Fill with Median",
"Fill with 0",
],
required=True,
default="Fill with 0",
),
"Category": st.column_config.SelectboxColumn(
options=[
"Spends",
"Media",
"Exogenous",
"Internal",
"Response Metrics",
],
required=True,
default="Media",
),
},
disabled=["Column", "Missing Values", "Missing Percentage"],
hide_index=True,
use_container_width=True,
key="data-editor-2",
)
# Apply changes based on edited DataFrame
for i, row in edited_stats_df.iterrows():
column = row["Column"]
if row["Impute Method"] == "Drop Column":
merged_df.drop(columns=[column], inplace=True)
elif row["Impute Method"] == "Fill with Mean":
merged_df[column].fillna(merged_df[column].mean(), inplace=True)
elif row["Impute Method"] == "Fill with Median":
merged_df[column].fillna(merged_df[column].median(), inplace=True)
elif row["Impute Method"] == "Fill with 0":
merged_df[column].fillna(0, inplace=True)
#########################################################################################################################################################
# Group columns
#########################################################################################################################################################
# Display Group columns header
st.markdown("#### Feature engineering")
# Prepare the numeric columns and an empty DataFrame for user input
numeric_columns, default_df = prepare_numeric_columns_and_default_df(
merged_df, edited_stats_df
)
# Display editable Dataframe
edited_df = st.data_editor(
default_df,
column_config={
"Column 1": st.column_config.SelectboxColumn(
options=numeric_columns,
required=True,
width=400,
),
"Operator": st.column_config.SelectboxColumn(
options=["+", "-", "*", "/"],
required=True,
default="+",
width=100,
),
"Column 2": st.column_config.SelectboxColumn(
options=numeric_columns,
required=True,
default=numeric_columns[0],
width=400,
),
"Category": st.column_config.SelectboxColumn(
options=[
"Media",
"Exogenous",
"Internal",
"Response Metrics",
],
required=True,
default="Media",
width=200,
),
},
num_rows="dynamic",
key="data-editor-3",
)
# Process the DataFrame based on user inputs and operations specified in edited_df
final_df, edited_stats_df = process_dataframes(
merged_df, edited_df, edited_stats_df
)
#########################################################################################################################################################
# Display the Final DataFrame and variables
#########################################################################################################################################################
# Display the Final DataFrame and variables
st.markdown("#### Final DataFrame")
sort_col = []
for col in final_df.columns:
if col in ["Panel_1", "Panel_2", "date"]:
sort_col.append(col)
sorted_final_df = final_df.sort_values(
by=sort_col, ascending=True, na_position="first"
)
st.dataframe(sorted_final_df, hide_index=True)
# Initialize an empty dictionary to hold categories and their variables
category_dict = {
"Spends": [],
"Media": [],
"Exogenous": [],
"Internal": [],
"Response Metrics": [],
}
# Iterate over each row in the edited DataFrame to populate the dictionary
for i, row in edited_stats_df.iterrows():
column = row["Column"]
category = row[
"Category"
] # The category chosen by the user for this variable
if column not in list(final_df.columns): # Skip columns that are dropped
continue
# Check if the category already exists in the dictionary
if category not in category_dict:
# If not, initialize it with the current column as its first element
category_dict[category] = [column]
else:
# If it exists, append the current column to the list of variables under this category
category_dict[category].append(column)
# Add Date, Panel_1 and Panel_12 in category dictionary
category_dict.update({"Date": ["date"]})
if "Panel_1" in final_df.columns:
category_dict["Panel Level 1"] = ["Panel_1"]
if "Panel_2" in final_df.columns:
category_dict["Panel Level 2"] = ["Panel_2"]
###################################### Group Media Channels ######################################
with st.expander("Group Media Channels"):
media_channels = category_dict["Media"]
spends_channels = category_dict["Spends"]
allowed_channels_bin = media_channels + spends_channels
group_selection_placeholder = st.container()
total_groups = st.number_input("Total Groups", value=0)
try:
total_groups = int(total_groups)
except:
total_groups = 0
group_dict = {}
channels_added = set()
with group_selection_placeholder:
for i in range(total_groups):
group_name_inp_col, group_col = st.columns([1, 4])
