File size: 54,978 Bytes
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde220d
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde220d
9938325
fde220d
9938325
fde220d
9938325
fde220d
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde220d
 
 
 
 
 
 
 
 
 
 
 
 
9938325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
import streamlit as st
import pandas as pd
import json
from classes import Channel, Scenario
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from classes import class_to_dict
from collections import OrderedDict
import io
import plotly
from pathlib import Path
import pickle
import yaml
from yaml import SafeLoader
from streamlit.components.v1 import html
import smtplib
from scipy.optimize import curve_fit
from sklearn.metrics import r2_score
from classes import class_from_dict, class_convert_to_dict
import os
import base64
import sqlite3
import datetime
from classes import numerize

color_palette = [
    "#F3F3F0",
    "#5E7D7E",
    "#2FA1FF",
    "#00EDED",
    "#00EAE4",
    "#304550",
    "#EDEBEB",
    "#7FBEFD",
    "#003059",
    "#A2F3F3",
    "#E1D6E2",
    "#B6B6B6",
]


CURRENCY_INDICATOR = "$"

database_file = r"DB/User.db"

conn = sqlite3.connect(database_file, check_same_thread=False)  # connection with sql db
c = conn.cursor()


def update_db(page_name):

    modified_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M")

    c.execute(
        "Update sessions SET last_edited_page= ?, updated_time =? WHERE project_name =? AND owner =?",
        (
            page_name,
            modified_time,
            st.session_state["project_name"],
            st.session_state["username"],
        ),
    )

    conn.commit()


# def load_authenticator():
#     with open("config.yaml") as file:
#         config = yaml.load(file, Loader=SafeLoader)
#         st.session_state["config"] = config
#     authenticator = stauth.Authenticate(
#         credentials=config["credentials"],
#         cookie_name=config["cookie"]["name"],
#         key=config["cookie"]["key"],
#         cookie_expiry_days=config["cookie"]["expiry_days"],
#         preauthorized=config["preauthorized"],
#     )
#     st.session_state["authenticator"] = authenticator
#     return authenticator


# Authentication
# def authenticator():
#     for k, v in st.session_state.items():
#         if k not in ["logout", "login", "config"] and not k.startswith(
#             "FormSubmitter"
#         ):
#             st.session_state[k] = v
#     with open("config.yaml") as file:
#         config = yaml.load(file, Loader=SafeLoader)
#         st.session_state["config"] = config
#     authenticator = stauth.Authenticate(
#         config["credentials"],
#         config["cookie"]["name"],
#         config["cookie"]["key"],
#         config["cookie"]["expiry_days"],
#         config["preauthorized"],
#     )
#     st.session_state["authenticator"] = authenticator
#     name, authentication_status, username = authenticator.login(
#         "Login", "main"
#     )
#     auth_status = st.session_state.get("authentication_status")

#     if auth_status == True:
#         authenticator.logout("Logout", "main")
#         is_state_initiaized = st.session_state.get("initialized", False)

#         if not is_state_initiaized:

#             if "session_name" not in st.session_state:
#                 st.session_state["session_name"] = None

#     return name


# def authentication():
#     with open("config.yaml") as file:
#         config = yaml.load(file, Loader=SafeLoader)

#         authenticator = stauth.Authenticate(
#             config["credentials"],
#             config["cookie"]["name"],
#             config["cookie"]["key"],
#             config["cookie"]["expiry_days"],
#             config["preauthorized"],
#         )

#     name, authentication_status, username = authenticator.login(
#         "Login", "main"
#     )
#     return authenticator, name, authentication_status, username


def nav_page(page_name, timeout_secs=3):
    nav_script = """
        <script type="text/javascript">
            function attempt_nav_page(page_name, start_time, timeout_secs) {
                var links = window.parent.document.getElementsByTagName("a");
                for (var i = 0; i < links.length; i++) {
                    if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
                        links[i].click();
                        return;
                    }
                }
                var elasped = new Date() - start_time;
                if (elasped < timeout_secs * 1000) {
                    setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
                } else {
                    alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
                }
            }
            window.addEventListener("load", function() {
                attempt_nav_page("%s", new Date(), %d);
            });
        </script>
    """ % (
        page_name,
        timeout_secs,
    )
    html(nav_script)


# def load_local_css(file_name):
#     with open(file_name) as f:
#         st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)


# def set_header():
#     return st.markdown(f"""<div class='main-header'>
#                     <h1>MMM LiME</h1>
#                     <img src="https://assets-global.website-files.com/64c8fffb0e95cbc525815b79/64df84637f83a891c1473c51_Vector%20(Stroke).svg   ">
#             </div>""", unsafe_allow_html=True)

path = os.path.dirname(__file__)

file_ = open(f"{path}/mastercard_logo.png", "rb")

contents = file_.read()

data_url = base64.b64encode(contents).decode("utf-8")

file_.close()


DATA_PATH = "./data"

IMAGES_PATH = "./data/images_224_224"
dir


def load_local_css(file_name):

    with open(file_name) as f:

        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)


# def set_header():

#     return st.markdown(f"""<div class='main-header'>

#                     <h1>H & M Recommendations</h1>

#                     <img src="data:image;base64,{data_url}", alt="Logo">

#             </div>""", unsafe_allow_html=True)
path1 = os.path.dirname(__file__)

# file_1 = open(f"{path}/willbank.png", "rb")

# contents1 = file_1.read()

# data_url1 = base64.b64encode(contents1).decode("utf-8")

# file_1.close()


DATA_PATH1 = "./data"

IMAGES_PATH1 = "./data/images_224_224"


def set_header():
    return st.markdown(
        f"""<div class='main-header'>
                    <!-- <h1></h1> -->
                       <div >
                    <img class='blend-logo' src="data:image;base64,{data_url}", alt="Logo">
            </div>""",
        unsafe_allow_html=True,
    )


