File size: 35,396 Bytes
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
"""
MMO Build Sprint 3
date :
changes : capability to tune MixedLM as well as simple LR in the same page
"""

import os

import streamlit as st
import pandas as pd
from Eda_functions import format_numbers
import pickle
from utilities import set_header, load_local_css
import statsmodels.api as sm
import re
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from statsmodels.stats.outliers_influence import variance_inflation_factor

# import yaml
# from yaml import SafeLoader
# import streamlit_authenticator as stauth

st.set_option("deprecation.showPyplotGlobalUse", False)
import statsmodels.formula.api as smf
from Data_prep_functions import *
import sqlite3
from utilities import set_header, load_local_css, update_db, project_selection

# for i in ["model_tuned", "X_train_tuned", "X_test_tuned", "tuned_model_features", "tuned_model", "tuned_model_dict"] :

st.set_page_config(
    page_title="Model Tuning",
    page_icon=":shark:",
    layout="wide",
    initial_sidebar_state="collapsed",
)
load_local_css("styles.css")
set_header()

if "username" not in st.session_state:
    st.session_state["username"] = None

if "project_name" not in st.session_state:
    st.session_state["project_name"] = None

if "project_dct" not in st.session_state:
    project_selection()
    st.stop()

if "username" in st.session_state and st.session_state["username"] is not None:

    if not os.path.exists(
        os.path.join(st.session_state["project_path"], "best_models.pkl")
    ):
        st.error("Please save a model before tuning")
        st.stop()

    conn = sqlite3.connect(
        r"DB/User.db", check_same_thread=False
    )  # connection with sql db
    c = conn.cursor()

    # if not is_state_initiaized:
    #     if "session_name" not in st.session_state:
    #         st.session_state["session_name"] = None

    if "session_state_saved" in st.session_state["project_dct"]["model_build"].keys():
        for key in [
            "Model",
            "date",
            "saved_model_names",
            "media_data",
            "X_test_spends",
            "spends_data"
        ]:
            if key not in st.session_state:
                st.session_state[key] = st.session_state["project_dct"]["model_build"][
                    "session_state_saved"
                ][key]
            st.session_state["bin_dict"] = st.session_state["project_dct"][
                "model_build"
            ]["session_state_saved"]["bin_dict"]
            if (
                "used_response_metrics" not in st.session_state
                or st.session_state["used_response_metrics"] == []
            ):
                st.session_state["used_response_metrics"] = st.session_state[
                    "project_dct"
                ]["model_build"]["session_state_saved"]["used_response_metrics"]
    else:
        st.error("Please load a session with a built model")
        st.stop()

    # if 'sel_model' not in st.session_state["project_dct"]["model_tuning"].keys():
    #     st.session_state["project_dct"]["model_tuning"]['sel_model']= {}

    for key in ["select_all_flags_check", "selected_flags", "sel_model"]:
        if key not in st.session_state["project_dct"]["model_tuning"].keys():
            st.session_state["project_dct"]["model_tuning"][key] = {}
    # Sprint3
    # is_panel = st.session_state['is_panel']
    # panel_col = 'markets'  # set the panel column
    date_col = "date"

    # panel_col = [
    #     col.lower()
    #     .replace(".", "_")
    #     .replace("@", "_")
    #     .replace(" ", "_")
    #     .replace("-", "")
    #     .replace(":", "")
    #     .replace("__", "_")
    #     for col in st.session_state["bin_dict"]["Panel Level 1"]
    # ][
    #     0
    # ]

    panel_col = []  # manoj

    # set the panel column
    is_panel = True if len(panel_col) > 0 else False

    # flag indicating there is not tuned model till now

    # Sprint4 - model tuned dict
    if "Model_Tuned" not in st.session_state:
        st.session_state["Model_Tuned"] = {}
    cols1 = st.columns([2, 1])
    with cols1[0]:
        st.markdown(f"**Welcome {st.session_state['username']}**")
    with cols1[1]:
        st.markdown(f"**Current Project: {st.session_state['project_name']}**")