group_name = group_name_inp_col.text_input(
"Group name", key=f"group_name_{i}"
)
# Filter the allowed channels by removing those already added, then sort the list
allowed_channels = sorted(
[
channel
for channel in allowed_channels_bin
if channel not in channels_added
],
key=lambda x: x.split("_")[
0
], # Split each string by '_' and sort by the first part
)
selected_channels = group_col.multiselect(
"Select channels to group",
options=allowed_channels,
key=f"selected_channels_key_{i}",
)
if ((group_name is not None) and (group_name != "")) and (
len(selected_channels) > 0
):
group_dict[group_name] = selected_channels
channels_added.update(selected_channels)
###################################### Group Media Channels ######################################
# Display the dictionary
st.markdown("#### Variable Category")
for category, variables in category_dict.items():
# Skip empty category
if len(variables) == 0:
variables_str = ""
# Check if there are multiple variables to handle "and" insertion correctly
if len(variables) > 1:
# Join all but the last variable with ", ", then add " and " before the last variable
variables_str = ", ".join(variables[:-1]) + " and " + variables[-1]
else:
# Skip empty category
if len(variables) == 0:
variables_str = ""
else:
# If there's only one variable, no need for "and"
variables_str = variables[0]
# Display the category and its variables in the desired format
st.markdown(
f"<div style='text-align: justify;'><strong>{category}:</strong> {variables_str}</div>",
unsafe_allow_html=True,
)
# Function to check if Response Metrics is selected
st.write("")
# Define the required column categories to check.
required_categories = ["Response Metrics", "Spends", "Media"]
# Iterate over the required categories to check for missing columns.
for category in required_categories:
category_columns = category_dict.get(category, [])
if len(category_columns) == 0:
st.warning(
f"Please select at least one column for the {category} category",
icon="⚠️",
)
st.stop()
# Filter channels that are in category_dict["Media"] / category_dict["Spends"] and in final_df.columns
filtered_channels = [
channel
for channel in category_dict["Media"] + category_dict["Spends"]
if channel in final_df.columns
]
# Combine all channels into a single list using a list comprehension
all_added_channels = []
for channels in group_dict:
all_added_channels += group_dict[channels]
# Check for duplicated channels across groups
if len(all_added_channels) != len(set(all_added_channels)):
st.warning(
"A channel can only be grouped once, and duplicate groupings are not permitted",
icon="⚠️",
)
st.stop()
# Check if all filtered channels are present in group_dict
if not set(filtered_channels) == set(all_added_channels):
st.warning("Please group all media channels", icon="⚠️")
st.stop()
# Store final dataframe and bin dictionary into session state
st.session_state["final_df"], st.session_state["bin_dict"] = (
final_df,
category_dict,
)
# Save the DataFrame and dictionary from the session state to the pickle file
if st.button("Accept and Save", use_container_width=True):
update_db("1_Data_Import.py")
project_dct_path = os.path.join(
st.session_state["project_path"], "project_dct.pkl"
)
with open(project_dct_path, "wb") as f:
pickle.dump(st.session_state["project_dct"], f)
data_path = os.path.join(
st.session_state["project_path"], "data_import.pkl"
)
st.session_state["data_path"] = data_path
save_to_pickle(
data_path,
st.session_state["final_df"],
st.session_state["bin_dict"],
)
## ADD Exog vars to channels & save channels
if len(category_dict["Exogenous"]) > 0:
for exog_var in category_dict["Exogenous"]:
group_dict[exog_var] = [exog_var]
with open(
os.path.join(st.session_state["project_path"], "channel_groups.pkl"),
"wb",
) as f:
pickle.dump(group_dict, f)
st.session_state["project_dct"]["data_import"][
"edited_stats_df"
] = edited_stats_df
st.session_state["project_dct"]["data_import"]["merged_df"] = merged_df
st.session_state["project_dct"]["data_import"][
"missing_stats_df"
] = missing_stats_df
st.session_state["project_dct"]["data_import"]["cat_dct"] = {
col: cat
for col, cat in zip(
edited_stats_df["Column"], edited_stats_df["Category"]
)
}
st.session_state["project_dct"]["data_import"][
"numeric_columns"
] = numeric_columns
st.session_state["project_dct"]["data_import"]["default_df"] = default_df
st.session_state["project_dct"]["data_import"]["final_df"] = final_df
st.session_state["project_dct"]["data_import"]["edited_df"] = edited_df
st.toast("💾 Saved Successfully!")
|