# Importing necessary libraries import streamlit as st st.set_page_config( page_title="Scenario Planner", page_icon="⚖️", layout="wide", initial_sidebar_state="collapsed", ) import os import math import pickle import sqlite3 import numpy as np from classes import numerize import plotly.graph_objects as go from collections import OrderedDict from scipy.optimize import minimize from utilities import project_selection, initialize_data, set_header, load_local_css from utilities import ( get_panels_names, get_metrics_names, name_formating, load_json_files, load_pickle_files, generate_rcs_data, generate_scenario_data, ) # Initialize ROI threshold if "roi_threshold" not in st.session_state: st.session_state.roi_threshold = 1 # Initialize message display holder if "message_display" not in st.session_state: st.session_state.message_display = {"type": "success", "message": None, "icon": ""} # Function to reset modified_scenario_data def reset_scenario(metrics_selected=None, panel_selected=None): # Clear message_display st.session_state.message_display = {"type": "success", "message": None, "icon": ""} # Use default values from session state if not provided if metrics_selected is None: metrics_selected = st.session_state["response_metrics_selectbox_sp"] if panel_selected is None: panel_selected = st.session_state["response_panel_selectbox_sp"] # Define the path to the pickle files original_pickle_file_path = os.path.join( st.session_state["project_path"], "scenario_data_original.pkl" ) modified_pickle_file_path = os.path.join( st.session_state["project_path"], "scenario_data_modified.pkl" ) # Reset the modified_scenario_data back to the original_scenario_data try: # Open and load original scenario data with open(original_pickle_file_path, "rb") as original_pickle_file: original_data = pickle.load(original_pickle_file) original_scenario_data = original_data[metrics_selected][panel_selected] # Open and load modified scenario data with open(modified_pickle_file_path, "rb+") as modified_pickle_file: data = pickle.load(modified_pickle_file) # Update the specific section with the original scenario data data[metrics_selected][panel_selected] = original_scenario_data # Go to the beginning of the file to overwrite it modified_pickle_file.seek(0) pickle.dump(data, modified_pickle_file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") return # Function to build s curve def s_curve(x, power, K, b, a, x0): return K / (1 + b * np.exp(-a * ((x / 10**power) - x0))) # Function to retrieve S-curve parameters for a given metric, panel, and channel def get_s_curve_params( metrics_selected, panel_selected, channel_selected, original_json_data, modified_json_data, modified_pickle_file_path, ): # Retrieve 'power' parameter from the original data for the specific metric, panel, and channel power = original_json_data[metrics_selected][panel_selected][channel_selected][ "power" ] # Get the S-curve parameters from the modified data for the same metric, panel, and channel s_curve_param = modified_json_data[metrics_selected][panel_selected][ channel_selected ] # Open the pickle file and load the data try: with open(modified_pickle_file_path, "rb") as file: data = pickle.load(file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Update modified S-curve parameters data[metrics_selected][panel_selected]["channels"][channel_selected][ "response_curve_params" ] = s_curve_param # Save the updated data back to the pickle file try: with open(modified_pickle_file_path, "wb") as file: pickle.dump(data, file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Update the 'power' parameter in the modified S-curve parameters with the original 'power' value s_curve_param["power"] = power # Return the updated S-curve parameters return s_curve_param # Function to calculate total contribution def get_total_contribution( spends, channels, s_curve_params, channels_proportion, modified_scenario_data ): total_contribution = 0 for i in range(len(channels)): channel_name = channels[i] channel_s_curve_params = s_curve_params[channel_name] spend_proportion = spends[i] * channels_proportion[channel_name] total_contribution += sum( s_curve( spend_proportion, channel_s_curve_params["power"], channel_s_curve_params["K"], channel_s_curve_params["b"], channel_s_curve_params["a"], channel_s_curve_params["x0"], ) ) return total_contribution + sum(modified_scenario_data["constant"]) # Function to calculate total spends def get_total_spends(spends, channels_conversion_ratio): return np.sum(spends * np.array(list(channels_conversion_ratio.values()))) # Function to optimizes spends for all channels given bounds and a total spend target def optimizer( optimization_goal, s_curve_params, channels_spends, channels_proportion, channels_conversion_ratio, total_target, bounds_dict, modified_scenario_data, ): # Extract channel names and corresponding actual spends channels = list(channels_spends.keys()) actual_spends = np.array(list(channels_spends.values())) num_channels = len(actual_spends) # Define the objective function based on the optimization goal def objective_fun(spends): if optimization_goal == "Spends": # Minimize negative total contribution to maximize the total contribution return -get_total_contribution( spends, channels, s_curve_params, channels_proportion, modified_scenario_data, ) else: # Minimize total spends return get_total_spends(spends, channels_conversion_ratio) def constraint_fun(spends): if optimization_goal == "Spends": # Ensure the total spends equals the total spend target return get_total_spends(spends, channels_conversion_ratio) else: # Ensure the total contribution equals the total contribution target return get_total_contribution( spends, channels, s_curve_params, channels_proportion, modified_scenario_data, ) # Equality constraint constraints = { "type": "eq", "fun": lambda spends: constraint_fun(spends) - total_target, } # Sum of all channel spends/metrics should equal the total spend/metrics target # Bounds for each channel's spend based bounds = [ ( actual_spends[i] * (1 + bounds_dict[channels[i]][0] / 100), actual_spends[i] * (1 + bounds_dict[channels[i]][1] / 100), ) for i in range(num_channels) ] # Initial guess for the optimization initial_guess = np.array(actual_spends) # Calculate xtol as 0.1% of the minimum of spends xtol = max(10, 0.001 * np.min(actual_spends)) # Perform the optimization using 'trust-constr' method result = minimize( objective_fun, initial_guess, method="trust-constr", constraints=constraints, bounds=bounds, options={ "disp": True, # Display the optimization process "xtol": xtol, # Dynamic step size tolerance "maxiter": 1e5, # Maximum number of iterations }, ) # Print the optimization result print(result) # Extract the optimized spends from the result optimized_spends_array = result.x # Convert optimized spends back to a dictionary with channel names optimized_spends = { channels[i]: optimized_spends_array[i] for i in range(num_channels) } return optimized_spends, result.success # Function to calculate achievable targets at lower and upper spend bounds @st.cache_data(show_spinner=False) def max_target_achievable( channels_spends, s_curve_params, channels_proportion, modified_scenario_data, bounds_dict, ): # Extract channel names and corresponding actual spends channels = list(channels_spends.keys()) actual_spends = np.array(list(channels_spends.values())) num_channels = len(actual_spends) # Bounds for each channel's spend lower_spends, upper_spends = [], [] for i in range(num_channels): lower_spends.append(actual_spends[i] * (1 + bounds_dict[channels[i]][0] / 100)) upper_spends.append(actual_spends[i] * (1 + bounds_dict[channels[i]][1] / 100)) # Calculate achievable targets at lower and upper spend bounds lower_achievable_target = get_total_contribution( lower_spends, channels, s_curve_params, channels_proportion, modified_scenario_data, ) upper_achievable_target = get_total_contribution( upper_spends, channels, s_curve_params, channels_proportion, modified_scenario_data, ) # Return achievable targets with ±0.1% safety margin return max(0, 1.001 * lower_achievable_target), 0.999 * upper_achievable_target # Function to check if number is in valid format def is_valid_number_format(number_str): # Check for None if number_str is None: # Store the message details in session state for invalid input st.session_state.message_display = { "type": "warning", "message": "Invalid input: Please enter a valid number.", "icon": "⚠️", } return False # Define the valid suffixes valid_suffixes = {"K", "M", "B", "T"} # Check for negative numbers if number_str[0] == "-": # Store the message details in session state for invalid input st.session_state.message_display = { "type": "warning", "message": "Invalid input: Please enter a valid number.", "icon": "⚠️", } return False # Check if the string ends with a digit if number_str[-1].isdigit(): try: # Attempt to convert the entire string to float number = float(number_str) # Ensure the number is non-negative if number >= 0: return True else: # Store the message details in session state for invalid input st.session_state.message_display = { "type": "warning", "message": "Invalid input: Please enter a valid number.", "icon": "⚠️", } return False except ValueError: # Store the message details in session state for invalid input st.session_state.message_display = { "type": "warning", "message": "Invalid input: Please enter a valid number.", "icon": "⚠️", } return False # Check if the string ends with a valid suffix suffix = number_str[-1].upper() if suffix in valid_suffixes: num_part = number_str[:-1] # Extract the numerical part try: # Attempt to convert the numerical part to float number = float(num_part) # Ensure the number part is non-negative if number >= 0: return True else: # Store the message details in session state for invalid input st.session_state.message_display = { "type": "warning", "message": "Invalid input: Please enter a valid number.", "icon": "⚠️", } return False except ValueError: # Store the message details in session state for invalid input st.session_state.message_display = { "type": "warning", "message": "Invalid input: Please enter a valid number.", "icon": "⚠️", } return False # If neither condition is met, return False st.session_state.message_display = { "type": "warning", "message": "Invalid input: Please enter a valid number.", "icon": "⚠️", } return False # Function to converts a string with number suffixes (K, M, B, T) to a float def convert_to_float(number_str): # Dictionary mapping suffixes to their multipliers multipliers = { "K": 1e3, # Thousand "M": 1e6, # Million "B": 1e9, # Billion "T": 1e12, # Trillion } # If there's no suffix, directly convert to float if number_str[-1].isdigit(): return float(number_str) # Extract the suffix (last character) and the numerical part suffix = number_str[-1].upper() num_part = number_str[:-1] # Convert the numerical part to float and multiply by the corresponding multiplier return float(num_part) * multipliers[suffix] # Function to update absolute_channel_spends change def absolute_channel_spends_change( channel_key, channel_spends_actual, channel, metrics_selected, panel_selected, modified_pickle_file_path, ): # Do not update if the number is in an invalid format if not is_valid_number_format(st.session_state[f"{channel_key}_abs_spends_key"]): return # Get updated absolute spends from session state new_absolute_spends = convert_to_float( st.session_state[f"{channel_key}_abs_spends_key"] ) # Open the pickle file and load the data try: with open(modified_pickle_file_path, "rb") as file: data = pickle.load(file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Total channel spends total_channel_spends = 0 for current_channel in list( data[metrics_selected][panel_selected]["channels"].keys() ): # Channel key channel_key = f"{metrics_selected}_{panel_selected}_{current_channel}" total_channel_spends += convert_to_float( st.session_state[f"{channel_key}_abs_spends_key"] ) # Check if total channel spends are within the allowed range (±50% of the original total spends) if ( total_channel_spends < 1.5 * data[metrics_selected][panel_selected]["actual_total_spends"] and total_channel_spends > 0.5 * data[metrics_selected][panel_selected]["actual_total_spends"] ): # Update the modified_total_spends for the specified channel data[metrics_selected][panel_selected]["channels"][channel][ "modified_total_spends" ] = new_absolute_spends / float( data[metrics_selected][panel_selected]["channels"][channel][ "conversion_rate" ] ) # Update total spends data[metrics_selected][panel_selected][ "modified_total_spends" ] = total_channel_spends # Save the updated data back to the pickle file try: with open(modified_pickle_file_path, "wb") as file: pickle.dump(data, file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return else: # Store the message details in session state st.session_state.message_display = { "type": "warning", "message": "Keep total spending within ±50% of the original value.", "icon": "⚠️", } # Function to update percentage_channel_spends change def percentage_channel_spends_change( channel_key, channel_spends_actual, channel, metrics_selected, panel_selected, modified_pickle_file_path, ): # Retrieve the percentage spend change from session state percentage_channel_spends = round( st.session_state[f"{channel_key}_per_spends_key"], 0 ) # Calculate the new absolute spends new_absolute_spends = channel_spends_actual * (1 + percentage_channel_spends / 100) # Open the pickle file and load the data try: with open(modified_pickle_file_path, "rb") as file: data = pickle.load(file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Total channel spends total_channel_spends = 0 for current_channel in list( data[metrics_selected][panel_selected]["channels"].keys() ): # Channel key channel_key = f"{metrics_selected}_{panel_selected}_{current_channel}" # Current channel spends actual current_channel_spends_actual = data[metrics_selected][panel_selected][ "channels" ][current_channel]["actual_total_spends"] # Current channel conversion rate current_channel_conversion_rate = data[metrics_selected][panel_selected][ "channels" ][current_channel]["conversion_rate"] # Calculate the current channel absolute spends current_channel_absolute_spends = ( current_channel_spends_actual * current_channel_conversion_rate * (1 + st.session_state[f"{channel_key}_per_spends_key"] / 100) ) total_channel_spends += current_channel_absolute_spends # Check if total channel spends are within the allowed range (±50% of the original total spends) if ( total_channel_spends < 1.5 * data[metrics_selected][panel_selected]["actual_total_spends"] and total_channel_spends > 0.5 * data[metrics_selected][panel_selected]["actual_total_spends"] ): # Update the modified_total_spends for the specified channel data[metrics_selected][panel_selected]["channels"][channel][ "modified_total_spends" ] = float(new_absolute_spends) / float( data[metrics_selected][panel_selected]["channels"][channel][ "conversion_rate" ] ) # # Update total spends # data[metrics_selected][panel_selected][ # "modified_total_spends" # ] = total_channel_spends # Save the updated data back to the pickle file try: with open(modified_pickle_file_path, "wb") as file: pickle.dump(data, file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Function to update total input change def total_input_change(modified_pickle_file_path, per_change): # Open the pickle file and load the data try: with open(modified_pickle_file_path, "rb") as file: data = pickle.load(file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Get the list of all channels in the specified panel and metric channel_list = list(data[metrics_selected][panel_selected]["channels"].keys()) # # Calculate the total actual spends excluding constant values # total_actual_spends = data[metrics_selected][panel_selected]["actual_total_spends"] # Iterate over each channel to update their modified spends for channel in channel_list: # Retrieve the actual spends for the channel channel_actual_spends = data[metrics_selected][panel_selected]["channels"][ channel ]["actual_total_spends"] # Calculate the modified spends for the channel based on the percent change modified_channel_metrics = channel_actual_spends * ((100 + per_change) / 100) # Update the channel's modified total spends in the data data[metrics_selected][panel_selected]["channels"][channel][ "modified_total_spends" ] = modified_channel_metrics # Save the updated data back to the pickle file try: with open(modified_pickle_file_path, "wb") as file: pickle.dump(data, file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Function to update total_absolute_main_key change def total_absolute_main_key_change( metrics_selected, panel_selected, modified_pickle_file_path, optimization_goal ): # Do not update if the number is in an invalid format if not is_valid_number_format(st.session_state["total_absolute_main_key"]): return # Get