    st.title("1. Model Tuning")

    if "is_tuned_model" not in st.session_state:
        st.session_state["is_tuned_model"] = {}
    # Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default
    if (
        "used_response_metrics" in st.session_state
        and st.session_state["used_response_metrics"] != []
    ):
        default_target_idx = (
            st.session_state["project_dct"]["model_tuning"].get("sel_target_col", None)
            if st.session_state["project_dct"]["model_tuning"].get(
                "sel_target_col", None
            )
            is not None
            else st.session_state["used_response_metrics"][0]
        )

        def format_display(inp):
            return inp.title().replace("_", " ").strip()

        sel_target_col = st.selectbox(
            "Select the response metric",
            st.session_state["used_response_metrics"],
            index=st.session_state["used_response_metrics"].index(default_target_idx),
            format_func=format_display,
        )
        target_col = (
            sel_target_col.lower()
            .replace(" ", "_")
            .replace("-", "")
            .replace(":", "")
            .replace("__", "_")
        )
        st.session_state["project_dct"]["model_tuning"][
            "sel_target_col"
        ] = sel_target_col

    else:
        sel_target_col = "Total Approved Accounts - Revenue"
        target_col = "total_approved_accounts_revenue"

    # Sprint4 - Look through all saved models, only show saved models of the sel resp metric (target_col)
    # saved_models = st.session_state['saved_model_names']
    with open(
        os.path.join(st.session_state["project_path"], "best_models.pkl"), "rb"
    ) as file:
        model_dict = pickle.load(file)

    saved_models = model_dict.keys()
    required_saved_models = [
        m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col
    ]

    if len(required_saved_models) > 0:
        default_model_idx = st.session_state["project_dct"]["model_tuning"][
            "sel_model"
        ].get(sel_target_col, required_saved_models[0])
        sel_model = st.selectbox(
            "Select the model to tune",
            required_saved_models,
            index=required_saved_models.index(default_model_idx),
        )
    else:
        default_model_idx = st.session_state["project_dct"]["model_tuning"][
            "sel_model"
        ].get(sel_target_col, 0)
        sel_model = st.selectbox("Select the model to tune", required_saved_models)

    st.session_state["project_dct"]["model_tuning"]["sel_model"][
        sel_target_col
    ] = default_model_idx

    sel_model_dict = model_dict[
        sel_model + "__" + target_col
    ]  # Sprint4 - get the model obj of the selected model

    X_train = sel_model_dict["X_train"]
    X_test = sel_model_dict["X_test"]
    y_train = sel_model_dict["y_train"]
    y_test = sel_model_dict["y_test"]
    df = st.session_state["media_data"]

    if "selected_model" not in st.session_state:
        st.session_state["selected_model"] = 0

    st.markdown("### 1.1 Event Flags")
    st.markdown("Helps in quantifying the impact of specific occurrences of events")

    with st.expander("Apply Event Flags"):
        st.session_state["project_dct"]["model_tuning"]["flag_expander"] = True

        model = sel_model_dict["Model_object"]
        date = st.session_state["date"]
        date = pd.to_datetime(date)
        X_train = sel_model_dict["X_train"]

        # features_set= model_dict[st.session_state["selected_model"]]['feature_set']
        features_set = sel_model_dict["feature_set"]

        col = st.columns(3)
        min_date = min(date)
        max_date = max(date)

