|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
import plotly.graph_objects as go |
|
from Eda_functions import format_numbers,line_plot,summary |
|
import numpy as np |
|
import re |
|
|
|
def sanitize_key(key, prefix=""): |
|
|
|
key = re.sub(r'[^a-zA-Z0-9]', '', key) |
|
return f"{prefix}{key}" |
|
|
|
|
|
def check_box(options, ad_stock_value,lag_value,num_columns=4, prefix=""): |
|
num_rows = -(-len(options) // num_columns) |
|
|
|
selected_options = [] |
|
adstock_info = {} |
|
if ad_stock_value!=0: |
|
for row in range(num_rows): |
|
cols = st.columns(num_columns) |
|
for col in cols: |
|
if options: |
|
option = options.pop(0) |
|
key = sanitize_key(f"{option}_{row}", prefix=prefix) |
|
selected = col.checkbox(option, key=key) |
|
if selected: |
|
selected_options.append(option) |
|
|
|
|
|
adstock = col.slider('Select Adstock Range', 0.0, 1.0, ad_stock_value, step=0.05, format="%.2f",key= f"adstock_{key}" ) |
|
|
|
|
|
lag = col.slider('Select Lag Range', 0, 7, lag_value, step=1,key=f"lag_{key}" ) |
|
|
|
|
|
option_info = { |
|
'adstock': adstock, |
|
'lag': lag} |
|
|
|
adstock_info[option]=option_info |
|
|
|
else:adstock_info[option]={ |
|
'adstock': ad_stock_value, |
|
'lag': lag_value} |
|
|
|
return selected_options, adstock_info |
|
else: |
|
for row in range(num_rows): |
|
cols = st.columns(num_columns) |
|
for col in cols: |
|
if options: |
|
option = options.pop(0) |
|
key = sanitize_key(f"{option}_{row}", prefix=prefix) |
|
selected = col.checkbox(option, key=key) |
|
if selected: |
|
selected_options.append(option) |
|
|
|
|
|
lag = col.slider('Select Lag Range', 0, 7, lag_value, step=1,key=f"lag_{key}" ) |
|
|
|
|
|
option_info = { |
|
'lag': lag} |
|
|
|
adstock_info[option]=option_info |
|
|
|
else:adstock_info[option]={ |
|
'lag': lag_value} |
|
|
|
return selected_options, adstock_info |
|
|
|
def apply_lag(X, features,lag_dict): |
|
|
|
for col in features: |
|
for lag in range(lag_dict[col]['lag'][0], lag_dict[col]['lag'][1] + 1): |
|
if lag>0: |
|
X[f'{col}_lag{lag}'] = X[col].shift(periods=lag, fill_value=0) |
|
return X |
|
|
|
def apply_adstock(X, variable_name, decay): |
|
values = X[variable_name].values |
|
adstock = np.zeros(len(values)) |
|
|
|
for row in range(len(values)): |
|
if row == 0: |
|
adstock[row] = values[row] |
|
else: |
|
adstock[row] = values[row] + adstock[row - 1] * decay |
|
|
|
return adstock |
|
|
|
def top_correlated_features(df,target,media_data): |
|
corr_df=df.drop(target,axis=1) |
|
|
|
|
|
for i in media_data: |
|
|
|
|
|
d=(pd.concat([corr_df.filter(like=i),df[target]],axis=1)).corr()[target] |
|
d=d.sort_values(ascending=False) |
|
d=d.drop(target,axis=0) |
|
corr=pd.DataFrame({'Feature_name':d.index,"Correlation":d.values}) |
|
corr.columns = pd.MultiIndex.from_product([[i], ['Feature_name', 'Correlation']]) |
|
|
|
return corr |
|
|
|
def top_correlated_features(df,variables,target): |
|
correlation_df=pd.DataFrame() |
|
for col in variables: |
|
d=pd.concat([df.filter(like=col),df[target]],axis=1).corr()[target] |
|
|
|
d=d.sort_values(ascending=False).iloc[1:] |
|
corr_df=pd.DataFrame({'Media_channel':d.index,'Correlation':d.values}) |
|
corr_df.columns=pd.MultiIndex.from_tuples([(col, 'Variable'), (col, 'Correlation')]) |
|
correlation_df=pd.concat([corr_df,correlation_df],axis=1) |
|
return correlation_df |
|
|
|
def top_correlated_feature(df,variable,target): |
|
d=pd.concat([df.filter(like=variable),df[target]],axis=1).corr()[target] |
|
|
|
d=d.sort_values(ascending=False).iloc[1:] |
|
|
|
corr_df=pd.DataFrame({'Media_channel':d.index,'Correlation':d.values}) |
|
corr_df['Adstock']=corr_df['Media_channel'].map(lambda x:x.split('_adst')[1] if len(x.split('_adst'))>1 else '-') |
|
corr_df['Lag']=corr_df['Media_channel'].map(lambda x:x.split('_lag')[1][0] if len(x.split('_lag'))>1 else '-' ) |
|
corr_df.drop(['Correlation'],axis=1,inplace=True) |
|
corr_df['Correlation']=np.round(d.values,2) |
|
sorted_corr_df= corr_df.loc[corr_df['Correlation'].abs().sort_values(ascending=False).index] |
|
|
|
|
|
return sorted_corr_df |