File size: 39,438 Bytes
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde220d
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde220d
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde220d
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde220d
9938325
fde220d
 
 
 
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde220d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde220d
 
 
 
 
 
9938325
fde220d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
# Importing necessary libraries
import streamlit as st

st.set_page_config(
    page_title="Transformations",
    page_icon=":shark:",
    layout="wide",
    initial_sidebar_state="collapsed",
)

import os
import pickle
import sqlite3
import numpy as np
import pandas as pd
from utilities import update_db
import plotly.graph_objects as go
from utilities import set_header, load_local_css, update_db, project_selection


load_local_css("styles.css")
set_header()

if "username" not in st.session_state:
    st.session_state["username"] = None

if "project_name" not in st.session_state:
    st.session_state["project_name"] = None

if "project_dct" not in st.session_state:
    project_selection()
    st.stop()

if "username" in st.session_state and st.session_state["username"] is not None:

    conn = sqlite3.connect(
        r"DB/User.db", check_same_thread=False
    )  # connection with sql db
    c = conn.cursor()

    if not os.path.exists(
        os.path.join(st.session_state["project_path"], "data_import.pkl")
    ):
        st.error("Please move to Data Import page")
        st.stop()

    # Deserialize and load the objects from the pickle file
    with open(
        os.path.join(st.session_state["project_path"], "data_import.pkl"), "rb"
    ) as f:
        data = pickle.load(f)

    # Accessing the loaded objects
    final_df_loaded = data["final_df"]
    bin_dict_loaded = data["bin_dict"]

    # Initialize session state
    if "transformed_columns_dict" not in st.session_state:
        st.session_state["transformed_columns_dict"] = {}  # Default empty dictionary

    if "final_df" not in st.session_state:
        st.session_state["final_df"] = final_df_loaded  # Default as original dataframe

    if "summary_string" not in st.session_state:
        st.session_state["summary_string"] = None  # Default as None

    # Extract original columns for specified categories
    original_columns = {
        category: bin_dict_loaded[category]
        for category in ["Media", "Internal", "Exogenous"]
        if category in bin_dict_loaded
    }

    # Retrive Panel columns
    panel_1 = bin_dict_loaded.get("Panel Level 1")
    panel_2 = bin_dict_loaded.get("Panel Level 2")

    # Apply transformations on panel level
    if panel_1:
        panel = panel_1 + panel_2 if panel_2 else panel_1
    else:
        panel = []

    # Function to build transformation widgets
    def transformation_widgets(category, transform_params, date_granularity):

        if (
            st.session_state["project_dct"]["transformations"] is None
            or st.session_state["project_dct"]["transformations"] == {}
        ):
            st.session_state["project_dct"]["transformations"] = {}
        if category not in st.session_state["project_dct"]["transformations"].keys():
            st.session_state["project_dct"]["transformations"][category] = {}

        # Define a dict of pre-defined default values of every transformation
        predefined_defualts = {
            "Lag": (1, 2),
            "Lead": (1, 2),
            "Moving Average": (1, 2),
            "Saturation": (10, 20),
            "Power": (2, 4),
            "Adstock": (0.5, 0.7),
        }

        # Transformation Options
        transformation_options = {
            "Media": [
                "Lag",
                "Moving Average",
                "Saturation",
                "Power",
                "Adstock",
            ],
            "Internal": ["Lead", "Lag", "Moving Average"],
            "Exogenous": ["Lead", "Lag", "Moving Average"],
        }

        expanded = st.session_state["project_dct"]["transformations"][category].get(
            "expanded", False
        )