        start_date_default = (
            st.session_state["project_dct"]["model_tuning"].get("start_date_default")
            if st.session_state["project_dct"]["model_tuning"].get("start_date_default")
            is not None
            else min_date
        )
        end_date_default = (
            st.session_state["project_dct"]["model_tuning"].get("end_date_default")
            if st.session_state["project_dct"]["model_tuning"].get("end_date_default")
            is not None
            else max_date
        )
        with col[0]:
            start_date = st.date_input(
                "Select Start Date",
                start_date_default,
                min_value=min_date,
                max_value=max_date,
            )
        with col[1]:
            end_date_default = (
                end_date_default
                if pd.Timestamp(end_date_default) >= pd.Timestamp(start_date)
                else start_date
            )
            end_date = st.date_input(
                "Select End Date",
                end_date_default,
                min_value=max(pd.to_datetime(min_date), pd.to_datetime(start_date)),
                max_value=pd.to_datetime(max_date),
            )
        with col[2]:
            repeat_default = (
                st.session_state["project_dct"]["model_tuning"].get("repeat_default")
                if st.session_state["project_dct"]["model_tuning"].get("repeat_default")
                is not None
                else "No"
            )
            repeat_default_idx = 0 if repeat_default.lower() == "yes" else 1
            repeat = st.selectbox(
                "Repeat Annually", ["Yes", "No"], index=repeat_default_idx
            )
        st.session_state["project_dct"]["model_tuning"][
            "start_date_default"
        ] = start_date
        st.session_state["project_dct"]["model_tuning"]["end_date_default"] = end_date
        st.session_state["project_dct"]["model_tuning"]["repeat_default"] = repeat

        if repeat == "Yes":
            repeat = True
        else:
            repeat = False

        if "Flags" not in st.session_state:
            st.session_state["Flags"] = {}
        if "flags" in st.session_state["project_dct"]["model_tuning"].keys():
            st.session_state["Flags"] = st.session_state["project_dct"]["model_tuning"][
                "flags"
            ]
        # print("**"*50)
        # print(y_train)
        # print("**"*50)
        # print(model.fittedvalues)
        if is_panel:  # Sprint3
            met, line_values, fig_flag = plot_actual_vs_predicted(
                X_train[date_col],
                y_train,
                model.fittedvalues,
                model,
                target_column=sel_target_col,
                flag=(start_date, end_date),
                repeat_all_years=repeat,
                is_panel=True,
            )
            st.plotly_chart(fig_flag, use_container_width=True)

            # create flag on test
            met, test_line_values, fig_flag = plot_actual_vs_predicted(
                X_test[date_col],
                y_test,
                sel_model_dict["pred_test"],
                model,
                target_column=sel_target_col,
                flag=(start_date, end_date),
                repeat_all_years=repeat,
                is_panel=True,
            )

        else:
            pred_train = model.predict(X_train[features_set])
            met, line_values, fig_flag = plot_actual_vs_predicted(
                X_train[date_col],
                y_train,
                pred_train,
                model,
                flag=(start_date, end_date),
                repeat_all_years=repeat,
                is_panel=False,
            )
            st.plotly_chart(fig_flag, use_container_width=True)

            pred_test = model.predict(X_test[features_set])
            met, test_line_values, fig_flag = plot_actual_vs_predicted(
                X_test[date_col],
                y_test,
                pred_test,
                model,
                flag=(start_date, end_date),
                repeat_all_years=repeat,
                is_panel=False,
            )
        flag_name = "f1_flag"
        flag_name = st.text_input("Enter Flag Name")
        # Sprint4 - add selected target col to flag name
        if st.button("Update flag"):
            st.session_state["Flags"][flag_name + "_flag__" + target_col] = {}
            st.session_state["Flags"][flag_name + "_flag__" + target_col][
                "train"
            ] = line_values
            st.session_state["Flags"][flag_name + "_flag__" + target_col][
                "test"
            ] = test_line_values
            st.success(f'{flag_name + "_flag__" + target_col} stored')

            st.session_state["project_dct"]["model_tuning"]["flags"] = st.session_state[
                "Flags"
            ]
        # Sprint4 - only show flag created for the particular target col
        if st.session_state["Flags"] is None:
            st.session_state["Flags"] = {}
        target_model_flags = [
            f.split("__")[0]
            for f in st.session_state["Flags"].keys()
            if f.split("__")[1] == target_col
        ]
        options = list(target_model_flags)
        selected_options = []
        num_columns = 4
        num_rows = -(-len(options) // num_columns)