# def set_header():
#     logo_path = "./path/to/your/local/LIME_logo.png"  # Replace with the actual file path
#     text = "LiME"
#     return st.markdown(f"""<div class='main-header'>
#                     <img src="data:image/png;base64,{data_url}" alt="Logo" style="float: left; margin-right: 10px; width: 100px; height: auto;">
#                     <h1>{text}</h1>
#             </div>""", unsafe_allow_html=True)


def s_curve(x, K, b, a, x0):
    return K / (1 + b * np.exp(-a * (x - x0)))


def panel_level(input_df, date_column="Date"):
    # Ensure 'Date' is set as the index
    if date_column not in input_df.index.names:
        input_df = input_df.set_index(date_column)

    # Select numeric columns only (excluding 'Date' since it's now the index)
    numeric_columns_df = input_df.select_dtypes(include="number")

    # Group by 'Date' (which is the index) and sum the numeric columns
    aggregated_df = numeric_columns_df.groupby(input_df.index).sum()

    # Reset index if you want 'Date' back as a column
    aggregated_df = aggregated_df.reset_index()

    return aggregated_df


def fetch_actual_data(
    panel=None,
    target_file="Overview_data_test.xlsx",
    updated_rcs=None,
    metrics=None,
):
    excel = pd.read_excel(Path(target_file), sheet_name=None)

    # Extract dataframes for raw data, spend input, and contribution MMM
    raw_df = excel["RAW DATA MMM"]
    spend_df = excel["SPEND INPUT"]
    contri_df = excel["CONTRIBUTION MMM"]

    # Check if the panel is not None
    if panel is not None and panel != "Aggregated":
        raw_df = raw_df[raw_df["Panel"] == panel].drop(columns=["Panel"])
        spend_df = spend_df[spend_df["Panel"] == panel].drop(columns=["Panel"])
        contri_df = contri_df[contri_df["Panel"] == panel].drop(columns=["Panel"])
    elif panel == "Aggregated":
        raw_df = panel_level(raw_df, date_column="Date")
        spend_df = panel_level(spend_df, date_column="Week")
        contri_df = panel_level(contri_df, date_column="Date")

    # Revenue_df = excel['Revenue']

    ## remove sesonalities, indices etc ...
    unnamed_cols = [col for col in raw_df.columns if col.lower().startswith("unnamed")]
    ## remove sesonalities, indices etc ...

    exclude_columns = [
        "Date",
        "Region",
        "Controls_Grammarly_Index_SeasonalAVG",
        "Controls_Quillbot_Index",
        "Daily_Positive_Outliers",
        "External_RemoteClass_Index",
        "Intervals ON 20190520-20190805 | 20200518-20200803 | 20210517-20210802",
        "Intervals ON 20190826-20191209 | 20200824-20201207 | 20210823-20211206",
        "Intervals ON 20201005-20201019",
        "Promotion_PercentOff",
        "Promotion_TimeBased",
        "Seasonality_Indicator_Chirstmas",
        "Seasonality_Indicator_NewYears_Days",
        "Seasonality_Indicator_Thanksgiving",
        "Trend 20200302 / 20200803",
    ] + unnamed_cols

    raw_df["Date"] = pd.to_datetime(raw_df["Date"])
    contri_df["Date"] = pd.to_datetime(contri_df["Date"])
    input_df = raw_df.sort_values(by="Date")
    output_df = contri_df.sort_values(by="Date")
    spend_df["Week"] = pd.to_datetime(
        spend_df["Week"], format="%Y-%m-%d", errors="coerce"
    )
    spend_df.sort_values(by="Week", inplace=True)

    # spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce')
    # spend_df = spend_df.sort_values(by='Week')

    channel_list = [col for col in input_df.columns if col not in exclude_columns]
    channel_list = list(set(channel_list) - set(["fb_level_achieved_tier_1", "ga_app"]))

    # SRISHTI
    infeasible_channels = [
        c
        for c in contri_df.select_dtypes(include=["float", "int"]).columns
        if contri_df[c].sum() <= 0
    ]
    # st.write(channel_list)
    channel_list = list(set(channel_list) - set(infeasible_channels))

    upper_limits = {}
    output_cols = []
    actual_output_dic = {}
    actual_input_dic = {}

    for inp_col in channel_list:
        # st.write(inp_col)
        spends = input_df[inp_col].values
        x = spends.copy()
        # upper limit for penalty
        upper_limits[inp_col] = 2 * x.max()

        # contribution
        # out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0]
        out_col = inp_col
        y = output_df[out_col].values.copy()
        actual_output_dic[inp_col] = y.copy()
        actual_input_dic[inp_col] = x.copy()
        ##output cols aggregation
        output_cols.append(out_col)
    print(actual_input_dic)
    return pd.DataFrame(actual_input_dic), pd.DataFrame(actual_output_dic)


def initialize_data(
    panel=None,
    target_file="Overview_data_test.xlsx",
    updated_rcs=None,
    metrics=None,
):
    # uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173,
    #                    "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1,
    #                    "digital_spends":1}
    # print('State initialized')
    print(f"## [DEBUG] [UTILS]: {target_file}")
    excel = pd.read_excel(Path(target_file), sheet_name=None)

    # Extract dataframes for raw data, spend input, and contribution MMM
    raw_df = excel["RAW DATA MMM"]
    spend_df = excel["SPEND INPUT"]
    contri_df = excel["CONTRIBUTION MMM"]

    # Check if the panel is not None
    if panel is not None and panel != "Aggregated":
        raw_df = raw_df[raw_df["Panel"] == panel].drop(columns=["Panel"])
        spend_df = spend_df[spend_df["Panel"] == panel].drop(columns=["Panel"])
        contri_df = contri_df[contri_df["Panel"] == panel].drop(columns=["Panel"])
    elif panel == "Aggregated":
        raw_df = panel_level(raw_df, date_column="Date")
        spend_df = panel_level(spend_df, date_column="Week")
        contri_df = panel_level(contri_df, date_column="Date")