        # Define a helper function to create widgets for each transformation
        def create_transformation_widgets(column, transformations):
            with column:
                for transformation in transformations:
                    # Conditionally create widgets for selected transformations
                    if transformation == "Lead":
                        lead_default = st.session_state["project_dct"][
                            "transformations"
                        ][category].get("Lead", predefined_defualts["Lead"])
                        st.markdown(f"**Lead ({date_granularity})**")
                        lead = st.slider(
                            "Lead periods",
                            1,
                            10,
                            lead_default,
                            1,
                            key=f"lead_{category}",
                            label_visibility="collapsed",
                        )
                        st.session_state["project_dct"]["transformations"][category][
                            "Lead"
                        ] = lead
                        start = lead[0]
                        end = lead[1]
                        step = 1
                        transform_params[category]["Lead"] = np.arange(
                            start, end + step, step
                        )

                    if transformation == "Lag":
                        lag_default = st.session_state["project_dct"][
                            "transformations"
                        ][category].get("Lag", predefined_defualts["Lag"])
                        st.markdown(f"**Lag ({date_granularity})**")
                        lag = st.slider(
                            "Lag periods",
                            1,
                            10,
                            lag_default,
                            1,
                            key=f"lag_{category}",
                            label_visibility="collapsed",
                        )
                        st.session_state["project_dct"]["transformations"][category][
                            "Lag"
                        ] = lag
                        start = lag[0]
                        end = lag[1]
                        step = 1
                        transform_params[category]["Lag"] = np.arange(
                            start, end + step, step
                        )

                    if transformation == "Moving Average":
                        ma_default = st.session_state["project_dct"]["transformations"][
                            category
                        ].get("MA", predefined_defualts["Moving Average"])
                        st.markdown(f"**Moving Average ({date_granularity})**")
                        window = st.slider(
                            "Window size for Moving Average",
                            1,
                            10,
                            ma_default,
                            1,
                            key=f"ma_{category}",
                            label_visibility="collapsed",
                        )
                        st.session_state["project_dct"]["transformations"][category][
                            "MA"
                        ] = window
                        start = window[0]
                        end = window[1]
                        step = 1
                        transform_params[category]["Moving Average"] = np.arange(
                            start, end + step, step
                        )

                    if transformation == "Saturation":
                        st.markdown("**Saturation (%)**")
                        saturation_default = st.session_state["project_dct"][
                            "transformations"
                        ][category].get("Saturation", predefined_defualts["Saturation"])
                        saturation_point = st.slider(
                            f"Saturation Percentage",
                            0,
                            100,
                            saturation_default,
                            10,
                            key=f"sat_{category}",
                            label_visibility="collapsed",
                        )
                        st.session_state["project_dct"]["transformations"][category][
                            "Saturation"
                        ] = saturation_point
                        start = saturation_point[0]
                        end = saturation_point[1]
                        step = 10
                        transform_params[category]["Saturation"] = np.arange(
                            start, end + step, step
                        )

                    if transformation == "Power":
                        st.markdown("**Power**")
                        power_default = st.session_state["project_dct"][
                            "transformations"
                        ][category].get("Power", predefined_defualts["Power"])
                        power = st.slider(
                            f"Power",
                            0,
                            10,
                            power_default,
                            1,
                            key=f"power_{category}",
                            label_visibility="collapsed",
                        )
                        st.session_state["project_dct"]["transformations"][category][
                            "Power"
                        ] = power
                        start = power[0]
                        end = power[1]
                        step = 1
                        transform_params[category]["Power"] = np.arange(
                            start, end + step, step
                        )

                    if transformation == "Adstock":
                        ads_default = st.session_state["project_dct"][
                            "transformations"
                        ][category].get("Adstock", predefined_defualts["Adstock"])
                        st.markdown("**Adstock**")
                        rate = st.slider(
                            f"Factor ({category})",
                            0.0,
                            1.0,
                            ads_default,
                            0.05,
                            key=f"adstock_{category}",
                            label_visibility="collapsed",
                        )
                        st.session_state["project_dct"]["transformations"][category][
                            "Adstock"
                        ] = rate
                        start = rate[0]
                        end = rate[1]
                        step = 0.05
                        adstock_range = [
                            round(a, 3) for a in np.arange(start, end + step, step)
                        ]
                        transform_params[category]["Adstock"] = np.array(adstock_range)

        with st.expander(f"{category} Transformations", expanded=expanded):
            st.session_state["project_dct"]["transformations"][category][
                "expanded"
            ] = True