    tick = False
    if st.checkbox(
        "Select all",
        value=st.session_state["project_dct"]["model_tuning"][
            "select_all_flags_check"
        ].get(sel_target_col, False),
    ):
        tick = True
        st.session_state["project_dct"]["model_tuning"]["select_all_flags_check"][
            sel_target_col
        ] = True
    else:
        st.session_state["project_dct"]["model_tuning"]["select_all_flags_check"][
            sel_target_col
        ] = False
    selection_defualts = st.session_state["project_dct"]["model_tuning"][
        "selected_flags"
    ].get(sel_target_col, [])
    selected_options = selection_defualts
    for row in range(num_rows):
        cols = st.columns(num_columns)
        for col in cols:
            if options:
                option = options.pop(0)
                option_default = True if option in selection_defualts else False
                selected = col.checkbox(option, value=(tick or option_default))
                if selected:
                    selected_options.append(option)
                else:
                    if option in selected_options:
                        selected_options.remove(option)
    selected_options = list(set(selected_options))
    st.session_state["project_dct"]["model_tuning"]["selected_flags"][
        sel_target_col
    ] = selected_options

    st.markdown("### 1.2 Select Parameters to Apply")
    parameters = st.columns(3)
    with parameters[0]:
        Trend = st.checkbox(
            "**Trend**",
            value=st.session_state["project_dct"]["model_tuning"].get(
                "trend_check", False
            ),
        )
        st.markdown(
            "Helps account for long-term trends or seasonality that could influence advertising effectiveness"
        )
    with parameters[1]:
        week_number = st.checkbox(
            "**Week_number**",
            value=st.session_state["project_dct"]["model_tuning"].get(
                "week_num_check", False
            ),
        )
        st.markdown(
            "Assists in detecting and incorporating weekly patterns or seasonality"
        )
    with parameters[2]:
        sine_cosine = st.checkbox(
            "**Sine and Cosine Waves**",
            value=st.session_state["project_dct"]["model_tuning"].get(
                "sine_cosine_check", False
            ),
        )
        st.markdown("Helps in capturing cyclical patterns or seasonality in the data")
    #
    # def get_tuned_model():
    #     st.session_state['build_tuned_model']=True

    if st.button(
        "Build model with Selected Parameters and Flags",
        key="build_tuned_model",
        use_container_width=True,
    ):
        new_features = features_set
        st.header("2.1 Results Summary")
        # date=list(df.index)
        # df = df.reset_index(drop=True)
        # X_train=df[features_set]
        ss = MinMaxScaler()
        if is_panel == True:
            X_train_tuned = X_train[features_set]
            # X_train_tuned = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
            X_train_tuned[target_col] = X_train[target_col]
            X_train_tuned[date_col] = X_train[date_col]
            X_train_tuned[panel_col] = X_train[panel_col]

            X_test_tuned = X_test[features_set]
            # X_test_tuned = pd.DataFrame(ss.transform(X), columns=X.columns)
            X_test_tuned[target_col] = X_test[target_col]
            X_test_tuned[date_col] = X_test[date_col]
            X_test_tuned[panel_col] = X_test[panel_col]

        else:
            X_train_tuned = X_train[features_set]
            # X_train_tuned = pd.DataFrame(ss.fit_transform(X_train_tuned), columns=X_train_tuned.columns)

            X_test_tuned = X_test[features_set]
            # X_test_tuned = pd.DataFrame(ss.transform(X_test_tuned), columns=X_test_tuned.columns)

        for flag in selected_options:
            # Spirnt4 - added target_col in flag name
            X_train_tuned[flag] = st.session_state["Flags"][flag + "__" + target_col][
                "train"
            ]
            X_test_tuned[flag] = st.session_state["Flags"][flag + "__" + target_col][
                "test"
            ]