    # Revenue_df = excel['Revenue']
    unique_key = f"{metrics}-{panel}"
    ## remove sesonalities, indices etc ...
    unnamed_cols = [col for col in raw_df.columns if col.lower().startswith("unnamed")]
    ## remove sesonalities, indices etc ...
    exclude_columns = [
        "Date",
        "Region",
        "Controls_Grammarly_Index_SeasonalAVG",
        "Controls_Quillbot_Index",
        "Daily_Positive_Outliers",
        "External_RemoteClass_Index",
        "Intervals ON 20190520-20190805 | 20200518-20200803 | 20210517-20210802",
        "Intervals ON 20190826-20191209 | 20200824-20201207 | 20210823-20211206",
        "Intervals ON 20201005-20201019",
        "Promotion_PercentOff",
        "Promotion_TimeBased",
        "Seasonality_Indicator_Chirstmas",
        "Seasonality_Indicator_NewYears_Days",
        "Seasonality_Indicator_Thanksgiving",
        "Trend 20200302 / 20200803",
    ] + unnamed_cols

    raw_df["Date"] = pd.to_datetime(raw_df["Date"])
    contri_df["Date"] = pd.to_datetime(contri_df["Date"])
    input_df = raw_df.sort_values(by="Date")
    output_df = contri_df.sort_values(by="Date")
    spend_df["Week"] = pd.to_datetime(
        spend_df["Week"], format="%Y-%m-%d", errors="coerce"
    )
    spend_df.sort_values(by="Week", inplace=True)

    # spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce')
    # spend_df = spend_df.sort_values(by='Week')

    channel_list = [col for col in input_df.columns if col not in exclude_columns]
    # channel_list = list(
    #     set(channel_list) - set(["fb_level_achieved_tier_1", "ga_app"])
    # )
    infeasible_channels = [
        c
        for c in contri_df.select_dtypes(include=["float", "int"]).columns
        if contri_df[c].sum() <= 0
    ]
    channel_list = list(set(channel_list) - set(infeasible_channels))

    response_curves = {}
    mapes = {}
    rmses = {}
    upper_limits = {}
    powers = {}
    r2 = {}
    conv_rates = {}
    output_cols = []
    channels = {}
    sales = None
    dates = input_df.Date.values
    actual_output_dic = {}
    actual_input_dic = {}

    for inp_col in channel_list:
        # st.write(inp_col)
        spends = input_df[inp_col].values
        x = spends.copy()
        # upper limit for penalty
        upper_limits[inp_col] = 2 * x.max()

        # contribution
        out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0]
        y = output_df[out_col].values.copy()
        actual_output_dic[inp_col] = y.copy()
        actual_input_dic[inp_col] = x.copy()
        ##output cols aggregation
        output_cols.append(out_col)

        ## scale the input
        power = np.ceil(np.log(x.max()) / np.log(10)) - 3
        if power >= 0:
            x = x / 10**power

        x = x.astype("float64")
        y = y.astype("float64")
        # print('#printing yyyyyyyyy')
        # print(inp_col)
        # print(x.max())
        # print(y.max())
        # SRISHTI

        if y.max() <= 0.01:
            if x.max() <= 0.0:
                # st.write("here-here")
                bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))

            else:
                # st.write("here")
                bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, x.max()))
        else:
            bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))
        # bounds = ((y.max(), 3*y.max()),(0,1000),(0,1),(0,x.max()))

        # bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))

        # bounds = ((y.max(), 3*y.max()),(0,1000),(0,1),(0,x.max()))
        params, _ = curve_fit(
            s_curve,
            x,
            y,
            p0=(2 * y.max(), 0.01, 1e-5, x.max()),
            bounds=bounds,
            maxfev=int(1e5),
        )
        mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean()
        rmse = np.sqrt(((y - s_curve(x, *params)) ** 2).mean())
        r2_ = r2_score(y, s_curve(x, *params))

        response_curves[inp_col] = {
            "K": params[0],
            "b": params[1],
            "a": params[2],
            "x0": params[3],
        }

        updated_rcs_key = f"{metrics}#@{panel}#@{inp_col}"
        if updated_rcs is not None and updated_rcs_key in list(updated_rcs.keys()):
            response_curves[inp_col] = updated_rcs[updated_rcs_key]

        mapes[inp_col] = mape
        rmses[inp_col] = rmse
        r2[inp_col] = r2_
        powers[inp_col] = power

        ## conversion rates
        # spend_col = [
        #     _col
        #     for _col in spend_df.columns
        #     if _col.startswith(inp_col.rsplit("_", 1)[0])
        # ][0]

        # print('#printing spendssss')
        # print(spend_col)
        conv = (
            spend_df.set_index("Week")[inp_col]
            / input_df.set_index("Date")[inp_col].clip(lower=1)
        ).reset_index()
        conv.rename(columns={"index": "Week"}, inplace=True)
        conv["year"] = conv.Week.dt.year
        conv_rates[inp_col] = list(conv.drop("Week", axis=1).mean().to_dict().values())[
            0
        ]
        ##print('Before',conv_rates[inp_col])
        # conv_rates[inp_col] = uopx_conv_rates[inp_col]
        ##print('After',(conv_rates[inp_col]))

        channel = Channel(
            name=inp_col,
            dates=dates,
            spends=spends,
            # conversion_rate = np.mean(list(conv_rates[inp_col].values())),
            conversion_rate=conv_rates[inp_col],
            response_curve_type="s-curve",
            response_curve_params={
                "K": params[0],
                "b": params[1],
                "a": params[2],
                "x0": params[3],
            },
            bounds=np.array([-10, 10]),
        )
        channels[inp_col] = channel
        if sales is None:
            sales = channel.actual_sales
        else:
            sales += channel.actual_sales
    other_contributions = (
        output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only=True).values
    )
    correction = output_df.drop("Date", axis=1).sum(axis=1).values - (
        sales + other_contributions
    )
    scenario = Scenario(
        name="default",
        channels=channels,
        constant=other_contributions,
        correction=correction,
    )
    ## setting session variables
    st.session_state["initialized"] = True
    st.session_state["actual_df"] = input_df
    st.session_state["raw_df"] = raw_df
    st.session_state["contri_df"] = output_df
    default_scenario_dict = class_to_dict(scenario)
    st.session_state["default_scenario_dict"] = default_scenario_dict
    st.session_state["scenario"] = scenario
    st.session_state["channels_list"] = channel_list
    st.session_state["optimization_channels"] = {
        channel_name: False for channel_name in channel_list
    }
    st.session_state["rcs"] = response_curves.copy()

