Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from scipy.optimize import curve_fit | |
| from sklearn.preprocessing import MinMaxScaler | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| import plotly.graph_objects as go | |
| from utilities import (channel_name_formating) | |
| ## reading input data | |
| df= pd.read_csv('response_curves_input_file.csv') | |
| df.dropna(inplace=True) | |
| df['Date'] = pd.to_datetime(df['Date']) | |
| df.reset_index(inplace=True) | |
| channel_cols = [ | |
| 'BroadcastTV', | |
| 'CableTV', | |
| 'Connected&OTTTV', | |
| 'DisplayProspecting', | |
| 'DisplayRetargeting', | |
| 'Video', | |
| 'SocialProspecting', | |
| 'SocialRetargeting', | |
| 'SearchBrand', | |
| 'SearchNon-brand', | |
| 'DigitalPartners', | |
| 'Audio', | |
| 'Email'] | |
| spend_cols = [ | |
| 'tv_broadcast_spend', | |
| 'tv_cable_spend', | |
| 'stream_video_spend', | |
| 'disp_prospect_spend', | |
| 'disp_retarget_spend', | |
| 'olv_spend', | |
| 'social_prospect_spend', | |
| 'social_retarget_spend', | |
| 'search_brand_spend', | |
| 'search_nonbrand_spend', | |
| 'cm_spend', | |
| 'audio_spend', | |
| 'email_spend'] | |
| prospect_cols = [ | |
| 'Broadcast TV_Prospects', | |
| 'Cable TV_Prospects', | |
| 'Connected & OTT TV_Prospects', | |
| 'Display Prospecting_Prospects', | |
| 'Display Retargeting_Prospects', | |
| 'Video_Prospects', | |
| 'Social Prospecting_Prospects', | |
| 'Social Retargeting_Prospects', | |
| 'Search Brand_Prospects', | |
| 'Search Non-brand_Prospects', | |
| 'Digital Partners_Prospects', | |
| 'Audio_Prospects', | |
| 'Email_Prospects'] | |
| def hill_equation(x, Kd, n): | |
| return x**n / (Kd**n + x**n) | |
| def hill_func(x_data,y_data,x_minmax,y_minmax): | |
| # Fit the Hill equation to the data | |
| initial_guess = [1, 1] # Initial guess for Kd and n | |
| params, covariance = curve_fit(hill_equation, x_data, y_data, p0=initial_guess,maxfev = 1000) | |
| # Extract the fitted parameters | |
| Kd_fit, n_fit = params | |
| # Generate y values using the fitted parameters | |
| y_fit = hill_equation(x_data, Kd_fit, n_fit) | |
| x_data_inv = x_minmax.inverse_transform(np.array(x_data).reshape(-1,1)) | |
| y_data_inv = y_minmax.inverse_transform(np.array(y_data).reshape(-1,1)) | |
| y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1)) | |
| # # Plot the original data and the fitted curve | |
| # plt.scatter(x_data_inv, y_data_inv, label='Actual Data') | |
| # plt.scatter(x_data_inv, y_fit_inv, label='Fit Data',color='red') | |
| # # plt.line(x_data_inv, y_fit_inv, label=f'Fitted Hill Equation (Kd={Kd_fit:.2f}, n={n_fit:.2f})', color='red') | |
| # plt.xlabel('Ligand Concentration') | |
| # plt.ylabel('Fraction of Binding') | |
| # plt.title('Fitting Hill Equation to Data') | |
| # plt.legend() | |
| # plt.show() | |
| return y_fit,y_fit_inv,Kd_fit, n_fit | |
| def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext): | |
| fit_col = 'Fit_Data_'+channel | |
| plot_df = pd.DataFrame() | |
| plot_df[f'{channel}_Spends'] = X | |
| plot_df['Date'] = df['Date'] | |
| plot_df['MAT'] = df['MAT'] | |
| y_fit_inv_v2 = [] | |