            # test
            # X_train_tuned.to_csv("Test/X_train_tuned_flag.csv",index=False)
            # X_test_tuned.to_csv("Test/X_test_tuned_flag.csv",index=False)

        # print("()()"*20,flag, len(st.session_state['Flags'][flag]))
        if Trend:
            st.session_state["project_dct"]["model_tuning"]["trend_check"] = True
            # Sprint3 - group by panel, calculate trend of each panel spearately. Add trend to new feature set
            if is_panel:
                newdata = pd.DataFrame()
                panel_wise_end_point_train = {}
                for panel, groupdf in X_train_tuned.groupby(panel_col):
                    groupdf.sort_values(date_col, inplace=True)
                    groupdf["Trend"] = np.arange(1, len(groupdf) + 1, 1)
                    newdata = pd.concat([newdata, groupdf])
                    panel_wise_end_point_train[panel] = len(groupdf)
                X_train_tuned = newdata.copy()

                test_newdata = pd.DataFrame()
                for panel, test_groupdf in X_test_tuned.groupby(panel_col):
                    test_groupdf.sort_values(date_col, inplace=True)
                    start = panel_wise_end_point_train[panel] + 1
                    end = start + len(test_groupdf)  # should be + 1? - Sprint4
                    # print("??"*20, panel, len(test_groupdf), len(np.arange(start, end, 1)), start)
                    test_groupdf["Trend"] = np.arange(start, end, 1)
                    test_newdata = pd.concat([test_newdata, test_groupdf])
                X_test_tuned = test_newdata.copy()

                new_features = new_features + ["Trend"]

            else:
                X_train_tuned["Trend"] = np.arange(1, len(X_train_tuned) + 1, 1)
                X_test_tuned["Trend"] = np.arange(
                    len(X_train_tuned) + 1,
                    len(X_train_tuned) + len(X_test_tuned) + 1,
                    1,
                )
                new_features = new_features + ["Trend"]
        else:
            st.session_state["project_dct"]["model_tuning"]["trend_check"] = False

        if week_number:
            st.session_state["project_dct"]["model_tuning"]["week_num_check"] = True
            # Sprint3 - create weeknumber from date column in xtrain tuned. add week num to new feature set
            if is_panel:
                X_train_tuned[date_col] = pd.to_datetime(X_train_tuned[date_col])
                X_train_tuned["Week_number"] = X_train_tuned[date_col].dt.day_of_week
                if X_train_tuned["Week_number"].nunique() == 1:
                    st.write(
                        "All dates in the data are of the same week day. Hence Week number can't be used."
                    )
                else:
                    X_test_tuned[date_col] = pd.to_datetime(X_test_tuned[date_col])
                    X_test_tuned["Week_number"] = X_test_tuned[date_col].dt.day_of_week
                    new_features = new_features + ["Week_number"]

            else:
                date = pd.to_datetime(date.values)
                X_train_tuned["Week_number"] = pd.to_datetime(
                    X_train[date_col]
                ).dt.day_of_week
                X_test_tuned["Week_number"] = pd.to_datetime(
                    X_test[date_col]
                ).dt.day_of_week
                new_features = new_features + ["Week_number"]
        else:
            st.session_state["project_dct"]["model_tuning"]["week_num_check"] = False

        if sine_cosine:
            st.session_state["project_dct"]["model_tuning"]["sine_cosine_check"] = True
            # Sprint3 - create panel wise sine cosine waves in xtrain tuned. add to new feature set
            if is_panel:
                new_features = new_features + ["sine_wave", "cosine_wave"]
                newdata = pd.DataFrame()
                newdata_test = pd.DataFrame()
                groups = X_train_tuned.groupby(panel_col)
                frequency = 2 * np.pi / 365  # Adjust the frequency as needed