            # Let users select which transformations to apply
            sel_transformations = st.session_state["project_dct"]["transformations"][
                category
            ].get(f"transformation_{category}", [])

            transformations_to_apply = st.multiselect(
                "Select transformations to apply",
                options=transformation_options[category],
                default=sel_transformations,
                key=f"transformation_{category}",
                # on_change=selection_change(),
            )
            st.session_state["project_dct"]["transformations"][category][
                "transformation_" + category
            ] = transformations_to_apply
            # Determine the number of transformations to put in each column
            transformations_per_column = (
                len(transformations_to_apply) // 2 + len(transformations_to_apply) % 2
            )

            # Create two columns
            col1, col2 = st.columns(2)

            # Assign transformations to each column
            transformations_col1 = transformations_to_apply[:transformations_per_column]
            transformations_col2 = transformations_to_apply[transformations_per_column:]

            # Create widgets in each column
            create_transformation_widgets(col1, transformations_col1)
            create_transformation_widgets(col2, transformations_col2)

    # Define a helper function to create widgets for each specific transformation
    def create_specific_transformation_widgets(
        column,
        transformations,
        channel_name,
        date_granularity,
        specific_transform_params,
    ):

        # Define a dict of pre-defined default values of every transformation
        predefined_defualts = {
            "Lag": (1, 2),
            "Lead": (1, 2),
            "Moving Average": (1, 2),
            "Saturation": (10, 20),
            "Power": (2, 4),
            "Adstock": (0.5, 0.7),
        }

        with column:
            for transformation in transformations:
                # Conditionally create widgets for selected transformations
                if transformation == "Lead":
                    st.markdown(f"**Lead ({date_granularity})**")
                    lead = st.slider(
                        "Lead periods",
                        1,
                        10,
                        predefined_defualts["Lead"],
                        1,
                        key=f"lead_{channel_name}_specific",
                        label_visibility="collapsed",
                    )
                    start = lead[0]
                    end = lead[1]
                    step = 1
                    specific_transform_params[channel_name]["Lead"] = np.arange(
                        start, end + step, step
                    )

                if transformation == "Lag":
                    st.markdown(f"**Lag ({date_granularity})**")
                    lag = st.slider(
                        "Lag periods",
                        1,
                        10,
                        predefined_defualts["Lag"],
                        1,
                        key=f"lag_{channel_name}_specific",
                        label_visibility="collapsed",
                    )
                    start = lag[0]
                    end = lag[1]
                    step = 1
                    specific_transform_params[channel_name]["Lag"] = np.arange(
                        start, end + step, step
                    )

                if transformation == "Moving Average":
                    st.markdown(f"**Moving Average ({date_granularity})**")
                    window = st.slider(
                        "Window size for Moving Average",
                        1,
                        10,
                        predefined_defualts["Moving Average"],
                        1,
                        key=f"ma_{channel_name}_specific",
                        label_visibility="collapsed",
                    )
                    start = window[0]
                    end = window[1]
                    step = 1
                    specific_transform_params[channel_name]["Moving Average"] = (
                        np.arange(start, end + step, step)
                    )

                if transformation == "Saturation":
                    st.markdown("**Saturation (%)**")
                    saturation_point = st.slider(
                        f"Saturation Percentage",
                        0,
                        100,
                        predefined_defualts["Saturation"],
                        10,
                        key=f"sat_{channel_name}_specific",
                        label_visibility="collapsed",
                    )
                    start = saturation_point[0]
                    end = saturation_point[1]
                    step = 10
                    specific_transform_params[channel_name]["Saturation"] = np.arange(
                        start, end + step, step
                    )

                if transformation == "Power":
                    st.markdown("**Power**")
                    power = st.slider(
                        f"Power",
                        0,
                        10,
                        predefined_defualts["Power"],
                        1,
                        key=f"power_{channel_name}_specific",
                        label_visibility="collapsed",
                    )
                    start = power[0]
                    end = power[1]
                    step = 1
                    specific_transform_params[channel_name]["Power"] = np.arange(
                        start, end + step, step
                    )

                if transformation == "Adstock":
                    st.markdown("**Adstock**")
                    rate = st.slider(
                        f"Factor",
                        0.0,
                        1.0,
                        predefined_defualts["Adstock"],
                        0.05,
                        key=f"adstock_{channel_name}_specific",
                        label_visibility="collapsed",
                    )
                    start = rate[0]
                    end = rate[1]
                    step = 0.05
                    adstock_range = [
                        round(a, 3) for a in np.arange(start, end + step, step)
                    ]
                    specific_transform_params[channel_name]["Adstock"] = np.array(
                        adstock_range
                    )

