Spaces:
Sleeping
Sleeping
test5
Browse files- response_curves_model_quality.py +0 -244
response_curves_model_quality.py
DELETED
@@ -1,244 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
from scipy.optimize import curve_fit
|
5 |
-
from sklearn.preprocessing import MinMaxScaler
|
6 |
-
import warnings
|
7 |
-
warnings.filterwarnings("ignore")
|
8 |
-
import plotly.graph_objects as go
|
9 |
-
|
10 |
-
## reading input data
|
11 |
-
df= pd.read_csv('response_curves_input_file.csv')
|
12 |
-
df.dropna(inplace=True)
|
13 |
-
df['Date'] = pd.to_datetime(df['Date'])
|
14 |
-
df.reset_index(inplace=True)
|
15 |
-
|
16 |
-
channel_cols = [
|
17 |
-
'BroadcastTV',
|
18 |
-
'CableTV',
|
19 |
-
'Connected&OTTTV',
|
20 |
-
'DisplayProspecting',
|
21 |
-
'DisplayRetargeting',
|
22 |
-
'Video',
|
23 |
-
'SocialProspecting',
|
24 |
-
'SocialRetargeting',
|
25 |
-
'SearchBrand',
|
26 |
-
'SearchNon-brand',
|
27 |
-
'DigitalPartners',
|
28 |
-
'Audio',
|
29 |
-
'Email']
|
30 |
-
spend_cols = [
|
31 |
-
'tv_broadcast_spend',
|
32 |
-
'tv_cable_spend',
|
33 |
-
'stream_video_spend',
|
34 |
-
'disp_prospect_spend',
|
35 |
-
'disp_retarget_spend',
|
36 |
-
'olv_spend',
|
37 |
-
'social_prospect_spend',
|
38 |
-
'social_retarget_spend',
|
39 |
-
'search_brand_spend',
|
40 |
-
'search_nonbrand_spend',
|
41 |
-
'cm_spend',
|
42 |
-
'audio_spend',
|
43 |
-
'email_spend']
|
44 |
-
prospect_cols = [
|
45 |
-
'Broadcast TV_Prospects',
|
46 |
-
'Cable TV_Prospects',
|
47 |
-
'Connected & OTT TV_Prospects',
|
48 |
-
'Display Prospecting_Prospects',
|
49 |
-
'Display Retargeting_Prospects',
|
50 |
-
'Video_Prospects',
|
51 |
-
'Social Prospecting_Prospects',
|
52 |
-
'Social Retargeting_Prospects',
|
53 |
-
'Search Brand_Prospects',
|
54 |
-
'Search Non-brand_Prospects',
|
55 |
-
'Digital Partners_Prospects',
|
56 |
-
'Audio_Prospects',
|
57 |
-
'Email_Prospects']
|
58 |
-
|
59 |
-
def hill_equation(x, Kd, n):
|
60 |
-
return x**n / (Kd**n + x**n)
|
61 |
-
|
62 |
-
|
63 |
-
def hill_func(x_data,y_data,x_minmax,y_minmax):
|
64 |
-
# Fit the Hill equation to the data
|
65 |
-
initial_guess = [1, 1] # Initial guess for Kd and n
|
66 |
-
params, covariance = curve_fit(hill_equation, x_data, y_data, p0=initial_guess,maxfev = 1000)
|
67 |
-
|
68 |
-
# Extract the fitted parameters
|
69 |
-
Kd_fit, n_fit = params
|
70 |
-
|
71 |
-
|
72 |
-
# Generate y values using the fitted parameters
|
73 |
-
y_fit = hill_equation(x_data, Kd_fit, n_fit)
|
74 |
-
|
75 |
-
x_data_inv = x_minmax.inverse_transform(np.array(x_data).reshape(-1,1))
|
76 |
-
y_data_inv = y_minmax.inverse_transform(np.array(y_data).reshape(-1,1))
|
77 |
-
y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1))
|
78 |
-
|
79 |
-
# # Plot the original data and the fitted curve
|
80 |
-
# plt.scatter(x_data_inv, y_data_inv, label='Actual Data')
|
81 |
-
# plt.scatter(x_data_inv, y_fit_inv, label='Fit Data',color='red')
|
82 |