                train_panel_wise_end_point = {}
                for panel, groupdf in groups:
                    num_samples = len(groupdf)
                    train_panel_wise_end_point[panel] = num_samples
                    days_since_start = np.arange(num_samples)
                    sine_wave = np.sin(frequency * days_since_start)
                    cosine_wave = np.cos(frequency * days_since_start)
                    sine_cosine_df = pd.DataFrame(
                        {"sine_wave": sine_wave, "cosine_wave": cosine_wave}
                    )
                    assert len(sine_cosine_df) == len(groupdf)
                    # groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
                    groupdf["sine_wave"] = sine_wave
                    groupdf["cosine_wave"] = cosine_wave
                    newdata = pd.concat([newdata, groupdf])

                X_train_tuned = newdata.copy()

                test_groups = X_test_tuned.groupby(panel_col)
                for panel, test_groupdf in test_groups:
                    num_samples = len(test_groupdf)
                    start = train_panel_wise_end_point[panel]
                    days_since_start = np.arange(start, start + num_samples, 1)
                    # print("##", panel, num_samples, start, len(np.arange(start, start+num_samples, 1)))
                    sine_wave = np.sin(frequency * days_since_start)
                    cosine_wave = np.cos(frequency * days_since_start)
                    sine_cosine_df = pd.DataFrame(
                        {"sine_wave": sine_wave, "cosine_wave": cosine_wave}
                    )
                    assert len(sine_cosine_df) == len(test_groupdf)
                    # groupdf = pd.concat([groupdf, sine_cosine_df], axis=1)
                    test_groupdf["sine_wave"] = sine_wave
                    test_groupdf["cosine_wave"] = cosine_wave
                    newdata_test = pd.concat([newdata_test, test_groupdf])

                X_test_tuned = newdata_test.copy()

            else:
                new_features = new_features + ["sine_wave", "cosine_wave"]

                num_samples = len(X_train_tuned)
                frequency = 2 * np.pi / 365  # Adjust the frequency as needed
                days_since_start = np.arange(num_samples)
                sine_wave = np.sin(frequency * days_since_start)
                cosine_wave = np.cos(frequency * days_since_start)
                sine_cosine_df = pd.DataFrame(
                    {"sine_wave": sine_wave, "cosine_wave": cosine_wave}
                )
                # Concatenate the sine and cosine waves with the scaled X DataFrame
                X_train_tuned = pd.concat([X_train_tuned, sine_cosine_df], axis=1)

                test_num_samples = len(X_test_tuned)
                start = num_samples
                days_since_start = np.arange(start, start + test_num_samples, 1)
                sine_wave = np.sin(frequency * days_since_start)
                cosine_wave = np.cos(frequency * days_since_start)
                sine_cosine_df = pd.DataFrame(
                    {"sine_wave": sine_wave, "cosine_wave": cosine_wave}
                )
                # Concatenate the sine and cosine waves with the scaled X DataFrame
                X_test_tuned = pd.concat([X_test_tuned, sine_cosine_df], axis=1)
        else:
            st.session_state["project_dct"]["model_tuning"]["sine_cosine_check"] = False

        # model
        if selected_options:
            new_features = new_features + selected_options
        if is_panel:
            inp_vars_str = " + ".join(new_features)
            new_features = list(set(new_features))

            md_str = target_col + " ~ " + inp_vars_str
            md_tuned = smf.mixedlm(
                md_str,
                data=X_train_tuned[[target_col] + new_features],
                groups=X_train_tuned[panel_col],
            )
            model_tuned = md_tuned.fit()