    # Function to apply Lag transformation
    def apply_lag(df, lag):
        return df.shift(lag)

    # Function to apply Lead transformation
    def apply_lead(df, lead):
        return df.shift(-lead)

    # Function to apply Moving Average transformation
    def apply_moving_average(df, window_size):
        return df.rolling(window=window_size).mean()

    # Function to apply Moving Average transformation
    def apply_saturation(df, saturation_percent_100):
        # Convert saturation percentage from 100-based to fraction
        saturation_percent = saturation_percent_100 / 100.0

        # Calculate saturation point and steepness
        column_max = df.max()
        column_min = df.min()
        saturation_point = (column_min + column_max) / 2

        numerator = np.log(
            (1 / (saturation_percent if saturation_percent != 1 else 1 - 1e-9)) - 1
        )
        denominator = np.log(saturation_point / max(column_max, 1e-9))

        steepness = numerator / max(
            denominator, 1e-9
        )  # Avoid division by zero with a small constant

        # Apply the saturation transformation with safeguard for division by zero
        transformed_series = df.apply(
            lambda x: (
                1 / (1 + (saturation_point / (x if x != 0 else 1e-9)) ** steepness)
            )
            * x
        )

        return transformed_series

    # Function to apply Power transformation
    def apply_power(df, power):
        return df**power

    # Function to apply Adstock transformation
    def apply_adstock(df, factor):
        x = 0
        # Use the walrus operator to update x iteratively with the Adstock formula
        adstock_var = [x := x * factor + v for v in df]
        ans = pd.Series(adstock_var, index=df.index)
        return ans

    # Function to generate transformed columns names
    @st.cache_resource(show_spinner=False)
    def generate_transformed_columns(
        original_columns, transform_params, specific_transform_params
    ):
        transformed_columns, summary = {}, {}

        for category, columns in original_columns.items():
            for column in columns:
                transformed_columns[column] = []
                summary_details = (
                    []
                )  # List to hold transformation details for the current column

                if column in specific_transform_params.keys():
                    for transformation, values in specific_transform_params[
                        column
                    ].items():
                        # Generate transformed column names for each value
                        for value in values:
                            transformed_name = f"{column}@{transformation}_{value}"
                            transformed_columns[column].append(transformed_name)

                        # Format the values list as a string with commas and "and" before the last item
                        if len(values) > 1:
                            formatted_values = (
                                ", ".join(map(str, values[:-1]))
                                + " and "
                                + str(values[-1])
                            )
                        else:
                            formatted_values = str(values[0])

                        # Add transformation details
                        summary_details.append(f"{transformation} ({formatted_values})")

                else:
                    if category in transform_params:
                        for transformation, values in transform_params[
                            category
                        ].items():
                            # Generate transformed column names for each value
                            for value in values:
                                transformed_name = f"{column}@{transformation}_{value}"
                                transformed_columns[column].append(transformed_name)

                            # Format the values list as a string with commas and "and" before the last item
                            if len(values) > 1:
                                formatted_values = (
                                    ", ".join(map(str, values[:-1]))
                                    + " and "
                                    + str(values[-1])
                                )
                            else:
                                formatted_values = str(values[0])

                            # Add transformation details
                            summary_details.append(
                                f"{transformation} ({formatted_values})"
                            )

                # Only add to summary if there are transformation details for the column
                if summary_details:
                    formatted_summary = "⮕ ".join(summary_details)
                    # Use <strong> tags to make the column name bold
                    summary[column] = f"<strong>{column}</strong>: {formatted_summary}"