    # orig_rcs_path = os.path.join(
    #     st.session_state["project_path"], f"orig_rcs_{metrics}_{panel}.json"
    # )
    # print("##########################")
    # print(orig_rcs_path)
    # if Path(orig_rcs_path).exists():
    #     print("fetched"*100)
    #     with open(orig_rcs_path, "r") as f:
    #         st.session_state["orig_rcs"] = json.load(f)
    # else:
    #     print("created"*100)
    #     st.session_state["orig_rcs"] = response_curves.copy()
    #     with open(orig_rcs_path, "w") as f:
    #         json.dump(st.session_state["orig_rcs"], f)

    st.session_state["powers"] = powers
    st.session_state["actual_contribution_df"] = pd.DataFrame(actual_output_dic)
    st.session_state["actual_input_df"] = pd.DataFrame(actual_input_dic)

    for channel in channels.values():
        st.session_state[channel.name] = numerize(
            channel.actual_total_spends * channel.conversion_rate, 1
        )

    st.session_state["xlsx_buffer"] = io.BytesIO()

    if Path("../saved_scenarios.pkl").exists():
        with open("../saved_scenarios.pkl", "rb") as f:
            st.session_state["saved_scenarios"] = pickle.load(f)
    else:
        st.session_state["saved_scenarios"] = OrderedDict()

    # st.session_state["total_spends_change"] = 0
    st.session_state["optimization_channels"] = {
        channel_name: False for channel_name in channel_list
    }
    st.session_state["disable_download_button"] = True

    rcs_data = {}
    for channel in st.session_state["rcs"]:
        # Convert to native Python lists and types
        x = list(st.session_state["actual_input_df"][channel].values.astype(float))
        y = list(
            st.session_state["actual_contribution_df"][channel].values.astype(float)
        )
        power = float(np.ceil(np.log(max(x)) / np.log(10)) - 3)
        x_plot = list(np.linspace(0, 5 * max(x), 100))

        rcs_data[channel] = {
            "K": float(st.session_state["rcs"][channel]["K"]),
            "b": float(st.session_state["rcs"][channel]["b"]),
            "a": float(st.session_state["rcs"][channel]["a"]),
            "x0": float(st.session_state["rcs"][channel]["x0"]),
            "power": power,
            "x": x,
            "y": y,
            "x_plot": x_plot,
        }

    return rcs_data, scenario


# def initialize_data():
#     # fetch data from excel
#     output = pd.read_excel('data.xlsx',sheet_name=None)
#     raw_df = output['RAW DATA MMM']
#     contribution_df = output['CONTRIBUTION MMM']
#     Revenue_df = output['Revenue']

#     ## channels to be shows
#     channel_list = []
#     for col in raw_df.columns:
#         if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower():
#             ##print(col)
#             channel_list.append(col)
#         else:
#             pass

#     ## NOTE : Considered only Desktop spends for all calculations
#     acutal_df = raw_df[raw_df.Region == 'Desktop'].copy()
#     ## NOTE : Considered one year of data
#     acutal_df = acutal_df[acutal_df.Date>'2020-12-31']
#     actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']]

#     ##load response curves
#     with open('./grammarly_response_curves.json','r') as f:
#         response_curves = json.load(f)

#     ## create channel dict for scenario creation
#     dates = actual_df.Date.values
#     channels = {}
#     rcs = {}
#     constant = 0.
#     for i,info_dict in enumerate(response_curves):
#         name = info_dict.get('name')
#         response_curve_type = info_dict.get('response_curve')
#         response_curve_params = info_dict.get('params')
#         rcs[name] = response_curve_params
#         if name != 'constant':
#             spends = actual_df[name].values
#             channel = Channel(name=name,dates=dates,
#                             spends=spends,
#                             response_curve_type=response_curve_type,
#                             response_curve_params=response_curve_params,
#                             bounds=np.array([-30,30]))

#             channels[name] = channel
#         else:
#             constant = info_dict.get('value',0.) * len(dates)

#     ## create scenario
#     scenario = Scenario(name='default', channels=channels, constant=constant)
#     default_scenario_dict = class_to_dict(scenario)


#     ## setting session variables
#     st.session_state['initialized'] = True
#     st.session_state['actual_df'] = actual_df
#     st.session_state['raw_df'] = raw_df
#     st.session_state['default_scenario_dict'] = default_scenario_dict
#     st.session_state['scenario'] = scenario
#     st.session_state['channels_list'] = channel_list
#     st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
#     st.session_state['rcs'] = rcs
#     for channel in channels.values():
#         if channel.name not in st.session_state:
#             st.session_state[channel.name] = float(channel.actual_total_spends)

#     if 'xlsx_buffer' not in st.session_state:
#         st.session_state['xlsx_buffer'] = io.BytesIO()

#     ## for saving scenarios
#     if 'saved_scenarios' not in st.session_state:
#         if Path('../saved_scenarios.pkl').exists():
#             with open('../saved_scenarios.pkl','rb') as f:
#                 st.session_state['saved_scenarios'] = pickle.load(f)

#         else:
#             st.session_state['saved_scenarios'] = OrderedDict()

#     if 'total_spends_change' not in st.session_state:
#         st.session_state['total_spends_change'] = 0

#     if 'optimization_channels' not in st.session_state:
#         st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}

#     if 'disable_download_button' not in st.session_state:
#         st.session_state['disable_download_button'] = True


def create_channel_summary(scenario):

    # Provided data
    data = {
        "Channel": [
            "Paid Search",
            "Ga will cid baixo risco",
            "Digital tactic others",
            "Fb la tier 1",
            "Fb la tier 2",
            "Paid social others",
            "Programmatic",
            "Kwai",
            "Indicacao",
            "Infleux",
            "Influencer",
        ],
        "Spends": [
            "$ 11.3K",
            "$ 155.2K",
            "$ 50.7K",
            "$ 125.4K",
            "$ 125.2K",
            "$ 105K",
            "$ 3.3M",
            "$ 47.5K",
            "$ 55.9K",
            "$ 632.3K",
            "$ 48.3K",
        ],
        "Revenue": [
            "558.0K",
            "3.5M",
            "5.2M",
            "3.1M",
            "3.1M",
            "2.1M",
            "20.8M",
            "1.6M",
            "728.4K",
            "22.9M",
            "4.8M",
        ],
    }