            # plot act v pred for original model and tuned model
            metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(
                X_train[date_col],
                y_train,
                model.fittedvalues,
                model,
                target_column=sel_target_col,
                is_panel=True,
            )
            metrics_table_tuned, line, actual_vs_predicted_plot_tuned = (
                plot_actual_vs_predicted(
                    X_train_tuned[date_col],
                    X_train_tuned[target_col],
                    model_tuned.fittedvalues,
                    model_tuned,
                    target_column=sel_target_col,
                    is_panel=True,
                )
            )

        else:
            new_features = list(set(new_features))
            model_tuned = sm.OLS(y_train, X_train_tuned[new_features]).fit()
            metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(
                X_train[date_col],
                y_train,
                model.predict(X_train[features_set]),
                model,
                target_column=sel_target_col,
            )
            # st.write(X_train.columns)
            # st.write(X_train_tuned.columns)

            metrics_table_tuned, line, actual_vs_predicted_plot_tuned = (
                plot_actual_vs_predicted(
                    X_train[date_col],
                    y_train,
                    model_tuned.predict(X_train_tuned[new_features]),
                    model_tuned,
                    target_column=sel_target_col,
                )
            )

        mape = np.round(metrics_table.iloc[0, 1], 2)
        r2 = np.round(metrics_table.iloc[1, 1], 2)
        adjr2 = np.round(metrics_table.iloc[2, 1], 2)

        mape_tuned = np.round(metrics_table_tuned.iloc[0, 1], 2)
        r2_tuned = np.round(metrics_table_tuned.iloc[1, 1], 2)
        adjr2_tuned = np.round(metrics_table_tuned.iloc[2, 1], 2)

        parameters_ = st.columns(3)
        with parameters_[0]:
            st.metric("R2", r2_tuned, np.round(r2_tuned - r2, 2))
        with parameters_[1]:
            st.metric("Adjusted R2", adjr2_tuned, np.round(adjr2_tuned - adjr2, 2))
        with parameters_[2]:
            st.metric("MAPE", mape_tuned, np.round(mape_tuned - mape, 2), "inverse")
        st.write(model_tuned.summary())

        X_train_tuned[date_col] = X_train[date_col]
        X_test_tuned[date_col] = X_test[date_col]
        X_train_tuned[target_col] = y_train
        X_test_tuned[target_col] = y_test

        st.header("2.2 Actual vs. Predicted Plot")
        if is_panel:
            metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(
                X_train_tuned[date_col],
                X_train_tuned[target_col],
                model_tuned.fittedvalues,
                model_tuned,
                target_column=sel_target_col,
                is_panel=True,
            )
        else:

            metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(
                X_train_tuned[date_col],
                X_train_tuned[target_col],
                model_tuned.predict(X_train_tuned[new_features]),
                model_tuned,
                target_column=sel_target_col,
                is_panel=False,
            )
            # st.write(metrics_table)
        # plot_actual_vs_predicted(X_train[date_col], y_train,
        #                                                                             model.fittedvalues, model,
        #                                                                             target_column='Revenue',
        #                                                                             is_panel=is_panel)

        st.plotly_chart(actual_vs_predicted_plot, use_container_width=True)

        st.markdown("## 2.3 Residual Analysis")
        if is_panel:
            columns = st.columns(2)
            with columns[0]:
                fig = plot_residual_predicted(
                    y_train, model_tuned.fittedvalues, X_train_tuned
                )
                st.plotly_chart(fig)

            with columns[1]:
                st.empty()
                fig = qqplot(y_train, model_tuned.fittedvalues)
                st.plotly_chart(fig)

            with columns[0]:
                fig = residual_distribution(y_train, model_tuned.fittedvalues)
                st.pyplot(fig)
        else:
            columns = st.columns(2)
            with columns[0]:
                fig = plot_residual_predicted(
                    y_train,
                    model_tuned.predict(X_train_tuned[new_features]),
                    X_train,
                )
                st.plotly_chart(fig)

            with columns[1]:
                st.empty()
                fig = qqplot(y_train, model_tuned.predict(X_train_tuned[new_features]))
                st.plotly_chart(fig)

            with columns[0]:
                fig = residual_distribution(
                    y_train, model_tuned.predict(X_train_tuned[new_features])
                )
                st.pyplot(fig)