| for i in range(len(y_fit_inv)): | |
| y_fit_inv_v2.append(y_fit_inv[i][0]) | |
| plot_df[fit_col] = y_fit_inv_v2 | |
| # adding extra data | |
| y_fit_inv_v2_ext = [] | |
| for i in range(len(y_fit_inv_ext)): | |
| y_fit_inv_v2_ext.append(y_fit_inv_ext[i][0]) | |
| # # # print(x_ext_data) | |
| ext_df = pd.DataFrame() | |
| ext_df[f'{channel}_Spends'] = x_ext_data | |
| ext_df[fit_col] = y_fit_inv_v2_ext | |
| ext_df['Date'] = [ | |
| np.datetime64('1950-01-01'), | |
| np.datetime64('1950-06-15'), | |
| np.datetime64('1950-12-31') | |
| ] | |
| ext_df['MAT'] = ["ext","ext","ext"] | |
| # # # print(ext_df) | |
| plot_df= plot_df.append(ext_df) | |
| return plot_df | |
| def input_data(df,spend_col,prospect_col): | |
| X = np.array(df[spend_col].tolist()) | |
| y = np.array(df[prospect_col].tolist()) | |
| x_minmax = MinMaxScaler() | |
| x_scaled = x_minmax.fit_transform(df[[spend_col]]) | |
| x_data = [] | |
| for i in range(len(x_scaled)): | |
| x_data.append(x_scaled[i][0]) | |
| y_minmax = MinMaxScaler() | |
| y_scaled = y_minmax.fit_transform(df[[prospect_col]]) | |
| y_data = [] | |
| for i in range(len(y_scaled)): | |
| y_data.append(y_scaled[i][0]) | |
| return X,y,x_data,y_data,x_minmax,y_minmax | |
| def extend_s_curve(x_max,x_minmax,y_minmax, Kd_fit, n_fit): | |
| # # # print(x_max) | |
| x_ext_data = [x_max*1.2,x_max*1.3,x_max*1.5] | |
| # x_ext_data = [1500000,2000000,2500000] | |
| # x_ext_data = [x_max+100,x_max+200,x_max+5000] | |
| x_scaled = x_minmax.transform(pd.DataFrame(x_ext_data)) | |
| x_data = [] | |
| for i in range(len(x_scaled)): | |
| x_data.append(x_scaled[i][0]) | |
| # # # print(x_data) | |
| y_fit = hill_equation(x_data, Kd_fit, n_fit) | |
| y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1)) | |
| return x_ext_data,y_fit_inv | |
| def fit_data(spend_col,prospect_col,channel): | |
| ### getting k and n parameters | |
| temp_df = df[df[spend_col]>0] | |
| temp_df.reset_index(inplace=True) | |
| X,y,x_data,y_data,x_minmax,y_minmax = input_data(temp_df,spend_col,prospect_col) | |
| y_fit, y_fit_inv, Kd_fit, n_fit = hill_func(x_data,y_data,x_minmax,y_minmax) | |
| # # # print('k: ',Kd_fit) | |
| # # # print('n: ', n_fit) | |
| ##### extend_s_curve | |
| x_ext_data,y_fit_inv_ext= extend_s_curve(temp_df[spend_col].max(),x_minmax,y_minmax, Kd_fit, n_fit) | |
| plot_df = data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext) | |
| return plot_df | |
| plotly_data = fit_data(spend_cols[0],prospect_cols[0],channel_cols[0]) | |
| plotly_data.tail() | |
| for i in range(1,13): | |
| # # # print(i) | |
| pdf = fit_data(spend_cols[i],prospect_cols[i],channel_cols[i]) | |
| plotly_data = plotly_data.merge(pdf,on = ["Date","MAT"],how = "left") | |
| def response_curves(channel,x_modified,y_modified): | |
| # Initialize the Plotly figure | |
| fig = go.Figure() | |
| x_col = (channel+"_Spends").replace('\xa0', '') | |
| y_col = ("Fit_Data_"+channel).replace('\xa0', '') | |
| # fig.add_trace(go.Scatter( | |
| # x=plotly_data[x_col], | |
| # y=plotly_data[y_col], | |
| # mode='markers', | |
| # name=x_col.replace('_Spends', '') | |