        # Generate a comprehensive summary string for all columns
        summary_items = [
            f"{idx + 1}. {details}" for idx, details in enumerate(summary.values())
        ]

        summary_string = "\n".join(summary_items)

        return transformed_columns, summary_string

    # Function to transform Dataframe slice
    def transform_slice(
        transform_params,
        transformation_functions,
        panel,
        df,
        df_slice,
        category,
        category_df,
    ):
        # Iterate through each transformation and its parameters for the current category
        for transformation, parameters in transform_params[category].items():
            transformation_function = transformation_functions[transformation]

            # Check if there is panel data to group by
            if len(panel) > 0:
                # Apply the transformation to each group
                category_df = pd.concat(
                    [
                        df_slice.groupby(panel)
                        .transform(transformation_function, p)
                        .add_suffix(f"@{transformation}_{p}")
                        for p in parameters
                    ],
                    axis=1,
                )

                # Replace all NaN or null values in category_df with 0
                category_df.fillna(0, inplace=True)

                # Update df_slice
                df_slice = pd.concat(
                    [df[panel], category_df],
                    axis=1,
                )

            else:
                for p in parameters:
                    # Apply the transformation function to each column
                    temp_df = df_slice.apply(
                        lambda x: transformation_function(x, p), axis=0
                    ).rename(
                        lambda x: f"{x}@{transformation}_{p}",
                        axis="columns",
                    )
                    # Concatenate the transformed DataFrame slice to the category DataFrame
                    category_df = pd.concat([category_df, temp_df], axis=1)

                # Replace all NaN or null values in category_df with 0
                category_df.fillna(0, inplace=True)

                # Update df_slice
                df_slice = pd.concat(
                    [df[panel], category_df],
                    axis=1,
                )

        return category_df, df, df_slice

    # Function to apply transformations to DataFrame slices based on specified categories and parameters
    @st.cache_resource(show_spinner=False)
    def apply_category_transformations(
        df_main, bin_dict, transform_params, panel, specific_transform_params
    ):
        # Dictionary for function mapping
        transformation_functions = {
            "Lead": apply_lead,
            "Lag": apply_lag,
            "Moving Average": apply_moving_average,
            "Saturation": apply_saturation,
            "Power": apply_power,
            "Adstock": apply_adstock,
        }

        # List to collect all transformed DataFrames
        transformed_dfs = []

        # Iterate through each category specified in transform_params
        for category in ["Media", "Exogenous", "Internal"]:
            if (
                category not in transform_params
                or category not in bin_dict
                or not transform_params[category]
            ):
                continue  # Skip categories without transformations

            # Initialize category_df as an empty DataFrame
            category_df = pd.DataFrame()

            # Slice the DataFrame based on the columns specified in bin_dict for the current category
            df_slice = df_main[bin_dict[category] + panel].copy()

            # Drop the column from df_slice to skip specific transformations
            df_slice = df_slice.drop(
                columns=list(specific_transform_params.keys()), errors="ignore"
            ).copy()

            category_df, df, df_slice_updated = transform_slice(
                transform_params.copy(),
                transformation_functions.copy(),
                panel,
                df_main.copy(),
                df_slice.copy(),
                category,
                category_df.copy(),
            )

            # Append the transformed category DataFrame to the list if it's not empty
            if not category_df.empty:
                transformed_dfs.append(category_df)

        # Apply channel specific transforms
        for channel_specific in specific_transform_params:
            # Initialize category_df as an empty DataFrame
            category_df = pd.DataFrame()

            df_slice_specific = df_main[[channel_specific] + panel].copy()
            transform_params_specific = {
                "Media": specific_transform_params[channel_specific]
            }

            category_df, df, df_slice_specific_updated = transform_slice(
                transform_params_specific.copy(),
                transformation_functions.copy(),
                panel,
                df_main.copy(),
                df_slice_specific.copy(),
                "Media",
                category_df.copy(),
            )

            # Append the transformed category DataFrame to the list if it's not empty
            if not category_df.empty:
                transformed_dfs.append(category_df)

        # If category_df has been modified, concatenate it with the panel and response metrics from the original DataFrame
        if len(transformed_dfs) > 0:
            final_df = pd.concat([df_main] + transformed_dfs, axis=1)
        else:
            # If no transformations were applied, use the original DataFrame
            final_df = df_main