updated absolute from session state new_absolute = convert_to_float(st.session_state["total_absolute_main_key"]) # Open the pickle file and load the data try: with open(modified_pickle_file_path, "rb") as file: data = pickle.load(file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return if optimization_goal == "Spends": # Retrieve the old absolute spends old_absolute = data[metrics_selected][panel_selected]["actual_total_spends"] else: # Retrieve the old absolute metrics old_absolute = data[metrics_selected][panel_selected]["actual_total_sales"] # Calculate the allowable range for new spends lower_bound = old_absolute * 0.5 upper_bound = old_absolute * 1.5 # Ensure the new spends are within ±50% of the old value if new_absolute < lower_bound or new_absolute > upper_bound: new_absolute = old_absolute if optimization_goal == "Spends": # Update the modified_total_spends with the constrained value data[metrics_selected][panel_selected]["modified_total_spends"] = new_absolute else: # Update the modified_total_sales with the constrained value data[metrics_selected][panel_selected]["modified_total_sales"] = new_absolute # Save the updated data back to the pickle file try: with open(modified_pickle_file_path, "wb") as file: pickle.dump(data, file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Update total input change if optimization_goal == "Spends": per_change = ((new_absolute - old_absolute) / old_absolute) * 100 total_input_change(modified_pickle_file_path, per_change) # Function to update total_absolute_key change def total_absolute_key_change( metrics_selected, panel_selected, modified_pickle_file_path, optimization_goal ): # Get updated absolute from session state new_absolute = convert_to_float(st.session_state["total_absolute_key"]) # Open the pickle file and load the data try: with open(modified_pickle_file_path, "rb") as file: data = pickle.load(file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return if optimization_goal == "Spends": # Update the modified_total_spends for the specified channel data[metrics_selected][panel_selected]["modified_total_spends"] = new_absolute old_absolute = data[metrics_selected][panel_selected]["actual_total_spends"] else: # Update the modified_total_sales for the specified channel data[metrics_selected][panel_selected]["modified_total_sales"] = new_absolute old_absolute = data[metrics_selected][panel_selected]["actual_total_sales"] # Save the updated data back to the pickle file try: with open(modified_pickle_file_path, "wb") as file: pickle.dump(data, file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Update total input change if optimization_goal == "Spends": per_change = ((new_absolute - old_absolute) / old_absolute) * 100 total_input_change(modified_pickle_file_path, per_change) # Function to update total_absolute_key change def total_percentage_key_change( metrics_selected, panel_selected, modified_pickle_file_path, absolute_value, optimization_goal, ): # Get updated absolute from session state new_absolute = absolute_value * (1 + st.session_state["total_percentage_key"] / 100) # Open the pickle file and load the data try: with open(modified_pickle_file_path, "rb") as file: data = pickle.load(file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return if optimization_goal == "Spends": # Update the modified_total_spends for the specified channel data[metrics_selected][panel_selected]["modified_total_spends"] = new_absolute old_absolute = data[metrics_selected][panel_selected]["actual_total_spends"] else: # Update the modified_total_sales for the specified channel data[metrics_selected][panel_selected]["modified_total_sales"] = new_absolute old_absolute = data[metrics_selected][panel_selected]["actual_total_sales"] # Save the updated data back to the pickle file try: with open(modified_pickle_file_path, "wb") as file: pickle.dump(data, file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Update total input change if optimization_goal == "Spends": per_change = ((new_absolute - old_absolute) / old_absolute) * 100 total_input_change(modified_pickle_file_path, per_change) # Function to update bound change def bound_change( metrics_selected, panel_selected, modified_pickle_file_path, channel_key, channel ): # Get updated bounds from session state new_lower_bound = st.session_state[f"{channel_key}_lower_key"] new_upper_bound = st.session_state[f"{channel_key}_upper_key"] if new_lower_bound > new_upper_bound: new_bounds = [-10, 10] # Store the message details in session state st.session_state.message_display = { "type": "warning", "message": "Lower bound cannot be greater than Upper bound.", "icon": "⚠️", } else: new_bounds = [new_lower_bound, new_upper_bound] # Open the pickle file and load the data try: with open(modified_pickle_file_path, "rb") as file: data = pickle.load(file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Update the bounds for the specified channel data[metrics_selected][panel_selected]["channels"][channel]["bounds"] = new_bounds # Save the updated data back to the pickle file try: with open(modified_pickle_file_path, "wb") as file: pickle.dump(data, file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Function to update freeze change def freeze_change( metrics_selected, panel_selected, modified_pickle_file_path, channel_key, channel, ): if st.session_state[f"{channel_key}_allow_optimize_key"]: # Updated bounds from session state new_lower_bound, new_upper_bound = 0, 0 new_bounds = [new_lower_bound, new_upper_bound] new_freeze = True else: # Updated bounds from session state new_lower_bound, new_upper_bound = -10, 10 new_bounds = [new_lower_bound, new_upper_bound] new_freeze = False # Open the pickle file and load the data try: with open(modified_pickle_file_path, "rb") as file: data = pickle.load(file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Update the bounds for the specified channel data[metrics_selected][panel_selected]["channels"][channel]["bounds"] = new_bounds data[metrics_selected][panel_selected]["channels"][channel]["freeze"] = new_freeze # Save the updated data back to the pickle file try: with open(modified_pickle_file_path, "wb") as file: pickle.dump(data, file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Function to calculate y, ROI and MROI for given point def get_point_parms( x_val, current_s_curve_params, current_channel_proportion, current_conversion_rate ): # Calculate y value for the given spend point y_val = sum( s_curve( (x_val * current_channel_proportion), current_s_curve_params["power"], current_s_curve_params["K"], current_s_curve_params["b"], current_s_curve_params["a"], current_s_curve_params["x0"], ) ) # Calculate MROI using a small nudge for actual spends nudge = 1e-3 x1 = float(x_val * current_conversion_rate) y1 = float(y_val) x2 = x1 + nudge y2 = sum( s_curve( ((x2 / current_conversion_rate) * current_channel_proportion), current_s_curve_params["power"], current_s_curve_params["K"], current_s_curve_params["b"], current_s_curve_params["a"], current_s_curve_params["x0"], ) ) mroi_val = (float(y2) - y1) / (x2 - x1) if x2 != x1 else 0 # Calculate ROI roi_val = y_val / (x_val * current_conversion_rate) return roi_val, mroi_val, y_val # Function to find segment value def find_segment_value(x, roi, mroi, roi_threshold=1, mroi_threshold=0.05): # Initialize the start and end values of the x array start_value = x[0] end_value = x[-1] # Define the condition for the "green region" where both ROI and MROI exceed their respective thresholds green_condition = (roi > roi_threshold) & (mroi > mroi_threshold) # Find indices where ROI exceeds the ROI threshold left_indices = np.where(roi > roi_threshold)[0] # Find indices where both ROI and MROI exceed their thresholds (green condition) right_indices = np.where(green_condition)[0] # Determine the left value based on the first index where ROI exceeds the threshold left_value = x[left_indices[0]] if left_indices.size > 0 else x[0] # Determine the right value based on the last index where both ROI and MROI exceed their thresholds right_value = x[right_indices[-1]] if right_indices.size > 0 else x[0] # Ensure the left value does not exceed the right value, adjust if necessary if left_value > right_value: left_value = right_value return start_value, end_value, left_value, right_value # Function to generate response curve plots @st.cache_data(show_spinner=False) def generate_response_curve_plots( channel_list, s_curve_params, channels_proportion, original_scenario_data ): figures, channel_roi_mroi, region_start_end = [], {}, {} for channel in channel_list: spends_actual = original_scenario_data["channels"][channel][ "actual_total_spends" ] conversion_rate = original_scenario_data["channels"][channel]["conversion_rate"] x_actual = np.linspace(0, 5 * spends_actual, 100) x_plot = x_actual * conversion_rate # Calculate y values for the S-curve y_plot = [ sum( s_curve( (x * channels_proportion[channel]), s_curve_params[channel]["power"], s_curve_params[channel]["K"], s_curve_params[channel]["b"], s_curve_params[channel]["a"], s_curve_params[channel]["x0"], ) ) for x in x_actual ] # Calculate ROI and ensure they are scalar values roi = [float(y) / float(x) if x != 0 else 0 for x, y in zip(x_plot, y_plot)] # Calculate MROI using a small nudge nudge = 1e-3 mroi = [] for i in range(len(x_plot)): x1 = float(x_plot[i]) y1 = float(y_plot[i]) x2 = x1 + nudge y2 = sum( s_curve( ((x2 / conversion_rate) * channels_proportion[channel]), s_curve_params[channel]["power"], s_curve_params[channel]["K"], s_curve_params[channel]["b"], s_curve_params[channel]["a"], s_curve_params[channel]["x0"], ) ) mroi_value = (float(y2) - y1) / (x2 - x1) if x2 != x1 else 0 mroi.append(mroi_value) # Calculate y, ROI and MROI for the actual spend point roi_actual, mroi_actual, y_actual = get_point_parms( spends_actual, s_curve_params[channel], channels_proportion[channel], conversion_rate, ) # Create the plotly figure fig = go.Figure() # Add S-curve line fig.add_trace( go.Scatter( x=x_plot, y=y_plot, mode="lines", name="Metrics", hoverinfo="text", text=[ f"Spends: {numerize(x)}
{metrics_selected_formatted}: {numerize(y)}
ROI: {r:.2f}
MROI: {m:.2f}" for x, y, r, m in zip(x_plot, y_plot, roi, mroi) ], ) ) # Add current spend point fig.add_trace( go.Scatter( x=[spends_actual * conversion_rate], y=[y_actual], mode="markers", marker=dict(color="cyan", size=10, symbol="circle"), name="Actual Spend", hoverinfo="text", text=[ f"Actual Spend: {numerize(spends_actual * conversion_rate)}
{metrics_selected_formatted}: {numerize(y_actual)}
ROI: {roi_actual:.2f}
MROI: {mroi_actual:.2f}" ], showlegend=True, ) ) # ROI Threshold roi_threshold = st.session_state.roi_threshold # Scale x and y values x, y = np.array(x_plot), np.array(y_plot) x_scaled, y_scaled = x / max(x), y / max(y) # Calculate MROI scaled starting from the first point mroi_scaled = np.zeros_like(x_scaled) for j in range(1, len(x_scaled)): x1, y1 = x_scaled[j - 1], y_scaled[j - 1] x2, y2 = x_scaled[j], y_scaled[j] mroi_scaled[j] = (y2 - y1) / (x2 - x1) if (x2 - x1) != 0 else 0 # Get the start_value, end_value, left_value, right_value for segments start_value, end_value, left_value, right_value = find_segment_value( x_plot, np.array(roi), mroi_scaled, roi_threshold, 0.05 ) # Store region start and end points region_start_end[channel] = { "start_value": start_value, "end_value": end_value, "left_value": left_value, "right_value": right_value, } # Adding background colors y_max = max(y_plot) * 1.3 # 30% extra space above the max # Yellow region fig.add_shape( type="rect", x0=start_value, y0=0, x1=left_value, y1=y_max, line=dict(width=0), fillcolor="rgba(255, 255, 0, 0.3)", layer="below", ) # Green region fig.add_shape( type="rect", x0=left_value, y0=0, x1=right_value, y1=y_max, line=dict(width=0), fillcolor="rgba(0, 255, 0, 0.3)", layer="below", ) # Red region fig.add_shape( type="rect", x0=right_value, y0=0, x1=end_value, y1=y_max, line=dict(width=0), fillcolor="rgba(255, 0, 0, 0.3)", layer="below", ) # Layout adjustments fig.update_layout( title=f"{name_formating(channel)}", showlegend=False, xaxis=dict( showgrid=True, showticklabels=True, tickformat=".2s", gridcolor="lightgrey", gridwidth=0.5, griddash="dot", ), yaxis=dict( showgrid=True, showticklabels=True, tickformat=".2s", gridcolor="lightgrey", gridwidth=0.5, griddash="dot", ), template="plotly_white", margin=dict(l=20, r=20, t=30, b=20), height=100 * math.ceil(len(channel_list) / 4), ) figures.append(fig) # Store data of each channel ROI and MROI channel_roi_mroi[channel] = { "actual_roi": roi_actual, "actual_mroi": mroi_actual, } return figures, channel_roi_mroi, region_start_end # Function to add modified spends/metrics point on plot def modified_metrics_point( fig, modified_spends, s_curve_params, channels_proportion, conversion_rate ): # Calculate ROI, MROI, and y for the modified point roi_modified, mroi_modified, y_modified = get_point_parms( modified_spends, s_curve_params, channels_proportion, conversion_rate ) # Add modified spend point fig.add_trace( go.Scatter( x=[modified_spends * conversion_rate], y=[y_modified], mode="markers", marker=dict(color="blueviolet", size=10, symbol="circle"), name="Optimized Spend", hoverinfo="text", text=[ f"Modified Spend: {numerize(modified_spends * conversion_rate)}
{metrics_selected_formatted}: {numerize(y_modified)}
ROI: {roi_modified:.2f}
MROI: {mroi_modified:.2f}" ], showlegend=True, ) ) return roi_modified, mroi_modified, fig # Function to update bound type change def bound_type_change(modified_pickle_file_path): # Get updated bound type from session state new_bound_type = st.session_state["bound_type_key"] # Open the pickle file and load the data try: with open(modified_pickle_file_path, "rb") as file: data = pickle.load(file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Update the bound type data[metrics_selected][panel_selected]["bound_type"] = new_bound_type # Set bounds to default value if bound type is False (Default) channel_list = list(data[metrics_selected][panel_selected]["channels"].keys()) if not new_bound_type: for channel in channel_list: data[metrics_selected][panel_selected]["channels"][channel]["bounds"] = [ -10, 10, ] # Save the updated data back to the pickle file try: with open(modified_pickle_file_path, "wb") as file: pickle.dump(data, file) except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Function to format the numbers with decimal def format_value(input_value): value = abs(input_value) return f"{input_value:.4f}" if value < 1 else f"{numerize(input_value, 1)}" # Function to format the numbers with decimal def round_value(input_value): value = abs(input_value) return round(input_value, 4) if value < 1 else round(input_value, 1) # Function to generate ROI and MROI plots for all channels @st.cache_data(show_spinner=False) def roi_mori_plot(channel_roi_mroi): # Dictionary to store plots channel_roi_mroi_plot = {} for channel in channel_roi_mroi: channel_roi_mroi_data = channel_roi_mroi[channel] # Extract the data actual_roi = channel_roi_mroi_data["actual_roi"] optimized_roi = channel_roi_mroi_data["optimized_roi"] actual_mroi = channel_roi_mroi_data["actual_mroi"] optimized_mroi = channel_roi_mroi_data["optimized_mroi"] # Plot ROI fig_roi = go.Figure() fig_roi.add_trace( go.Bar( x=["Actual ROI"], y=[actual_roi], name="Actual ROI", marker_color="cyan", width=1, text=[format_value(actual_roi)], textposition="auto", textfont=dict(color="black", size=14), ) ) fig_roi.add_trace( go.Bar( x=["Optimized ROI"], y=[optimized_roi], name="Optimized ROI", marker_color="blueviolet", width=1, text=[format_value(optimized_roi)], textposition="auto", textfont=dict(color="black", size=14), ) ) fig_roi.update_layout( annotations=[ dict( x=0.5, y=1.3, xref="paper", yref="paper", text="ROI", showarrow=False, font=dict(size=14), ) ], barmode="group", bargap=0, showlegend=False, width=110, height=110, xaxis=dict( showticklabels=True, showgrid=False, tickangle=0, ticktext=["Actual", "Optimized"], tickvals=["Actual ROI", "Optimized ROI"], ), yaxis=dict(showticklabels=False, showgrid=False), margin=dict(t=20, b=20, r=0, l=0), ) # Plot MROI fig_mroi = go.Figure() fig_mroi.add_trace( go.Bar( x=["Actual MROI"], y=[actual_mroi], name="Actual MROI", marker_color="cyan", width=1, text=[format_value(actual_mroi)], textposition="auto", textfont=dict(color="black", size=14), ) ) fig_mroi.add_trace( go.Bar( x=["Optimized MROI"], y=[optimized_mroi], name="Optimized MROI", marker_color="blueviolet", width=1, text=[format_value(optimized_mroi)], textposition="auto", textfont=dict(color="black", size=14), ) ) fig_mroi.update_layout( annotations=[ dict( x=0.5, y=1.3, xref="paper", yref="paper", text="MROI", showarrow=False, font=dict(size=14), ) ], barmode="group", bargap=0, showlegend=False, width=110, height=110, xaxis=dict( showticklabels=True, showgrid=False, tickangle=0, ticktext=["Actual", "Optimized"], tickvals=["Actual MROI", "Optimized