| # )) | |
| fig.add_trace(go.Scatter( | |
| x=plotly_data.sort_values(by=x_col, ascending=True)[x_col], | |
| y=plotly_data.sort_values(by=x_col, ascending=True)[y_col], | |
| mode='lines+markers', | |
| name=x_col.replace('_Spends', '') | |
| )) | |
| plotly_data2 = plotly_data.copy() | |
| plotly_data2 = plotly_data[plotly_data[x_col].isnull()==False] | |
| # print(plotly_data[plotly_data2['Date'] == plotly_data2['Date'].max()][x_col]) | |
| # .dropna(subset=[x_col]).reset_index(inplace = True) | |
| fig.add_trace(go.Scatter( | |
| x=plotly_data[plotly_data2['Date'] == plotly_data2['Date'].max()][x_col], | |
| y=plotly_data[plotly_data2['Date'] == plotly_data2['Date'].max()][y_col], | |
| mode='markers', | |
| marker=dict( | |
| size=13 # Adjust the size value to make the markers larger or smaller | |
| , color = 'yellow' | |
| ), | |
| name="Current Spends" | |
| )) | |
| fig.add_trace(go.Scatter( | |
| x=[x_modified/104], | |
| y=[y_modified/104], | |
| mode='markers', | |
| marker=dict( | |
| size=13 # Adjust the size value to make the markers larger or smaller | |
| , color = 'blue' | |
| ), | |
| name="Optimised Spends" | |
| )) | |
| # Update layout with titles | |
| fig.update_layout( | |
| title=channel+' Response Curve', | |
| xaxis_title='Weekly Spends', | |
| yaxis_title='Prospects' | |
| ) | |
| # Show the figure | |
| return fig | |
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from scipy.optimize import curve_fit | |
| from sklearn.preprocessing import MinMaxScaler | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| import plotly.graph_objects as go | |
| ## reading input data | |
| df= pd.read_csv('response_curves_input_file.csv') | |
| df.dropna(inplace=True) | |
| df['Date'] = pd.to_datetime(df['Date']) | |
| df.reset_index(inplace=True) | |
| channel_cols = [ | |
| 'BroadcastTV', | |
| 'CableTV', | |
| 'Connected&OTTTV', | |
| 'DisplayProspecting', | |
| 'DisplayRetargeting', | |
| 'Video', | |
| 'SocialProspecting', | |
| 'SocialRetargeting', | |
| 'SearchBrand', | |
| 'SearchNon-brand', | |
| 'DigitalPartners', | |
| 'Audio', | |
| 'Email'] | |
| spend_cols = [ | |
| 'tv_broadcast_spend', | |
| 'tv_cable_spend', | |
| 'stream_video_spend', | |
| 'disp_prospect_spend', | |
| 'disp_retarget_spend', | |
| 'olv_spend', | |
| 'social_prospect_spend', | |
| 'social_retarget_spend', | |
| 'search_brand_spend', | |
| 'search_nonbrand_spend', | |
| 'cm_spend', | |
| 'audio_spend', | |
| 'email_spend'] | |
| prospect_cols = [ | |
| 'Broadcast TV_Prospects', | |
| 'Cable TV_Prospects', | |
| 'Connected & OTT TV_Prospects', | |
| 'Display Prospecting_Prospects', | |
| 'Display Retargeting_Prospects', | |
| 'Video_Prospects', | |
| 'Social Prospecting_Prospects', | |
| 'Social Retargeting_Prospects', | |
| 'Search Brand_Prospects', | |
| 'Search Non-brand_Prospects', | |
| 'Digital Partners_Prospects', | |
| 'Audio_Prospects', | |
| 'Email_Prospects'] | |
| def hill_equation(x, Kd, n): | |
| return x**n / (Kd**n + x**n) | |
| def hill_func(x_data,y_data,x_minmax,y_minmax): | |
| # Fit the Hill equation to the data | |