    # Create DataFrame
    df = pd.DataFrame(data)

    # Convert currency strings to numeric values
    df["Spends"] = (
        df["Spends"]
        .replace({"\$": "", "K": "*1e3", "M": "*1e6"}, regex=True)
        .map(pd.eval)
        .astype(int)
    )
    df["Revenue"] = (
        df["Revenue"]
        .replace({"\$": "", "K": "*1e3", "M": "*1e6"}, regex=True)
        .map(pd.eval)
        .astype(int)
    )

    # Calculate ROI
    df["ROI"] = (df["Revenue"] - df["Spends"]) / df["Spends"]

    # Format columns
    format_currency = lambda x: f"${x:,.1f}"
    format_roi = lambda x: f"{x:.1f}"

    df["Spends"] = [
        "$ 11.3K",
        "$ 155.2K",
        "$ 50.7K",
        "$ 125.4K",
        "$ 125.2K",
        "$ 105K",
        "$ 3.3M",
        "$ 47.5K",
        "$ 55.9K",
        "$ 632.3K",
        "$ 48.3K",
    ]
    df["Revenue"] = [
        "$ 536.3K",
        "$ 3.4M",
        "$ 5M",
        "$ 3M",
        "$ 3M",
        "$ 2M",
        "$ 20M",
        "$ 1.5M",
        "$ 7.1M",
        "$ 22M",
        "$ 4.6M",
    ]
    df["ROI"] = df["ROI"].apply(format_roi)

    return df


# @st.cache(allow_output_mutation=True)
# def create_contribution_pie(scenario):
#     #c1f7dc
#     colors_map = {col:color for col,color in zip(st.session_state['channels_list'],plotly.colors.n_colors(plotly.colors.hex_to_rgb('#BE6468'), plotly.colors.hex_to_rgb('#E7B8B7'),23))}
#     total_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "pie"}, {"type": "pie"}]])
#     total_contribution_fig.add_trace(
#                 go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
#                     values= [round(scenario.channels[channel_name].actual_total_spends * scenario.channels[channel_name].conversion_rate,1) for channel_name in st.session_state['channels_list']] + [0],
#                     marker=dict(colors = [plotly.colors.label_rgb(colors_map[channel_name]) for channel_name in st.session_state['channels_list']] + ['#F0F0F0']),
#                         hole=0.3),
#                 row=1, col=1)

#     total_contribution_fig.add_trace(
#                 go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
#                     values= [scenario.channels[channel_name].actual_total_sales for channel_name in st.session_state['channels_list']] + [scenario.correction.sum() + scenario.constant.sum()],
#                         hole=0.3),
#                 row=1, col=2)

#     total_contribution_fig.update_traces(textposition='inside',texttemplate='%{percent:.1%}')
#     total_contribution_fig.update_layout(uniformtext_minsize=12,title='Channel contribution', uniformtext_mode='hide')
#     return total_contribution_fig

# @st.cache(allow_output_mutation=True)

# def create_contribuion_stacked_plot(scenario):
#     weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]])
#     raw_df = st.session_state['raw_df']
#     df = raw_df.sort_values(by='Date')
#     x = df.Date
#     weekly_spends_data = []
#     weekly_sales_data = []
#     for channel_name in st.session_state['channels_list']:
#         weekly_spends_data.append((go.Bar(x=x,
#                                           y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
#                                           name=channel_name_formating(channel_name),
#                                           hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
#                                           legendgroup=channel_name)))
#         weekly_sales_data.append((go.Bar(x=x,
#                                          y=scenario.channels[channel_name].actual_sales,
#                                          name=channel_name_formating(channel_name),
#                                          hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
#                                          legendgroup=channel_name, showlegend=False)))
#     for _d in weekly_spends_data:
#         weekly_contribution_fig.add_trace(_d, row=1, col=1)
#     for _d in weekly_sales_data:
#         weekly_contribution_fig.add_trace(_d, row=1, col=2)
#     weekly_contribution_fig.add_trace(go.Bar(x=x,
#                                          y=scenario.constant + scenario.correction,
#                                          name='Non Media',
#                                          hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), row=1, col=2)
#     weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date')
#     weekly_contribution_fig.update_xaxes(showgrid=False)
#     weekly_contribution_fig.update_yaxes(showgrid=False)
#     return weekly_contribution_fig

# @st.cache(allow_output_mutation=True)
# def create_channel_spends_sales_plot(channel):
#     if channel is not None:
#         x = channel.dates
#         _spends = channel.actual_spends * channel.conversion_rate
#         _sales = channel.actual_sales
#         channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
#         channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
#         channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
#         channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
#         channel_sales_spends_fig.update_xaxes(showgrid=False)
#         channel_sales_spends_fig.update_yaxes(showgrid=False)
#     else:
#         raw_df = st.session_state['raw_df']
#         df = raw_df.sort_values(by='Date')
#         x = df.Date
#         scenario = class_from_dict(st.session_state['default_scenario_dict'])
#         _sales = scenario.constant + scenario.correction
#         channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
#         channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
#         # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
#         channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
#         channel_sales_spends_fig.update_xaxes(showgrid=False)
#         channel_sales_spends_fig.update_yaxes(showgrid=False)
#     return channel_sales_spends_fig


# Define a shared color palette


def create_contribution_pie():
    color_palette = [
        "#F3F3F0",
        "#5E7D7E",
        "#2FA1FF",
        "#00EDED",
        "#00EAE4",
        "#304550",
        "#EDEBEB",
        "#7FBEFD",
        "#003059",
        "#A2F3F3",
        "#E1D6E2",
        "#B6B6B6",
    ]
    total_contribution_fig = make_subplots(
        rows=1,
        cols=2,
        subplot_titles=["Spends", "Revenue"],
        specs=[[{"type": "pie"}, {"type": "pie"}]],
    )

    channels_list = [
        "Paid Search",
        "Ga will cid baixo risco",
        "Digital tactic others",
        "Fb la tier 1",
        "Fb la tier 2",
        "Paid social others",
        "Programmatic",
        "Kwai",
        "Indicacao",
        "Infleux",
        "Influencer",
        "Non Media",
    ]

