Pragya Jatav commited on
Commit
7905941
·
1 Parent(s): 50dd1f0
__pycache__/classes.cpython-310.pyc CHANGED
Binary files a/__pycache__/classes.cpython-310.pyc and b/__pycache__/classes.cpython-310.pyc differ
 
classes.py CHANGED
@@ -148,6 +148,7 @@ class Channel:
148
  # dividing_rate = self.response_curve_params["num_pos_obsv"]
149
  # x = np.sum(x)
150
  # dividing_rate = 104
 
151
  Kd= self.response_curve_params["Kd"]
152
  n= self.response_curve_params["n"]
153
  x_min= self.response_curve_params["x_min"]
 
148
  # dividing_rate = self.response_curve_params["num_pos_obsv"]
149
  # x = np.sum(x)
150
  # dividing_rate = 104
151
+ dividing_rate = self.response_curve_params["num_pos_obsv"]
152
  Kd= self.response_curve_params["Kd"]
153
  n= self.response_curve_params["n"]
154
  x_min= self.response_curve_params["x_min"]
pages/2_Scenario_Planner.py CHANGED
@@ -2021,10 +2021,12 @@ if auth_status == True:
2021
 
2022
  # # # print(st.session_state["acutual_predicted"])
2023
  summary_df = pd.DataFrame(st.session_state["acutual_predicted"])
 
2024
  # st.dataframe(summary_df)
2025
  summary_df.drop_duplicates(subset="Channel_name", keep="last", inplace=True)
2026
  # st.dataframe(summary_df)
2027
 
 
2028
  summary_df_sorted = summary_df.sort_values(by="Delta", ascending=False)
2029
  summary_df_sorted["Delta_percent"] = np.round(
2030
  ((summary_df_sorted["Optimized_spend"] / summary_df_sorted["Actual_spend"]) - 1)
@@ -2039,7 +2041,12 @@ if auth_status == True:
2039
  a = (summary_df_sorted[summary_df_sorted['Channel_name']== col]).reset_index()['new_efficiency'][0]
2040
  b = (summary_df_sorted[summary_df_sorted['Channel_name']== col]).reset_index()['old_efficiency'][0]
2041
  # st.write(a)
2042
-
 
 
 
 
 
2043
  with bin_placeholder:
2044
  if a> 1:
2045
  fill_color_box = "#6bbf6b"
 
2021
 
2022
  # # # print(st.session_state["acutual_predicted"])
2023
  summary_df = pd.DataFrame(st.session_state["acutual_predicted"])
2024
+ # (pd.DataFrame(st.session_state["acutual_predicted"])).to_excel("test.xlsx")
2025
  # st.dataframe(summary_df)
2026
  summary_df.drop_duplicates(subset="Channel_name", keep="last", inplace=True)
2027
  # st.dataframe(summary_df)
2028
 
2029
+
2030
  summary_df_sorted = summary_df.sort_values(by="Delta", ascending=False)
2031
  summary_df_sorted["Delta_percent"] = np.round(
2032
  ((summary_df_sorted["Optimized_spend"] / summary_df_sorted["Actual_spend"]) - 1)
 
2041
  a = (summary_df_sorted[summary_df_sorted['Channel_name']== col]).reset_index()['new_efficiency'][0]
2042
  b = (summary_df_sorted[summary_df_sorted['Channel_name']== col]).reset_index()['old_efficiency'][0]
2043
  # st.write(a)
2044
+ # print(a)
2045
+ # print(summary_df_sorted['Actual_spend'].sum())
2046
+ # print(summary_df_sorted['Actual_spend'])
2047
+ print(col,summary_df_sorted)
2048
+ # print(summary_df_sorted['Old_sales'])
2049
+ # print(col, "old efficiency ", a)
2050
  with bin_placeholder:
2051
  if a> 1:
2052
  fill_color_box = "#6bbf6b"
response_curves_parameters.xlsx CHANGED
Binary files a/response_curves_parameters.xlsx and b/response_curves_parameters.xlsx differ
 
summary_df.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:71a736a80f9a2bced376348b2f786664c5dab270c2c8993593b71919a237acc9
3
  size 1822
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16cb01cccc8774b520c65b86e55e6f5d11f5e6b990fc3da7e81ae205af85b1ee
3
  size 1822