-
# # plt.line(x_data_inv, y_fit_inv, label=f'Fitted Hill Equation (Kd={Kd_fit:.2f}, n={n_fit:.2f})', color='red')
|
83 |
-
# plt.xlabel('Ligand Concentration')
|
84 |
-
# plt.ylabel('Fraction of Binding')
|
85 |
-
# plt.title('Fitting Hill Equation to Data')
|
86 |
-
# plt.legend()
|
87 |
-
# plt.show()
|
88 |
-
|
89 |
-
return y_fit,y_fit_inv,Kd_fit, n_fit
|
90 |
-
|
91 |
-
def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext):
|
92 |
-
fit_col = 'Fit_Data_'+channel
|
93 |
-
plot_df = pd.DataFrame()
|
94 |
-
|
95 |
-
plot_df[f'{channel}_Spends'] = X
|
96 |
-
|
97 |
-
plot_df['Date'] = df['Date']
|
98 |
-
plot_df['MAT'] = df['MAT']
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
y_fit_inv_v2 = []
|
103 |
-
for i in range(len(y_fit_inv)):
|
104 |
-
y_fit_inv_v2.append(y_fit_inv[i][0])
|
105 |
-
|
106 |
-
plot_df[fit_col] = y_fit_inv_v2
|
107 |
-
|
108 |
-
# adding extra data
|
109 |
-
|
110 |
-
y_fit_inv_v2_ext = []
|
111 |
-
for i in range(len(y_fit_inv_ext)):
|
112 |
-
y_fit_inv_v2_ext.append(y_fit_inv_ext[i][0])
|
113 |
-
|
114 |
-
# print(x_ext_data)
|
115 |
-
ext_df = pd.DataFrame()
|
116 |
-
ext_df[f'{channel}_Spends'] = x_ext_data
|
117 |
-
ext_df[fit_col] = y_fit_inv_v2_ext
|
118 |
-
|
119 |
-
ext_df['Date'] = [
|
120 |
-
np.datetime64('1950-01-01'),
|
121 |
-
np.datetime64('1950-06-15'),
|
122 |
-
np.datetime64('1950-12-31')
|
123 |
-
]
|
124 |
-
|
125 |
-
ext_df['MAT'] = ["ext","ext","ext"]
|
126 |
-
|
127 |
-
print(ext_df)
|
128 |
-
plot_df= plot_df.append(ext_df)
|
129 |
-
return plot_df
|
130 |
-
|
131 |
-
def input_data(df,spend_col,prospect_col):
|
132 |
-
X = np.array(df[spend_col].tolist())
|
133 |
-
y = np.array(df[prospect_col].tolist())
|
134 |
-
|
135 |
-
x_minmax = MinMaxScaler()
|
136 |
-
x_scaled = x_minmax.fit_transform(df[[spend_col]])
|
137 |
-
x_data = []
|
138 |
-
for i in range(len(x_scaled)):
|
139 |
-
x_data.append(x_scaled[i][0])
|
140 |
-
|
141 |
-
y_minmax = MinMaxScaler()
|
142 |
-
y_scaled = y_minmax.fit_transform(df[[prospect_col]])
|
143 |
-
y_data = []
|
144 |
-
for i in range(len(y_scaled)):
|
145 |
-
y_data.append(y_scaled[i][0])
|
146 |
-
|
147 |
-
return X,y,x_data,y_data,x_minmax,y_minmax
|
148 |
-
|
149 |
-
def extend_s_curve(x_max,x_minmax,y_minmax, Kd_fit, n_fit):
|
150 |
-
print(x_max)
|
151 |
-
x_ext_data = [x_max*1.2,x_max*1.3,x_max*1.5]
|
152 |
-
# x_ext_data = [1500000,2000000,2500000]
|
153 |
-
# x_ext_data = [x_max+100,x_max+200,x_max+5000]
|
154 |
-
x_scaled = x_minmax.transform(pd.DataFrame(x_ext_data))
|
155 |
-
x_data = []
|
156 |
-
for i in range(len(x_scaled)):
|
157 |
-
x_data.append(x_scaled[i][0])
|
158 |
-
|
159 |
-
print(x_data)
|
160 |
-
y_fit = hill_equation(x_data, Kd_fit, n_fit)
|
161 |
-
y_fit_inv = y_minmax.inverse_transform(np.array(y_fit).reshape(-1,1))
|
162 |
-
|
163 |
-
return x_ext_data,y_fit_inv
|
164 |
-
|
165 |
-
def fit_data(spend_col,prospect_col,channel):