MROI"], ), yaxis=dict(showticklabels=False, showgrid=False), margin=dict(t=20, b=20, r=0, l=0), ) # Store plots channel_roi_mroi_plot[channel] = {"fig_roi": fig_roi, "fig_mroi": fig_mroi} return channel_roi_mroi_plot # Function to save the current scenario with the mentioned name def save_scenario( scenario_dict, metrics_selected, panel_selected, optimization_goal, channel_roi_mroi ): # Remove extra space at start and ends if st.session_state["scenario_name"] is not None: st.session_state["scenario_name"] = st.session_state["scenario_name"].strip() if ( st.session_state["scenario_name"] is None or st.session_state["scenario_name"] == "" ): # Store the message details in session state st.session_state.message_display = { "type": "warning", "message": "Please provide a name to save the scenario.", "icon": "⚠️", } return # Check if the dictionary is empty if not scenario_dict: # Store the message details in session state st.session_state.message_display = { "type": "warning", "message": "Nothing to save. The scenario data is empty.", "icon": "⚠️", } return # Add additional scenario details scenario_dict["panel_selected"] = panel_selected scenario_dict["metrics_selected"] = metrics_selected scenario_dict["optimization"] = optimization_goal scenario_dict["channel_roi_mroi"] = channel_roi_mroi # Path to the saved scenarios file saved_scenarios_dict_path = os.path.join( st.session_state["project_path"], "saved_scenarios.pkl" ) # Load existing scenarios if the file exists try: if os.path.exists(saved_scenarios_dict_path): with open(saved_scenarios_dict_path, "rb") as f: saved_scenarios_dict = pickle.load(f) else: saved_scenarios_dict = OrderedDict() except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Check if the name is already taken if st.session_state["scenario_name"] in saved_scenarios_dict.keys(): # Store the message details in session state st.session_state.message_display = { "type": "warning", "message": "Name already exists. Please change the name or delete the existing scenario from the Saved Scenario page.", "icon": "⚠️", } return # Update the dictionary with the new scenario saved_scenarios_dict[st.session_state["scenario_name"]] = scenario_dict # Save the updated dictionary back to the file try: with open(saved_scenarios_dict_path, "wb") as f: pickle.dump(saved_scenarios_dict, f) # Store the message details in session state st.session_state.message_display = { "type": "success", "message": f"Scenario '{st.session_state.scenario_name}' has been successfully saved!", "icon": "💾", } except: st.toast("Failed to Load/Update. Tool reset to default settings.", icon="⚠️") reset_scenario() return # Clear the scenario name input st.session_state["scenario_name"] = "" # Function to calculate the RGBA color code based on the spends value and region boundaries def calculate_rgba(spends_value, region_start_end): # Get region start and end points start_value = region_start_end["start_value"] end_value = region_start_end["end_value"] left_value = region_start_end["left_value"] right_value = region_start_end["right_value"] # Calculate alpha dynamically based on the position within the range def calculate_alpha(position, start, end, min_alpha=0.1, max_alpha=0.4): return min_alpha + (max_alpha - min_alpha) * (position - start) / (end - start) if start_value <= spends_value <= left_value: # Yellow range (0, 128, 0) - More transparent towards left, darker towards start alpha = calculate_alpha(spends_value, left_value, start_value) return (255, 255, 0, alpha) # RGB for yellow elif left_value < spends_value <= right_value: # Green range (0, 128, 0) - More transparent towards right, darker towards left alpha = calculate_alpha(spends_value, right_value, left_value) return (0, 128, 0, alpha) # RGB for green elif right_value < spends_value <= end_value: # Red range (255, 0, 0) - More transparent towards right, darker towards end alpha = calculate_alpha(spends_value, right_value, end_value) return (255, 0, 0, alpha) # RGB for red # Function to format and display the channel name with a color and background color def display_channel_name_with_background_color( channel_name, background_color=(0, 128, 0, 0.1) ): formatted_name = name_formating(channel_name) # Unpack the RGBA values r, g, b, a = background_color # Create the HTML content with specified background color html_content = f"""
{formatted_name}
""" return html_content # Function to check optimization success def check_optimization_success( channel_list, input_channels_spends, output_channels_spends, bounds_dict, optimization_goal, modified_total_metrics, actual_total_metrics, modified_total_spends, actual_total_spends, original_total_spends, optimization_success, ): for channel in channel_list: input_channel_spends = input_channels_spends[channel] output_channel_spends = output_channels_spends[channel] lower_percent = bounds_dict[channel][0] upper_percent = bounds_dict[channel][1] lower_allowed_value = ( input_channel_spends * (100 + lower_percent - 1) / 100 ) # 1% Tolerance upper_allowed_value = ( input_channel_spends * (100 + upper_percent + 1) / 100 ) # 1% Tolerance # Check if output spends are within allowed bounds if ( output_channel_spends > upper_allowed_value or output_channel_spends < lower_allowed_value ): error_message = "Optimization failed: strict bounds. Use flexible bounds." return False, error_message, "❌" # Check optimization goal and percent change if optimization_goal == "Spends": percent_change_happened = abs( (modified_total_spends - actual_total_spends) / actual_total_spends ) if percent_change_happened > 0.01: # Greater than 1% Tolerance error_message = "Optimization failed: input and optimized spends differ. Use flexible bounds." return False, error_message, "❌" else: percent_change_happened = abs( (modified_total_metrics - actual_total_metrics) / actual_total_metrics ) if percent_change_happened > 0.01: # Greater than 1% Tolerance error_message = "Optimization failed: input and optimized metrics differ. Use flexible bounds." return False, error_message, "❌" # Define the allowable range for new spends lower_limit = original_total_spends * 0.5 upper_limit = original_total_spends * 1.5 # Check if the new spends are within the allowed range if modified_total_spends < lower_limit or modified_total_spends > upper_limit: error_message = "New spends optimized are outside the allowed range of ±50%." return False, error_message, "❌" # Check if the optimization failed to converge if not optimization_success: error_message = "Optimization failed to converge." return False, error_message, "❌" return True, "Optimization successful.", "💸" # Function to check if the optimization target is achievable within the given bounds @st.cache_data(show_spinner=False) def check_target_achievability( optimize_allow, fixed_target, lower_achievable_target, upper_achievable_target, total_absolute_target, ): # Format the messages with appropriate numerization and naming minimum_achievable_message = f"Minimum achievable {fixed_target} with the given spends and bounds is {numerize(lower_achievable_target)}" maximum_achievable_message = f"Maximum achievable {fixed_target} with the given spends and bounds is {numerize(upper_achievable_target)}" # Check if the target is within achievable bounds if (lower_achievable_target > total_absolute_target) or ( upper_achievable_target < total_absolute_target ): if lower_achievable_target > total_absolute_target: # Update session state with the minimum achievable error message st.session_state.message_display = { "type": "error", "message": minimum_achievable_message, "icon": "🔼", } else: # Update session state with the maximum achievable error message st.session_state.message_display = { "type": "error", "message": maximum_achievable_message, "icon": "🔽", } optimize_allow = False else: # Reset message display if previous message matches the current scenario if st.session_state.message_display["message"] in [ minimum_achievable_message, maximum_achievable_message, ]: st.session_state.message_display = { "type": "success", "message": None, "icon": "", } return optimize_allow # Function to display a message with the appropriate type and icon def display_message(): # Retrieve the message details from the session state message_type = st.session_state.message_display["type"] message = st.session_state.message_display["message"] icon = st.session_state.message_display["icon"] # Display the message if it exists if message is not None: if message_type == "success": st.success(message, icon=icon) elif message_type == "warning": st.warning(message, icon=icon) elif message_type == "error": st.error(message, icon=icon) else: st.info(message, icon=icon) # Styling load_local_css("styles.css") set_header() # Create project_dct if "project_dct" not in st.session_state: project_selection() st.stop() database_file = r"DB\User.db" conn = sqlite3.connect( database_file, check_same_thread=False ) # connection with sql db c = conn.cursor() # Display project info col_project_data = st.columns([2, 1]) with col_project_data[0]: st.markdown(f"**Welcome {st.session_state['username']}**") with col_project_data[1]: st.markdown(f"**Current Project: {st.session_state['project_name']}**") # Page Title st.title("Scenario Planner") # Define the directory where the metrics data is located directory = os.path.join(st.session_state["project_path"], "metrics_level_data") # Retrieve the list of all metric names from the specified directory metrics_list = get_metrics_names(directory) # Check if there are any metrics available in the metrics list if len(metrics_list) == 0: # Display a warning message to the user if no metrics are found st.warning( "Please tune at least one model to generate response curves data.", icon="⚠️", ) # Stop further execution as there is no data to process st.stop() # Widget columns metric_col, panel_col = st.columns(2) # Metrics Selection metrics_selected = metric_col.selectbox( "Response Metrics", sorted(metrics_list), format_func=name_formating, key="response_metrics_selectbox_sp", index=0, ) metrics_selected_formatted = name_formating(metrics_selected) # Retrieve the list of all panel names for specified Metrics file_selected = f"metrics_level_data/data_test_overview_panel@#{metrics_selected}.xlsx" file_selected_path = os.path.join(st.session_state["project_path"], file_selected) panel_list = get_panels_names(file_selected_path) # Panel Selection panel_selected = panel_col.selectbox( "Panel", sorted(panel_list), key="panel_selected_selectbox_sp", index=0, ) panel_selected_formatted = name_formating(panel_selected) # Define the path to the JSON files original_json_file_path = os.path.join( st.session_state["project_path"], "rcs_data_original.json" ) modified_json_file_path = os.path.join( st.session_state["project_path"], "rcs_data_modified.json" ) # Check if the RCS JSON file does not exist if not os.path.exists(original_json_file_path) or not os.path.exists( modified_json_file_path ): print( f"RCS JSON file does not exist at {original_json_file_path}. Generating new RCS data..." ) generate_rcs_data(original_json_file_path, modified_json_file_path) else: print( f"RCS JSON file already exists at {original_json_file_path}. No need to generate new RCS data." ) # Load JSON files if they exist original_json_data, modified_json_data = load_json_files( original_json_file_path, modified_json_file_path ) # Define the path to the pickle files original_pickle_file_path = os.path.join( st.session_state["project_path"], "scenario_data_original.pkl" ) modified_pickle_file_path = os.path.join( st.session_state["project_path"], "scenario_data_modified.pkl" ) # Check if the scenario pickle file does not exist if not os.path.exists(original_pickle_file_path) or not os.path.exists( modified_pickle_file_path ): print( f"Scenario file does not exist at {original_pickle_file_path}. Generating new senario file data..." ) generate_scenario_data(original_pickle_file_path, modified_pickle_file_path) else: print( f"Scenario file already exists at {original_pickle_file_path}. No need to generate new senario file data." ) # Load pickle files if they exist original_data, modified_data = load_pickle_files( original_pickle_file_path, modified_pickle_file_path ) # Extract original scenario data for the selected metric and panel original_scenario_data = original_data[metrics_selected][panel_selected] # Extract modified scenario data for the same metric and panel modified_scenario_data = modified_data[metrics_selected][panel_selected] # Display Actual Vs Optimized st.divider() ( actual_spends_col, actual_metrics_col, actual_CPA_col, optimized_spends_col, optimized_metrics_col, optimized_CPA_col, ) = st.columns(6) # Extracting and formatting values actual_spends = numerize(original_scenario_data["actual_total_spends"]) actual_metric_value = numerize(original_scenario_data["actual_total_sales"]) optimized_spends = numerize(modified_scenario_data["modified_total_spends"]) optimized_metric_value = numerize(modified_scenario_data["modified_total_sales"]) # Calculate the deltas (differences) spends_delta = numerize( modified_scenario_data["modified_total_spends"] - original_scenario_data["actual_total_spends"] ) metrics_delta = numerize( modified_scenario_data["modified_total_sales"] - original_scenario_data["actual_total_sales"] ) # Display current and optimized CPA actual_CPA = ( original_scenario_data["actual_total_spends"] / original_scenario_data["actual_total_sales"] ) optimized_CPA = ( modified_scenario_data["modified_total_spends"] / modified_scenario_data["modified_total_sales"] ) CPA_delta = round_value(optimized_CPA - actual_CPA) actual_CPA_col.metric("Actual CPA", round_value(actual_CPA)) optimized_spends_col.metric("Optimized Spends", optimized_spends, delta=spends_delta) optimized_metrics_col.metric( f"Optimized {metrics_selected_formatted}", optimized_metric_value, delta=metrics_delta, ) optimized_CPA_col.metric( "Optimized CPA", round_value(optimized_CPA), delta=CPA_delta, delta_color="inverse", ) # Displaying metrics in the columns actual_spends_col.metric("Actual Spends", actual_spends) actual_metrics_col.metric(f"Actual {metrics_selected_formatted}", actual_metric_value) st.divider() # Calculate ROI threshold st.session_state.roi_threshold = ( original_scenario_data["actual_total_sales"] / original_scenario_data["actual_total_spends"] ) # Retrieve the list of all channels names for specified Metrics and Panel channel_list = list(original_scenario_data["channels"].keys()) # Create columns for optimization goal and buttons optimization_goal_col, message_display_col, button_col = st.columns([3, 6, 6]) # Create columns for absolute text, slider, percentage number and bound type absolute_text_col, absolute_slider_col, percentage_number_col, bound_type_col = ( st.columns([2, 4, 2, 2]) ) # Dropdown for selecting optimization goal optimization_goal = optimization_goal_col.selectbox( "Fix", ["Spends", metrics_selected_formatted] ) # Button columns with padding for alignment with button_col: st.write("##") # Padding optimize_button_col, reset_button_col = st.columns(2) reset_button_col.button( "Reset", use_container_width=True, on_click=reset_scenario, args=(metrics_selected, panel_selected), ) # Absolute value display if optimization_goal == "Spends": absolute_value = modified_scenario_data["actual_total_spends"] st.session_state.total_absolute_main_key = numerize( modified_scenario_data["modified_total_spends"] ) else: absolute_value = modified_scenario_data["actual_total_sales"] st.session_state.total_absolute_main_key = numerize( modified_scenario_data["modified_total_sales"] ) total_absolute = absolute_text_col.text_input( "Absolute", key="total_absolute_main_key", on_change=total_absolute_main_key_change, args=( metrics_selected, panel_selected, modified_pickle_file_path, optimization_goal, ), ) # Generate and process slider options slider_options = list( np.linspace(int(0.5 * absolute_value), int(1.5 * absolute_value), 50) ) # Generate range slider_options.append( modified_scenario_data["modified_total_spends"] if optimization_goal == "Spends" else modified_scenario_data["modified_total_sales"] ) slider_options = sorted(slider_options) # Sort the list numerized_slider_options = [ numerize(value) for value in slider_options ] # Numerize each value # Slider for adjusting absolute value within a range st.session_state.total_absolute_key = numerize( modified_scenario_data["modified_total_spends"] if optimization_goal == "Spends" else modified_scenario_data["modified_total_sales"] ) slider_value = absolute_slider_col.select_slider( "Absolute", numerized_slider_options, key="total_absolute_key", on_change=total_absolute_key_change, args=( metrics_selected, panel_selected, modified_pickle_file_path, optimization_goal, ), ) # Number input for percentage value if optimization_goal == "Spends": st.session_state.total_percentage_key = int( round( ( ( modified_scenario_data["modified_total_spends"] - modified_scenario_data["actual_total_spends"] ) / modified_scenario_data["actual_total_spends"] ) * 100, 0, ) ) else: st.session_state.total_percentage_key = int( round( ( ( modified_scenario_data["modified_total_sales"] - modified_scenario_data["actual_total_sales"] ) / modified_scenario_data["actual_total_sales"] ) * 100, 0, ) ) percentage_target = percentage_number_col.number_input( "Percentage", min_value=-50, max_value=50, key="total_percentage_key", on_change=total_percentage_key_change, args=( metrics_selected, panel_selected, modified_pickle_file_path, absolute_value, optimization_goal, ), ) # Toggle input for bound type st.session_state["bound_type_key"] = modified_scenario_data["bound_type"] with bound_type_col: st.write("##") # Padding bound_type = st.toggle( "Apply Custom Bounds", on_change=bound_type_change, args=(modified_pickle_file_path,), key="bound_type_key", ) # Collect inputs from the user interface total_channel_spends, optimize_allow = 0, True bounds_dict = {} s_curve_params = {} channels_spends = {} channels_proportion = {} channels_conversion_ratio = {} channels_name_plot_placeholder = {} # Optimization Inputs UI with st.expander("Optimization Inputs", expanded=True): for channel in channel_list: st.divider() # Channel key channel_key = f"{metrics_selected}_{panel_selected}_{channel}" # Create columns if st.session_state["bound_type_key"]: ( name_plot_col, input_col, spends_col, metrics_col, bounds_input_col, bounds_display_col, allow_col, ) = st.columns([2, 1, 1, 1, 1, 1, 1]) else: ( name_plot_col, input_col, spends_col, metrics_col, bounds_display_col, allow_col, ) = st.columns([2, 1, 1.5, 1.5, 1, 1]) bounds_input_col = st.empty() # Display channel name and ROI/MROI plot with name_plot_col: # Placeholder for channel name channel_name_placeholder = st.empty() channel_name_placeholder.markdown( display_channel_name_with_background_color(channel), unsafe_allow_html=True, ) # Placeholder for ROI and MROI plot channel_plot_placeholder = st.container() # Store placeholder for channel name and ROI/MROI plots channels_name_plot_placeholder[channel] = { "channel_name_placeholder": channel_name_placeholder, "channel_plot_placeholder": channel_plot_placeholder, } # Channel spends and sales channel_spends_actual = ( original_scenario_data["channels"][channel]["actual_total_spends"] * original_scenario_data["channels"][channel]["conversion_rate"] ) channel_metrics_actual = original_scenario_data["channels"][channel][ "modified_total_sales" ] channel_spends_modified = ( modified_scenario_data["channels"][channel]["modified_total_spends"] * original_scenario_data["channels"][channel]["conversion_rate"] ) channel_metrics_modified = modified_scenario_data["channels"][channel][ "modified_total_sales" ] # Channel spends input with input_col: # Absolute Spends Input st.session_state[f"{channel_key}_abs_spends_key"] = numerize( modified_scenario_data["channels"][channel]["modified_total_spends"] * original_scenario_data["channels"][channel]["conversion_rate"] ) absolute_channel_spends = st.text_input( "Absolute Spends", key=f"{channel_key}_abs_spends_key", on_change=absolute_channel_spends_change, args=( channel_key, channel_spends_actual, channel, metrics_selected, panel_selected, modified_pickle_file_path, ), ) # Update Percentage Spends Input st.session_state[f"{channel_key}_per_spends_key"] = int( round( ( ( convert_to_float( st.session_state[f"{channel_key}_abs_spends_key"] ) - float(channel_spends_actual) ) / channel_spends_actual ) * 100, 0, ) ) # Percentage Spends Input percentage_channel_spends = st.number_input( "Percentage Spends", min_value=-1000, max_value=1000, key=f"{channel_key}_per_spends_key", on_change=percentage_channel_spends_change, args=( channel_key, channel_spends_actual, channel, metrics_selected, panel_selected, modified_pickle_file_path, ), ) # Store channel spends, conversion ratio and proportion list channels_spends[channel] = original_scenario_data["channels"][channel][ "actual_total_spends" ] * (1 + percentage_channel_spends / 100) channels_conversion_ratio[channel] = original_scenario_data["channels"][ channel ]["conversion_rate"] channels_proportion[channel] = original_scenario_data["channels"][channel][ "spends" ] / sum(original_scenario_data["channels"][channel]["spends"]) # Channel metrics display with metrics_col: # Absolute Metrics st.metric( f"Actual {name_formating(metrics_selected)}", value=numerize(channel_metrics_actual), ) # Optimized Metrics st.metric( f"Optimized {name_formating(metrics_selected)}", value=numerize(channel_metrics_modified), delta=numerize(channel_metrics_modified - channel_metrics_actual), ) # Channel spends display with spends_col: # Absolute Spends st.metric( "Actual Spends", value=numerize(channel_spends_actual), ) # Optimized Spends st.metric( "Optimized Spends", value=numerize(channel_spends_modified), delta=numerize(channel_spends_modified - channel_spends_actual), ) # Channel allows optimize with allow_col: # Allow Optimize (Freeze) st.write("#") # Padding st.session_state[f"{channel_key}_allow_optimize_key"] = ( modified_scenario_data["channels"][channel]["freeze"] ) freeze = st.checkbox( "Freeze", key=f"{channel_key}_allow_optimize_key", on_change=freeze_change, args=( metrics_selected, panel_selected, modified_pickle_file_path, channel_key, channel, ), ) # If channel is frozen, set bounds to keep the spend unchanged if freeze: lower_bound, upper_bound = 0, 0 # Freeze the spend at current level # Channel bounds input if st.session_state["bound_type_key"]: with bounds_input_col: # Channel upper bound st.session_state[f"{channel_key}_upper_key"] = ( modified_scenario_data["channels"][channel]["bounds"] )[1] upper_bound = st.number_input( "Upper bound (%)", min_value=-100, max_value=100, key=f"{channel_key}_upper_key", disabled=st.session_state[f"{channel_key}_allow_optimize_key"], on_change=bound_change, args=( metrics_selected, panel_selected, modified_pickle_file_path, channel_key, channel, ), ) # Channel lower bound st.session_state[f"{channel_key}_lower_key"] = ( modified_scenario_data["channels"][channel]["bounds"] )[0] lower_bound = st.number_input( "Lower bound (%)", min_value=-100, max_value=100, key=f"{channel_key}_lower_key", disabled=st.session_state[f"{channel_key}_allow_optimize_key"], on_change=bound_change, args=( metrics_selected, panel_selected, modified_pickle_file_path, channel_key, channel, ), ) # Check if lower bound is greater than upper bound if lower_bound > upper_bound: lower_bound = -10 # Default lower bound upper_bound = 10 # Default upper bound # Store bounds bounds_dict[channel] = [lower_bound, upper_bound] else: # If channel is frozen, set bounds to keep the spend unchanged if freeze: lower_bound, upper_bound = 0, 0 # Freeze the spend at current level else: lower_bound = -10 # Default lower bound upper_bound = 10 # Default upper bound # Store bounds bounds_dict[channel] = modified_scenario_data["channels"][channel]["bounds"] # Display the bounds for each channel's spend in the bounds_display_col with bounds_display_col: # Retrieve the actual spends for the channel from the original scenario data actual_spends = ( modified_scenario_data["channels"][channel]["modified_total_spends"] * modified_scenario_data["channels"][channel]["conversion_rate"] ) # Calculate the limit for spends upper_limit_spends = actual_spends * (1 + upper_bound / 100) lower_limit_spends = actual_spends * (1 + lower_bound / 100) # Display the upper limit spends st.metric("Upper Bound", numerize(upper_limit_spends)) st.metric("Lower Bound", numerize(lower_limit_spends)) # Store S-curve parameters s_curve_params[channel] = get_s_curve_params( metrics_selected, panel_selected, channel, original_json_data, modified_json_data, modified_pickle_file_path, ) # Total channel spends total_channel_spends += convert_to_float( st.session_state[f"{channel_key}_abs_spends_key"] ) # Check if total channel spends are within the allowed range (±50% of the original total spends) if ( total_channel_spends > 1.5 * original_scenario_data["actual_total_spends"] or total_channel_spends < 0.5 * original_scenario_data["actual_total_spends"] ): # Store the message details in session state st.session_state.message_display = { "type": "warning", "message": "Keep total spending within ±50% of the original value.", "icon": "⚠️", } if optimization_goal == "Spends": # Get maximum achievable spends lower_achievable_target, upper_achievable_target = 0, 0 for channel in channel_list: channel_spends_actual = ( channels_spends[channel] * channels_conversion_ratio[channel] ) lower_achievable_target += channel_spends_actual * ( 1 + bounds_dict[channel][0] / 100 ) upper_achievable_target += channel_spends_actual * ( 1 + bounds_dict[channel][1] / 100 ) else: # Get maximum achievable target metric lower_achievable_target, upper_achievable_target = max_target_achievable( channels_spends, s_curve_params, channels_proportion, modified_scenario_data, bounds_dict, ) # Total target of selected metric total_absolute_target = convert_to_float(total_absolute) # Check if the target is achievable within the specified bounds if optimize_allow: optimize_allow = check_target_achievability( optimize_allow, name_formating(optimization_goal), lower_achievable_target, upper_achievable_target, total_absolute_target, ) # Perform the optimization if optimize_button_col.button( "Optimize", use_container_width=True, disabled=not optimize_allow ): with message_display_col: st.write("##") # Padding with st.spinner("Optimizing..."): # Call the optimizer function to get optimized spends optimized_spends, optimization_success = optimizer( optimization_goal, s_curve_params, channels_spends, channels_proportion, channels_conversion_ratio, convert_to_float(total_absolute), bounds_dict, modified_scenario_data, ) # Initialize dictionaries to store input and output channel spends input_channels_spends, output_channels_spends = {}, {} for channel in channel_list: # Calculate input channel spends by converting spends using conversion ratio input_channels_spends[channel] = ( channels_spends[channel] * channels_conversion_ratio[channel] ) # Calculate output channel spends by converting optimized spends using conversion ratio output_channels_spends[channel] = ( optimized_spends[channel] * channels_conversion_ratio[channel] ) # Calculate total actual and modified spends actual_total_spends = sum(list(input_channels_spends.values())) modified_total_spends = sum(list(output_channels_spends.values())) # Retrieve the actual total metrics from modified scenario data actual_total_metrics = modified_scenario_data["modified_total_sales"] modified_total_metrics = 0 # Initialize modified total metrics modified_channels_metrics = {} # Calculate modified metrics for each channel for channel in optimized_spends.keys(): channel_s_curve_params = s_curve_params[channel] spend_proportion = ( optimized_spends[channel] * channels_proportion[channel] ) # Calculate the metrics using the S-curve function modified_channels_metrics[channel] = sum( s_curve( spend_proportion, channel_s_curve_params["power"], channel_s_curve_params["K"], channel_s_curve_params["b"], channel_s_curve_params["a"], channel_s_curve_params["x0"], ) ) modified_total_metrics += modified_channels_metrics[ channel ] # Add channel metrics to total metrics # Add the constant term to the modified total metrics modified_total_metrics += sum(modified_scenario_data["constant"]) # Retrieve the original total spends from modified scenario data original_total_spends = modified_scenario_data["actual_total_spends"] # Check the success of the optimization process success, message, icon = check_optimization_success( channel_list, input_channels_spends, output_channels_spends, bounds_dict, optimization_goal, modified_total_metrics, actual_total_metrics, modified_total_spends, actual_total_spends, original_total_spends, optimization_success, ) # Store the message details in session state st.session_state.message_display = { "type": "success" if success else "error", "message": message, "icon": icon, } # Update data only if the optimization is successful if success: # Update the modified spend and metrics for each channel in the scenario data for channel in channel_list: modified_scenario_data["channels"][channel][ "modified_total_spends" ] = optimized_spends[channel] # Update the modified metrics for each channel in the scenario data modified_scenario_data["channels"][channel][ "modified_total_sales" ] = modified_channels_metrics[channel] # Update the total modified spends in the scenario data modified_scenario_data["modified_total_spends"] = modified_total_spends # Update the total modified metrics in the scenario data modified_scenario_data["modified_total_sales"] = modified_total_metrics # Save the updated modified_scenario_data back to the pickle file try: with open(modified_pickle_file_path, "rb+") as pickle_file: # Load existing data to ensure we don't overwrite other data data = pickle.load(pickle_file) # Update the specific section with the modified scenario data data[metrics_selected][panel_selected] = modified_scenario_data # Go to the beginning of the file to overwrite it pickle_file.seek(0) pickle.dump(data, pickle_file) except: st.toast( "Failed to Load/Update. Tool reset to default settings.", icon="⚠️", ) # Rerun to update values st.rerun() ########################################## Response Curve ########################################## # Generate plots figures, channel_roi_mroi, region_start_end = generate_response_curve_plots( channel_list, s_curve_params, channels_proportion, original_scenario_data ) # Display Response Curve in Streamlit with 4 plots per row st.subheader(f"Response Curve (X: Spends Vs Y: {metrics_selected_formatted})") with st.expander("Response Curve", expanded=True): cols = st.columns(4) # Create 4 columns for the first row for i, fig in enumerate(figures): col = cols[i % 4] # Rotate through the columns with col: # Get channel parameters channel = channel_list[i] modified_total_spends = modified_scenario_data["channels"][channel][ "modified_total_spends" ] conversion_rate = modified_scenario_data["channels"][channel][ "conversion_rate" ] # Updated figure with modified metrics point roi_optimized, mroi_optimized, fig_updated = modified_metrics_point( fig, modified_total_spends, s_curve_params[channel], channels_proportion[channel], conversion_rate, ) # Store data of each channel ROI and MROI channel_roi_mroi[channel]["optimized_roi"] = roi_optimized channel_roi_mroi[channel]["optimized_mroi"] = mroi_optimized st.plotly_chart(fig_updated, use_container_width=True) # Start a new row after every 4 plots if (i + 1) % 4 == 0 and i + 1 < len(figures): cols = st.columns(4) # Create new row with 4 columns # Generate the plots channel_roi_mroi_plot = roi_mori_plot(channel_roi_mroi) # Display the plots and name with background color for channel in channel_list: with channels_name_plot_placeholder[channel]["channel_plot_placeholder"]: # Create subplots with 2 columns for ROI and MROI roi_plot_col, mroi_plot_col = st.columns(2) # Display ROI and MROI plots roi_plot_col.plotly_chart(channel_roi_mroi_plot[channel]["fig_roi"]) mroi_plot_col.plotly_chart(channel_roi_mroi_plot[channel]["fig_mroi"]) # Placeholder for the channel name channel_name_placeholder = channels_name_plot_placeholder[channel][ "channel_name_placeholder" ] # Retrieve modified total spends and conversion rate for the channel modified_total_spends = modified_scenario_data["channels"][channel][ "modified_total_spends" ] conversion_rate = modified_scenario_data["channels"][channel]["conversion_rate"] # Calculate the actual spend value for the channel channel_spends_value = modified_total_spends * conversion_rate # Calculate the RGBA color value for the channel based on its spend channel_rgba_value = calculate_rgba(channel_spends_value, region_start_end[channel]) # Display the channel name with the calculated background color channel_name_placeholder.markdown( display_channel_name_with_background_color(channel, channel_rgba_value), unsafe_allow_html=True, ) # Input field for the scenario name st.text_input("Scenario Name", key="scenario_name") # Disable the "Save Scenario" button until a name is provided if st.session_state["scenario_name"] is None or st.session_state["scenario_name"] == "": save_scenario_button_disabled = True else: save_scenario_button_disabled = False # Button to save the scenario st.button( "Save Scenario", on_click=save_scenario, args=( modified_scenario_data, metrics_selected, panel_selected, optimization_goal, channel_roi_mroi, ), disabled=save_scenario_button_disabled, ) ########################################## Display Message ########################################## # Display all message with message_display_col: st.write("###") # Padding display_message() # Reset the message details in session state st.session_state.message_display = { "type": "success", "message": None, "icon": "", }