    # Assign colors from the limited palette to channels
    colors_map = {
        col: color_palette[i % len(color_palette)]
        for i, col in enumerate(channels_list)
    }
    colors_map["Non Media"] = color_palette[
        5
    ]  # Assign fixed green color for 'Non Media'

    # Hardcoded values for Spends and Revenue
    spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0]
    revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16]

    # Add trace for Spends pie chart
    total_contribution_fig.add_trace(
        go.Pie(
            labels=[channel_name for channel_name in channels_list],
            values=spends_values,
            marker=dict(
                colors=[colors_map[channel_name] for channel_name in channels_list]
            ),
            hole=0.3,
        ),
        row=1,
        col=1,
    )

    # Add trace for Revenue pie chart
    total_contribution_fig.add_trace(
        go.Pie(
            labels=[channel_name for channel_name in channels_list],
            values=revenue_values,
            marker=dict(
                colors=[colors_map[channel_name] for channel_name in channels_list]
            ),
            hole=0.3,
        ),
        row=1,
        col=2,
    )

    total_contribution_fig.update_traces(
        textposition="inside", texttemplate="%{percent:.1%}"
    )
    total_contribution_fig.update_layout(
        uniformtext_minsize=12,
        title="Channel contribution",
        uniformtext_mode="hide",
    )
    return total_contribution_fig


def create_contribuion_stacked_plot(scenario):
    weekly_contribution_fig = make_subplots(
        rows=1,
        cols=2,
        subplot_titles=["Spends", "Revenue"],
        specs=[[{"type": "bar"}, {"type": "bar"}]],
    )
    raw_df = st.session_state["raw_df"]
    df = raw_df.sort_values(by="Date")
    x = df.Date
    weekly_spends_data = []
    weekly_sales_data = []

    for i, channel_name in enumerate(st.session_state["channels_list"]):
        color = color_palette[i % len(color_palette)]

        weekly_spends_data.append(
            go.Bar(
                x=x,
                y=scenario.channels[channel_name].actual_spends
                * scenario.channels[channel_name].conversion_rate,
                name=channel_name_formating(channel_name),
                hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
                legendgroup=channel_name,
                marker_color=color,
            )
        )

        weekly_sales_data.append(
            go.Bar(
                x=x,
                y=scenario.channels[channel_name].actual_sales,
                name=channel_name_formating(channel_name),
                hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
                legendgroup=channel_name,
                showlegend=False,
                marker_color=color,
            )
        )

    for _d in weekly_spends_data:
        weekly_contribution_fig.add_trace(_d, row=1, col=1)
    for _d in weekly_sales_data:
        weekly_contribution_fig.add_trace(_d, row=1, col=2)

    weekly_contribution_fig.add_trace(
        go.Bar(
            x=x,
            y=scenario.constant + scenario.correction,
            name="Non Media",
            hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
            marker_color=color_palette[-1],
        ),
        row=1,
        col=2,
    )

    weekly_contribution_fig.update_layout(
        barmode="stack",
        title="Channel contribution by week",
        xaxis_title="Date",
    )
    weekly_contribution_fig.update_xaxes(showgrid=False)
    weekly_contribution_fig.update_yaxes(showgrid=False)
    return weekly_contribution_fig


def create_channel_spends_sales_plot(channel):
    if channel is not None:
        x = channel.dates
        _spends = channel.actual_spends * channel.conversion_rate
        _sales = channel.actual_sales
        channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
        channel_sales_spends_fig.add_trace(
            go.Bar(
                x=x,
                y=_sales,
                marker_color=color_palette[
                    3
                ],  # You can choose a color from the palette
                name="Revenue",
                hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
            ),
            secondary_y=False,
        )

        channel_sales_spends_fig.add_trace(
            go.Scatter(
                x=x,
                y=_spends,
                line=dict(
                    color=color_palette[2]
                ),  # You can choose another color from the palette
                name="Spends",
                hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
            ),
            secondary_y=True,
        )

        channel_sales_spends_fig.update_layout(
            xaxis_title="Date",
            yaxis_title="Revenue",
            yaxis2_title="Spends ($)",
            title="Channel spends and Revenue week-wise",
        )
        channel_sales_spends_fig.update_xaxes(showgrid=False)
        channel_sales_spends_fig.update_yaxes(showgrid=False)
    else:
        raw_df = st.session_state["raw_df"]
        df = raw_df.sort_values(by="Date")
        x = df.Date
        scenario = class_from_dict(st.session_state["default_scenario_dict"])
        _sales = scenario.constant + scenario.correction
        channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
        channel_sales_spends_fig.add_trace(
            go.Bar(
                x=x,
                y=_sales,
                marker_color=color_palette[
                    0
                ],  # You can choose a color from the palette
                name="Revenue",
                hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
            ),
            secondary_y=False,
        )

        channel_sales_spends_fig.update_layout(
            xaxis_title="Date",
            yaxis_title="Revenue",
            yaxis2_title="Spends ($)",
            title="Channel spends and Revenue week-wise",
        )
        channel_sales_spends_fig.update_xaxes(showgrid=False)
        channel_sales_spends_fig.update_yaxes(showgrid=False)

    return channel_sales_spends_fig


def format_numbers(value, n_decimals=1, include_indicator=True):
    if value is None:
        return None
    _value = value if value < 1 else numerize(value, n_decimals)
    if include_indicator:
        return f"{CURRENCY_INDICATOR} {_value}"
    else:
        return f"{_value}"


def decimal_formater(num_string, n_decimals=1):
    parts = num_string.split(".")
    if len(parts) == 1:
        return num_string + "." + "0" * n_decimals
    else:
        to_be_padded = n_decimals - len(parts[-1])
        if to_be_padded > 0:
            return num_string + "0" * to_be_padded
        else:
            return num_string