| initial_guess = [1, 1] # Initial guess for Kd and n | |
| params, covariance = curve_fit(hill_equation, x_data, y_data, p0=initial_guess,maxfev = 1000) | |
| # Extract the fitted parameters | |
| Kd_fit, n_fit = params | |
| # Generate y values using the fitted parameters | |
| y_fit = hill_equation(x_data, Kd_fit, n_fit) | |
| x_data_inv = x_minmax.inverse_transform(np.array(x_data).reshape(-1,1)) | |
| y_data_inv = y_minmax.inverse_transform(np.array(y_data).reshape(-1,1)) | |
| y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1)) | |
| # # Plot the original data and the fitted curve | |
| # plt.scatter(x_data_inv, y_data_inv, label='Actual Data') | |
| # plt.scatter(x_data_inv, y_fit_inv, label='Fit Data',color='red') | |
| # # plt.line(x_data_inv, y_fit_inv, label=f'Fitted Hill Equation (Kd={Kd_fit:.2f}, n={n_fit:.2f})', color='red') | |
| # plt.xlabel('Ligand Concentration') | |
| # plt.ylabel('Fraction of Binding') | |
| # plt.title('Fitting Hill Equation to Data') | |
| # plt.legend() | |
| # plt.show() | |
| return y_fit,y_fit_inv,Kd_fit, n_fit | |
| def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext): | |
| fit_col = 'Fit_Data_'+channel | |
| plot_df = pd.DataFrame() | |
| plot_df[f'{channel}_Spends'] = X | |
| plot_df['Date'] = df['Date'] | |
| plot_df['MAT'] = df['MAT'] | |
| y_fit_inv_v2 = [] | |
| for i in range(len(y_fit_inv)): | |
| y_fit_inv_v2.append(y_fit_inv[i][0]) | |
| plot_df[fit_col] = y_fit_inv_v2 | |
| # adding extra data | |
| y_fit_inv_v2_ext = [] | |
| for i in range(len(y_fit_inv_ext)): | |
| y_fit_inv_v2_ext.append(y_fit_inv_ext[i][0]) | |
| # # # print(x_ext_data) | |
| ext_df = pd.DataFrame() | |
| ext_df[f'{channel}_Spends'] = x_ext_data | |
| ext_df[fit_col] = y_fit_inv_v2_ext | |
| ext_df['Date'] = [ | |
| np.datetime64('1950-01-01'), | |
| np.datetime64('1950-06-15'), | |
| np.datetime64('1950-12-31') | |
| ] | |
| ext_df['MAT'] = ["ext","ext","ext"] | |
| # # # print(ext_df) | |
| plot_df= plot_df.append(ext_df) | |
| return plot_df | |
| def input_data(df,spend_col,prospect_col): | |
| X = np.array(df[spend_col].tolist()) | |
| y = np.array(df[prospect_col].tolist()) | |
| x_minmax = MinMaxScaler() | |
| x_scaled = x_minmax.fit_transform(df[[spend_col]]) | |
| x_data = [] | |
| for i in range(len(x_scaled)): | |
| x_data.append(x_scaled[i][0]) | |
| y_minmax = MinMaxScaler() | |
| y_scaled = y_minmax.fit_transform(df[[prospect_col]]) | |
| y_data = [] | |
| for i in range(len(y_scaled)): | |
| y_data.append(y_scaled[i][0]) | |
| return X,y,x_data,y_data,x_minmax,y_minmax | |
| def extend_s_curve(x_max,x_minmax,y_minmax, Kd_fit, n_fit): | |
| # # # print(x_max) | |
| x_ext_data = [x_max*1.2,x_max*1.3,x_max*1.5] | |
| # x_ext_data = [1500000,2000000,2500000] | |
| # x_ext_data = [x_max+100,x_max+200,x_max+5000] | |
| x_scaled = x_minmax.transform(pd.DataFrame(x_ext_data)) | |
| x_data = [] | |
| for i in range(len(x_scaled)): | |
| x_data.append(x_scaled[i][0]) | |
| # # # print(x_data) | |
| y_fit = hill_equation(x_data, Kd_fit, n_fit) | |
| y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1)) | |