|
166 |
-
### getting k and n parameters
|
167 |
-
temp_df = df[df[spend_col]>0]
|
168 |
-
temp_df.reset_index(inplace=True)
|
169 |
-
|
170 |
-
X,y,x_data,y_data,x_minmax,y_minmax = input_data(temp_df,spend_col,prospect_col)
|
171 |
-
y_fit, y_fit_inv, Kd_fit, n_fit = hill_func(x_data,y_data,x_minmax,y_minmax)
|
172 |
-
print('k: ',Kd_fit)
|
173 |
-
print('n: ', n_fit)
|
174 |
-
|
175 |
-
##### extend_s_curve
|
176 |
-
x_ext_data,y_fit_inv_ext= extend_s_curve(temp_df[spend_col].max(),x_minmax,y_minmax, Kd_fit, n_fit)
|
177 |
-
|
178 |
-
plot_df = data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext)
|
179 |
-
return plot_df
|
180 |
-
|
181 |
-
plotly_data = fit_data(spend_cols[0],prospect_cols[0],channel_cols[0])
|
182 |
-
plotly_data.tail()
|
183 |
-
|
184 |
-
for i in range(1,13):
|
185 |
-
print(i)
|
186 |
-
pdf = fit_data(spend_cols[i],prospect_cols[i],channel_cols[i])
|
187 |
-
plotly_data = plotly_data.merge(pdf,on = ["Date","MAT"],how = "left")
|
188 |
-
|
189 |
-
def response_curves(channel,x_modified,y_modified):
|
190 |
-
|
191 |
-
# Initialize the Plotly figure
|
192 |
-
fig = go.Figure()
|
193 |
-
|
194 |
-
x_col = (channel+"_Spends").replace('\xa0', '')
|
195 |
-
y_col = ("Fit_Data_"+channel).replace('\xa0', '')
|
196 |
-
|
197 |
-
# fig.add_trace(go.Scatter(
|
198 |
-
# x=plotly_data[x_col],
|
199 |
-
# y=plotly_data[y_col],
|
200 |
-
# mode='markers',
|
201 |
-
# name=x_col.replace('_Spends', '')
|
202 |
-
# ))
|
203 |
-
|
204 |
-
fig.add_trace(go.Scatter(
|
205 |
-
x=plotly_data.sort_values(by=x_col, ascending=True)[x_col],
|
206 |
-
y=plotly_data.sort_values(by=x_col, ascending=True)[y_col],
|
207 |
-
mode='lines+markers',
|
208 |
-
name=x_col.replace('_Spends', '')
|
209 |
-
))
|
210 |
-
|
211 |
-
plotly_data2 = plotly_data.copy()
|
212 |
-
# .dropna(subset=[x_col]).reset_index(inplace = True)
|
213 |
-
fig.add_trace(go.Scatter(
|
214 |
-
x=plotly_data[plotly_data2['Date'] == plotly_data2['Date'].max()][x_col],
|
215 |
-
y=plotly_data[plotly_data2['Date'] == plotly_data2['Date'].max()][y_col],
|
216 |
-
mode='markers',
|
217 |
-
marker=dict(
|
218 |
-
size=13 # Adjust the size value to make the markers larger or smaller
|
219 |
-
, color = 'green'
|
220 |
-
),
|
221 |
-
name="Current Spends"
|
222 |
-
))
|
223 |
-
|
224 |
-
fig.add_trace(go.Scatter(
|
225 |
-
x=[x_modified],
|
226 |
-
y=[y_modified],
|
227 |
-
mode='markers',
|
228 |
-
marker=dict(
|
229 |
-
size=13 # Adjust the size value to make the markers larger or smaller
|
230 |
-
, color = 'blue'
|
231 |
-
),
|
232 |
-
name="Optimised Spends"
|
233 |
-
))
|
234 |
-
|
235 |
-
# Update layout with titles
|
236 |
-
fig.update_layout(
|
237 |
-
title=channel+' Response Curve',
|
238 |
-
xaxis_title='Weekly Spends',
|
239 |
-
yaxis_title='Prospects'
|
240 |
-
)
|
241 |
-
|
242 |
-
# Show the figure
|
243 |
-
return fig
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|