def channel_name_formating(channel_name):
    name_mod = channel_name.replace("_", " ")
    if name_mod.lower().endswith(" imp"):
        name_mod = name_mod.replace("Imp", "Spend")
    elif name_mod.lower().endswith(" clicks"):
        name_mod = name_mod.replace("Clicks", "Spend")
    return name_mod


def send_email(email, message):
    s = smtplib.SMTP("smtp.gmail.com", 587)
    s.starttls()
    s.login("[email protected]", "jgydhpfusuremcol")
    s.sendmail("[email protected]", email, message)
    s.quit()


def project_selection():

    users = {
    "ioannis": "Ioannis Papadopoulos",
    "sharon": "Sharon Sheng",
    "herman": "Herman Kwong",
    "ismail": "Ismail Mohammed",
    "geetha": "Geetha Krishna",
    "srishti": "Srishti Verma",
    "samkeet": "Samkeet Sangai",
    "manoj": "Manoj P",
    "loveesh": "Loveesh Bhatt",
    "bhavya": "Bhavya Jayantilal Kanzariya",
    "pritisha": "Pritisha Punukollu",
    "ashish": "Ashish Sharma",
    "swarupa": "Swarupa Parepalli",
    }
    first_name = st.text_input("Enter Name").lower()

    if st.button("Load saved projects"):

        if len(first_name) == 0 or first_name not in users.keys():
            st.warning("Enter a valid name")
            st.stop()

        st.session_state["username"] = users[first_name]

        c.execute(
            "SELECT email, user_id, user_type FROM users WHERE username = ?",
            (st.session_state["username"],),
        )

        user_data = c.fetchone()
        email, user_id, user_type = user_data

        c.execute(
            "SELECT Distinct project_name, last_edited_page, updated_time as last_updated FROM sessions WHERE owner=?",
            (st.session_state["username"],),
        )

        session_summary = c.fetchall()

        folder_path = r"Users"
        user_folder_path = os.path.join(folder_path, email)

        session_summary_df = pd.DataFrame(
            session_summary,
            columns=["Project Name", "Last Page Edited", "Modified Date"],
        )

        session_summary_df["Modified Date"] = session_summary_df["Modified Date"].map(
            lambda x: pd.to_datetime(x)
        )

        session_summary_df = session_summary_df.sort_values(
            by=["Modified Date"], ascending=False
        )

        st.session_state["summary_df"] = session_summary_df

        # st.write(st.session_state["project_name"][0])
        if len(session_summary_df) == 0:
            st.warning("No projects found please create a project in home page")
            st.stop()
        st.session_state["project_name"] = session_summary_df.iloc[0][0]
        st.session_state["project_path"] = os.path.join(
            user_folder_path, st.session_state["project_name"]
        )
        project_dct_path = os.path.join(
            st.session_state["project_path"], "project_dct.pkl"
        )

        with open(project_dct_path, "rb") as f:
            try:
                st.session_state["project_dct"] = pickle.load(f)
                st.rerun()
            except Exception as e:
                st.warning(
                    "Something went wrong Unable to load saved details / data is lost due to app refresh. Please go to Home page and create a new project."
                )
                st.stop()


# if __name__ == "__main__":
#     initialize_data()


#############################################################################################################

import os
import json
import glob
import pickle
import streamlit as st


# Function to get panels names
def get_panels_names(file_selected):
    raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")

    if "Panel" in raw_data_mmm_df.columns:
        panel = list(set(raw_data_mmm_df["Panel"]))
    elif "panel_1" in raw_data_mmm_df.columns:
        panel = list(set(raw_data_mmm_df["panel_1"]))
    else:
        panel = ["Aggregated"]

    return panel


# Function to get metrics names
def get_metrics_names(directory):
    # Create a list to hold the final parts of the filenames
    last_portions = []

    # Patterns to match Excel files (.xlsx and .xls) that contain @#
    patterns = [
        os.path.join(directory, "*@#*.xlsx"),
        os.path.join(directory, "*@#*.xls"),
    ]

    # Process each pattern
    for pattern in patterns:
        files = glob.glob(pattern)

        # Extracting the last portion after @# for each file
        for file in files:
            base_name = os.path.basename(file)
            last_portion = base_name.split("@#")[-1]
            last_portion = last_portion.replace(".xlsx", "").replace(
                ".xls", ""
            )  # Removing extensions
            last_portions.append(last_portion)

    return last_portions


# Function to load the original and modified JSON files into dictionaries
def load_json_files(original_path, modified_path):
    try:
        with open(original_path, "r") as json_file:
            original_data = json.load(json_file)
        print("Original RCS data loaded successfully.")
        with open(modified_path, "r") as json_file:
            modified_data = json.load(json_file)
        print("Modified RCS data loaded successfully.")
    except:
        st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️")
        # Define the paths to the RCS data files
        original_json_file_path = os.path.join(
            st.session_state["project_path"], "rcs_data_original.json"
        )
        modified_json_file_path = os.path.join(
            st.session_state["project_path"], "rcs_data_modified.json"
        )

        # Remove the original data file if it exists
        if os.path.exists(original_json_file_path):
            os.remove(original_json_file_path)

        # Remove the modified data file if it exists
        if os.path.exists(modified_json_file_path):
            os.remove(modified_json_file_path)

        # Generate a new file and try again
        generate_rcs_data(original_path, modified_path)
        original_data, modified_data = load_json_files(original_path, modified_path)

    return original_data, modified_data


# Function to format name
def name_formating(name):
    # Replace underscores with spaces
    name_mod = name.replace("_", " ")

    # Capitalize the first letter of each word
    name_mod = name_mod.title()

    return name_mod


# Function to load the original and modified pickle files into dictionaries
def load_pickle_files(original_path, modified_path):
    try:
        # Load the original data from the pickle file
        with open(original_path, "rb") as pickle_file:
            original_data = pickle.load(pickle_file)
            print("Original scenario data loaded successfully from pickle file.")