        # st.session_state['is_tuned_model'][target_col] = True
        # Sprint4 - saved tuned model in a dict
        st.session_state["Model_Tuned"][sel_model + "__" + target_col] = {
            "Model_object": model_tuned,
            "feature_set": new_features,
            "X_train_tuned": X_train_tuned,
            "X_test_tuned": X_test_tuned,
        }

        with st.expander("Results Summary Test data"):
            test_pred=model_tuned.predict(X_test_tuned[new_features])
            st.header("2.2 Actual vs. Predicted Plot")
            metrics_table, line, actual_vs_predicted_plot = (
                plot_actual_vs_predicted(
                    X_test_tuned[date_col],
                    y_test,
                    test_pred,
                    model,
                    target_column=sel_target_col,
                    is_panel=is_panel,
                )
            )
            st.plotly_chart(actual_vs_predicted_plot, use_container_width=True)
            st.markdown("## 2.3 Residual Analysis")

            columns = st.columns(2)
            with columns[0]:
                fig = plot_residual_predicted(y_test, test_pred, X_test_tuned)
                st.plotly_chart(fig)

            with columns[1]:
                st.empty()
                fig = qqplot(y_test, test_pred)
                st.plotly_chart(fig)

            with columns[0]:
                fig = residual_distribution(y_test, test_pred)
                st.pyplot(fig)
    # if st.session_state['build_tuned_model']==True:
    if st.session_state["Model_Tuned"] is not None:
        if st.button("Use This model for Media Planning", use_container_width=True):
            #   save_model = st.button('Use this model to build response curves', key='saved_tuned_model')
            #   if save_model:

            # remove any other tuned model saved for this target col
            # sprint8
            _remove = [
                m
                for m in st.session_state["Model_Tuned"].keys()
                if m.split("__")[1] == target_col and m.split("__")[0] != sel_model
            ]
            if len(_remove) > 0:
                for m in _remove:
                    del st.session_state["Model_Tuned"][m]

            st.session_state["is_tuned_model"][target_col] = True
            with open(
                os.path.join(st.session_state["project_path"], "tuned_model.pkl"),
                "wb",
            ) as f:
                # pickle.dump(st.session_state['tuned_model'], f)
                pickle.dump(st.session_state["Model_Tuned"], f)  # Sprint4

            st.session_state["project_dct"]["model_tuning"]["session_state_saved"] = {}
            for key in [
                "bin_dict",
                "used_response_metrics",
                "is_tuned_model",
                "media_data",
                "X_test_spends",
                "spends_data"
            ]:
                st.session_state["project_dct"]["model_tuning"]["session_state_saved"][
                    key
                ] = st.session_state[key]

            project_dct_path = os.path.join(
                st.session_state["project_path"], "project_dct.pkl"
            )
            with open(project_dct_path, "wb") as f:
                pickle.dump(st.session_state["project_dct"], f)

            update_db("5_Model_Tuning.py")

            # import glob

            # # Create a search pattern to find all JSON files with "orig_rcs" in their names
            # search_pattern = os.path.join(
            #     st.session_state["project_path"], "orig_rcs*.json"
            # )

            # # Use glob to find all matching files
            # files_to_remove = glob.glob(search_pattern)

            # # Remove each file found
            # for file_path in files_to_remove:
            #     os.remove(file_path)
            #     print(f"Removed: {file_path}")

            # Define the paths to the original files
            original_json_file_path = os.path.join(
                st.session_state["project_path"], "rcs_data_original.json"
            )
            original_pickle_file_path = os.path.join(
                st.session_state["project_path"], "scenario_data_original.pkl"
            )

            # Remove the original data file if it exists
            if os.path.exists(original_json_file_path):
                os.remove(original_json_file_path)
            if os.path.exists(original_pickle_file_path):
                os.remove(original_pickle_file_path)

            st.success(sel_model + " for " + target_col + " Tuned saved!")