        # Find columns with '@' in their names
        columns_with_at = [col for col in final_df.columns if "@" in col]

        # Create a set of columns to drop
        columns_to_drop = set()

        # Iterate through columns with '@' to find shorter names to drop
        for col in columns_with_at:
            base_name = col.split("@")[0]
            for other_col in columns_with_at:
                if other_col.startswith(base_name) and len(other_col.split("@")) > len(
                    col.split("@")
                ):
                    columns_to_drop.add(col)
                    break

        # Drop the identified columns from the DataFrame
        final_df.drop(columns=list(columns_to_drop), inplace=True)

        return final_df

    # Function to infers the granularity of the date column in a DataFrame
    @st.cache_resource(show_spinner=False)
    def infer_date_granularity(df):
        # Find the most common difference
        common_freq = pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]

        # Map the most common difference to a granularity
        if common_freq == 1:
            return "daily"
        elif common_freq == 7:
            return "weekly"
        elif 28 <= common_freq <= 31:
            return "monthly"
        else:
            return "irregular"

    #########################################################################################################################################################
    # User input for transformations
    #########################################################################################################################################################

    # Infer date granularity
    date_granularity = infer_date_granularity(final_df_loaded)

    # Initialize the main dictionary to store the transformation parameters for each category
    transform_params = {"Media": {}, "Internal": {}, "Exogenous": {}}

    # User input for transformations
    cols1 = st.columns([2, 1])

    with cols1[0]:
        st.markdown(f"**Welcome {st.session_state['username']}**")
    with cols1[1]:
        st.markdown(f"**Current Project: {st.session_state['project_name']}**")

    st.markdown("### Select Transformations to Apply")

    with st.expander("Specific Transformations"):
        select_specific_channels = st.multiselect(
            "Select channels", options=bin_dict_loaded["Media"]
        )

        specific_transform_params = {}
        for select_specific_channel in select_specific_channels:
            specific_transform_params[select_specific_channel] = {}

            st.divider()
            channel_name = str(select_specific_channel).replace("_", " ").title()
            st.markdown(f"###### {channel_name}")
            transformations_to_apply = st.multiselect(
                "Select transformations to apply",
                options=[
                    "Lag",
                    "Moving Average",
                    "Saturation",
                    "Power",
                    "Adstock",
                ],
                default="Adstock",
                key=f"specific_transformation_{select_specific_channel}_Media",
            )
            # Determine the number of transformations to put in each column
            transformations_per_column = (
                len(transformations_to_apply) // 2 + len(transformations_to_apply) % 2
            )

            # Create two columns
            col1, col2 = st.columns(2)

            # Assign transformations to each column
            transformations_col1 = transformations_to_apply[:transformations_per_column]
            transformations_col2 = transformations_to_apply[transformations_per_column:]

            # Create widgets in each column
            create_specific_transformation_widgets(
                col1,
                transformations_col1,
                select_specific_channel,
                date_granularity,
                specific_transform_params,
            )
            create_specific_transformation_widgets(
                col2,
                transformations_col2,
                select_specific_channel,
                date_granularity,
                specific_transform_params,
            )

    for category in ["Media", "Internal", "Exogenous"]:
        # Skip Internal
        if category == "Internal":
            continue

        transformation_widgets(category, transform_params, date_granularity)

    #########################################################################################################################################################
    # Apply transformations
    #########################################################################################################################################################

    # Apply category-based transformations to the DataFrame
    if st.button("Accept and Proceed", use_container_width=True):
        with st.spinner("Applying transformations..."):
            final_df = apply_category_transformations(
                final_df_loaded.copy(),
                bin_dict_loaded.copy(),
                transform_params.copy(),
                panel.copy(),
                specific_transform_params.copy(),
            )

            # Generate a dictionary mapping original column names to lists of transformed column names
            transformed_columns_dict, summary_string = generate_transformed_columns(
                original_columns, transform_params, specific_transform_params
            )

            # Store into transformed dataframe and summary session state
            st.session_state["final_df"] = final_df
            st.session_state["summary_string"] = summary_string