        # Load the modified data from the pickle file
        with open(modified_path, "rb") as pickle_file:
            modified_data = pickle.load(pickle_file)
            print("Modified scenario data loaded successfully from pickle file.")
    except:
        st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️")
        # Define the paths to the scenario files
        original_pickle_file_path = os.path.join(
            st.session_state["project_path"], "scenario_data_original.pkl"
        )
        modified_pickle_file_path = os.path.join(
            st.session_state["project_path"], "scenario_data_modified.pkl"
        )

        # Remove the original data file if it exists
        if os.path.exists(original_pickle_file_path):
            os.remove(original_pickle_file_path)

        # Remove the modified data file if it exists
        if os.path.exists(modified_pickle_file_path):
            os.remove(modified_pickle_file_path)

        # Generate a new file and try again
        generate_rcs_data(original_path, modified_path)
        original_data, modified_data = load_pickle_files(original_path, modified_path)

    return original_data, modified_data


# Function to generate RCS data and store it as JSON files
def generate_rcs_data(original_path, modified_path):
    # Define the directory where the metrics data is located
    directory = os.path.join(st.session_state["project_path"], "metrics_level_data")

    # Retrieve the list of all metric names from the specified directory
    metrics_list = get_metrics_names(directory)

    # Dictionary to store RCS data for all metrics and their respective panels
    all_rcs_data_original = {}
    all_rcs_data_modified = {}

    # Iterate over each metric in the metrics list
    for metric in metrics_list:
        # Define the path to the Excel file corresponding to the current metric
        file_selected = f"metrics_level_data/data_test_overview_panel@#{metric}.xlsx"
        file_selected_path = os.path.join(
            st.session_state["project_path"], file_selected
        )

        # Retrieve the list of panel names from the current metric's Excel file
        panel_list = get_panels_names(file_selected_path)

        # Check if "rcs_data_modified.json" exist
        if os.path.exists(modified_path):
            with open(modified_path, "r") as json_file:
                modified_data = json.load(json_file)

        # Iterate over each panel in the panel list
        for panel in panel_list:
            # Initialize the original RCS data for the current panel and metric
            rcs_dict_original, scenario = initialize_data(
                panel=panel if panel != "Aggregated" else None,
                target_file=file_selected_path,
                updated_rcs={},
                metrics=metric,
            )

            # Ensure the dictionary has the metric as a key for original data
            if metric not in all_rcs_data_original:
                all_rcs_data_original[metric] = {}

            # Store the original RCS data under the corresponding panel for the current metric
            all_rcs_data_original[metric][panel] = rcs_dict_original

            # Ensure the dictionary has the metric as a key for modified data
            if metric not in all_rcs_data_modified:
                all_rcs_data_modified[metric] = {}

            # Store the modified RCS data under the corresponding panel for the current metric
            for channel in rcs_dict_original:
                all_rcs_data_modified[metric][panel] = all_rcs_data_modified[
                    metric
                ].get(panel, {})

                try:
                    updated_rcs_dict = modified_data[metric][panel][channel]
                except:
                    updated_rcs_dict = {
                        "K": rcs_dict_original[channel]["K"],
                        "b": rcs_dict_original[channel]["b"],
                        "a": rcs_dict_original[channel]["a"],
                        "x0": rcs_dict_original[channel]["x0"],
                    }

                all_rcs_data_modified[metric][panel][channel] = updated_rcs_dict

    # Write the original RCS data to a JSON file
    with open(original_path, "w") as json_file:
        json.dump(all_rcs_data_original, json_file, indent=4)

    # Write the modified RCS data to a separate JSON file
    with open(modified_path, "w") as json_file:
        json.dump(all_rcs_data_modified, json_file, indent=4)


# Function to generate scenario data and store it as pickle files
def generate_scenario_data(original_path, modified_path):
    # Define the directory where the metrics data is located
    directory = os.path.join(st.session_state["project_path"], "metrics_level_data")

    # Retrieve the list of all metric names from the specified directory
    metrics_list = get_metrics_names(directory)

    # Dictionary to store scenario data for all metrics and their respective panels
    all_scenario_data_original = {}
    all_scenario_data_modified = {}

    # Iterate over each metric in the metrics list
    for metric in metrics_list:
        # Define the path to the Excel file corresponding to the current metric
        file_selected = f"metrics_level_data/data_test_overview_panel@#{metric}.xlsx"
        file_selected_path = os.path.join(
            st.session_state["project_path"], file_selected
        )

        # Retrieve the list of panel names from the current metric's Excel file
        panel_list = get_panels_names(file_selected_path)

        # Check if "scenario_data_modified.pkl" exist
        if os.path.exists(modified_path):
            with open(modified_path, "rb") as pickle_file:
                modified_data = pickle.load(pickle_file)

        # Iterate over each panel in the panel list
        for panel in panel_list:
            # Initialize the original scenario data for the current panel and metric
            rcs_dict_original, scenario = initialize_data(
                panel=panel if panel != "Aggregated" else None,
                target_file=file_selected_path,
                updated_rcs={},
                metrics=metric,
            )

            # Ensure the dictionary has the metric as a key for original data
            if metric not in all_scenario_data_original:
                all_scenario_data_original[metric] = {}

            # Store the original scenario data under the corresponding panel for the current metric
            all_scenario_data_original[metric][panel] = class_convert_to_dict(scenario)

            # Ensure the dictionary has the metric as a key for modified data
            if metric not in all_scenario_data_modified:
                all_scenario_data_modified[metric] = {}

            # Store the modified scenario data under the corresponding panel for the current metric
            try:
                all_scenario_data_modified[metric][panel] = modified_data[metric][panel]
            except:
                all_scenario_data_modified[metric][panel] = class_convert_to_dict(
                    scenario
                )

    # Write the original RCS data to a pickle file
    with open(original_path, "wb") as pickle_file:
        pickle.dump(all_scenario_data_original, pickle_file)

    # Write the modified RCS data to a separate pickle file
    with open(modified_path, "wb") as pickle_file:
        pickle.dump(all_scenario_data_modified, pickle_file)


#############################################################################################################