| return x_ext_data,y_fit_inv | |
| def fit_data(spend_col,prospect_col,channel): | |
| ### getting k and n parameters | |
| temp_df = df[df[spend_col]>0] | |
| temp_df.reset_index(inplace=True) | |
| X,y,x_data,y_data,x_minmax,y_minmax = input_data(temp_df,spend_col,prospect_col) | |
| y_fit, y_fit_inv, Kd_fit, n_fit = hill_func(x_data,y_data,x_minmax,y_minmax) | |
| # # # print('k: ',Kd_fit) | |
| # # # print('n: ', n_fit) | |
| ##### extend_s_curve | |
| x_ext_data,y_fit_inv_ext= extend_s_curve(temp_df[spend_col].max(),x_minmax,y_minmax, Kd_fit, n_fit) | |
| plot_df = data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext) | |
| return plot_df | |
| plotly_data = fit_data(spend_cols[0],prospect_cols[0],channel_cols[0]) | |
| plotly_data.tail() | |
| for i in range(1,13): | |
| # # # print(i) | |
| pdf = fit_data(spend_cols[i],prospect_cols[i],channel_cols[i]) | |
| plotly_data = plotly_data.merge(pdf,on = ["Date","MAT"],how = "left") | |
| def response_curves(channel,x_modified,y_modified): | |
| # Initialize the Plotly figure | |
| fig = go.Figure() | |
| x_col = (channel+"_Spends").replace('\xa0', '') | |
| y_col = ("Fit_Data_"+channel).replace('\xa0', '') | |
| # fig.add_trace(go.Scatter( | |
| # x=plotly_data[x_col], | |
| # y=plotly_data[y_col], | |
| # mode='markers', | |
| # name=x_col.replace('_Spends', '') | |
| # )) | |
| plotly_data1 = plotly_data[plotly_data["MAT"]!="ext"] | |
| fig.add_trace(go.Scatter( | |
| x=plotly_data1.sort_values(by=x_col, ascending=True)[x_col], | |
| y=plotly_data1.sort_values(by=x_col, ascending=True)[y_col], | |
| mode='lines', | |
| marker=dict(color = 'blue'), | |
| name=x_col.replace('_Spends', '') | |
| )) | |
| dividing_parameter = len(plotly_data1[plotly_data1[x_col].isnull()==False]) | |
| print(dividing_parameter) | |
| plotly_data2 = plotly_data.copy() | |
| plotly_data2 = plotly_data[plotly_data[x_col].isnull()==False] | |
| plotly_data2 = plotly_data2[plotly_data2["MAT"]!="ext"] | |
| # .dropna(subset=[x_col]).reset_index(inplace = True) | |
| fig.add_trace(go.Scatter( | |
| x=np.array(plotly_data2[x_col].mean()), | |
| y=np.array(plotly_data2[y_col].mean()), | |
| mode='markers', | |
| marker=dict( | |
| size=13 # Adjust the size value to make the markers larger or smaller | |
| , color = '#516DA6' | |
| ), | |
| name="Current Spends" | |
| )) | |
| # print(dividing_parameter) | |
| fig.add_trace(go.Scatter( | |
| x=[x_modified/dividing_parameter], | |
| y=[y_modified/dividing_parameter], | |
| mode='markers', | |
| marker=dict( | |
| size=13 # Adjust the size value to make the markers larger or smaller | |
| , color = '#4ACAD9' | |
| ), | |
| name="Optimised Spends" | |
| )) | |
| # Update layout with titles | |
| fig.update_layout( | |
| title={ | |
| 'text': channel_name_formating(channel)+' Response Curve', | |
| 'font': { | |
| 'size': 24, | |
| 'family': 'Arial', | |
| 'color': 'black', | |
| # 'bold': True | |
| } | |
| }, | |
| # title=channel_name_formating(channel)+' Response Curve', | |
| xaxis_title='Weekly Spends', | |
| yaxis_title='Prospects' | |
| ) | |
| # Show the figure | |
| return fig | |