    #########################################################################################################################################################
    # Display the transformed DataFrame and summary
    #########################################################################################################################################################

    # Display the transformed DataFrame in the Streamlit app
    st.markdown("### Transformed DataFrame")
    final_df = st.session_state["final_df"].copy()

    sort_col = []
    for col in final_df.columns:
        if col in ["Panel_1", "Panel_2", "date"]:
            sort_col.append(col)

    sorted_final_df = final_df.sort_values(
        by=sort_col, ascending=True, na_position="first"
    )

    # Dropping duplicate columns
    sorted_final_df = sorted_final_df.loc[:, ~sorted_final_df.columns.duplicated()]

    # Check the number of columns and show only the first 500 if there are more
    if sorted_final_df.shape[1] > 500:
        # Display a warning if the DataFrame has more than 500 columns
        st.warning(
            "The transformed DataFrame has more than 500 columns. Displaying only the first 500 columns.",
            icon="⚠️",
        )
        st.dataframe(sorted_final_df.iloc[:, :500], hide_index=True)
    else:
        st.dataframe(sorted_final_df, hide_index=True)

    # Total rows and columns
    total_rows, total_columns = st.session_state["final_df"].shape
    st.markdown(
        f"<p style='text-align: justify;'>The transformed DataFrame contains <strong>{total_rows}</strong> rows and <strong>{total_columns}</strong> columns.</p>",
        unsafe_allow_html=True,
    )

    # Display the summary of transformations as markdown
    if "summary_string" in st.session_state and st.session_state["summary_string"]:
        with st.expander("Summary of Transformations"):
            st.markdown("### Summary of Transformations")
            st.markdown(st.session_state["summary_string"], unsafe_allow_html=True)

    @st.cache_resource(show_spinner=False)
    def save_to_pickle(file_path, final_df):
        # Open the file in write-binary mode and dump the objects
        with open(file_path, "wb") as f:
            pickle.dump({"final_df_transformed": final_df}, f)
            # Data is now saved to file

    #########################################################################################################################################################
    # Correlation Plot
    #########################################################################################################################################################

    # Filter out the 'date' column
    variables = [col for col in final_df.columns if col.lower() != "date"]

    # Expander with multiselect
    with st.expander("Transformed Variable Correlation Plot"):
        selected_vars = st.multiselect(
            "Choose variables for correlation plot:", variables
        )

        # Calculate correlation
        if selected_vars:
            corr_df = final_df[selected_vars].corr()

            # Prepare text annotations with 2 decimal places
            annotations = []
            for i in range(len(corr_df)):
                for j in range(len(corr_df.columns)):
                    annotations.append(
                        go.layout.Annotation(
                            text=f"{corr_df.iloc[i, j]:.2f}",
                            x=corr_df.columns[j],
                            y=corr_df.index[i],
                            showarrow=False,
                            font=dict(color="black"),
                        )
                    )

            # Plotly correlation plot using go
            heatmap = go.Heatmap(
                z=corr_df.values,
                x=corr_df.columns,
                y=corr_df.index,
                colorscale="RdBu",
                zmin=-1,
                zmax=1,
            )

            layout = go.Layout(
                title="Transformed Variable Correlation Plot",
                xaxis=dict(title="Variables"),
                yaxis=dict(title="Variables"),
                width=1000,
                height=1000,
                annotations=annotations,
            )

            fig = go.Figure(data=[heatmap], layout=layout)

            st.plotly_chart(fig)
        else:
            st.write("Please select at least one variable to plot.")

    #########################################################################################################################################################
    # Accept and Save
    #########################################################################################################################################################

    if st.button("Accept and Save", use_container_width=True):
        save_to_pickle(
            os.path.join(st.session_state["project_path"], "final_df_transformed.pkl"),
            st.session_state["final_df"],
        )
        project_dct_path = os.path.join(
            st.session_state["project_path"], "project_dct.pkl"
        )

        with open(project_dct_path, "wb") as f:
            pickle.dump(st.session_state["project_dct"], f)

        update_db("3_Transformations.py")

        st.toast("💾 Saved Successfully!")