Spaces:
Sleeping
Sleeping
Pragya Jatav
commited on
Commit
·
7905941
1
Parent(s):
50dd1f0
m1
Browse files- __pycache__/classes.cpython-310.pyc +0 -0
- classes.py +1 -0
- pages/2_Scenario_Planner.py +8 -1
- response_curves_parameters.xlsx +0 -0
- summary_df.pkl +1 -1
__pycache__/classes.cpython-310.pyc
CHANGED
Binary files a/__pycache__/classes.cpython-310.pyc and b/__pycache__/classes.cpython-310.pyc differ
|
|
classes.py
CHANGED
@@ -148,6 +148,7 @@ class Channel:
|
|
148 |
# dividing_rate = self.response_curve_params["num_pos_obsv"]
|
149 |
# x = np.sum(x)
|
150 |
# dividing_rate = 104
|
|
|
151 |
Kd= self.response_curve_params["Kd"]
|
152 |
n= self.response_curve_params["n"]
|
153 |
x_min= self.response_curve_params["x_min"]
|
|
|
148 |
# dividing_rate = self.response_curve_params["num_pos_obsv"]
|
149 |
# x = np.sum(x)
|
150 |
# dividing_rate = 104
|
151 |
+
dividing_rate = self.response_curve_params["num_pos_obsv"]
|
152 |
Kd= self.response_curve_params["Kd"]
|
153 |
n= self.response_curve_params["n"]
|
154 |
x_min= self.response_curve_params["x_min"]
|
pages/2_Scenario_Planner.py
CHANGED
@@ -2021,10 +2021,12 @@ if auth_status == True:
|
|
2021 |
|
2022 |
# # # print(st.session_state["acutual_predicted"])
|
2023 |
summary_df = pd.DataFrame(st.session_state["acutual_predicted"])
|
|
|
2024 |
# st.dataframe(summary_df)
|
2025 |
summary_df.drop_duplicates(subset="Channel_name", keep="last", inplace=True)
|
2026 |
# st.dataframe(summary_df)
|
2027 |
|
|
|
2028 |
summary_df_sorted = summary_df.sort_values(by="Delta", ascending=False)
|
2029 |
summary_df_sorted["Delta_percent"] = np.round(
|
2030 |
((summary_df_sorted["Optimized_spend"] / summary_df_sorted["Actual_spend"]) - 1)
|
@@ -2039,7 +2041,12 @@ if auth_status == True:
|
|
2039 |
a = (summary_df_sorted[summary_df_sorted['Channel_name']== col]).reset_index()['new_efficiency'][0]
|
2040 |
b = (summary_df_sorted[summary_df_sorted['Channel_name']== col]).reset_index()['old_efficiency'][0]
|
2041 |
# st.write(a)
|
2042 |
-
|
|
|
|
|
|
|
|
|
|
|
2043 |
with bin_placeholder:
|
2044 |
if a> 1:
|
2045 |
fill_color_box = "#6bbf6b"
|
|
|
2021 |
|
2022 |
# # # print(st.session_state["acutual_predicted"])
|
2023 |
summary_df = pd.DataFrame(st.session_state["acutual_predicted"])
|
2024 |
+
# (pd.DataFrame(st.session_state["acutual_predicted"])).to_excel("test.xlsx")
|
2025 |
# st.dataframe(summary_df)
|
2026 |
summary_df.drop_duplicates(subset="Channel_name", keep="last", inplace=True)
|
2027 |
# st.dataframe(summary_df)
|
2028 |
|
2029 |
+
|
2030 |
summary_df_sorted = summary_df.sort_values(by="Delta", ascending=False)
|
2031 |
summary_df_sorted["Delta_percent"] = np.round(
|
2032 |
((summary_df_sorted["Optimized_spend"] / summary_df_sorted["Actual_spend"]) - 1)
|
|
|
2041 |
a = (summary_df_sorted[summary_df_sorted['Channel_name']== col]).reset_index()['new_efficiency'][0]
|
2042 |
b = (summary_df_sorted[summary_df_sorted['Channel_name']== col]).reset_index()['old_efficiency'][0]
|
2043 |
# st.write(a)
|
2044 |
+
# print(a)
|
2045 |
+
# print(summary_df_sorted['Actual_spend'].sum())
|
2046 |
+
# print(summary_df_sorted['Actual_spend'])
|
2047 |
+
print(col,summary_df_sorted)
|
2048 |
+
# print(summary_df_sorted['Old_sales'])
|
2049 |
+
# print(col, "old efficiency ", a)
|
2050 |
with bin_placeholder:
|
2051 |
if a> 1:
|
2052 |
fill_color_box = "#6bbf6b"
|
response_curves_parameters.xlsx
CHANGED
Binary files a/response_curves_parameters.xlsx and b/response_curves_parameters.xlsx differ
|
|
summary_df.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1822
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16cb01cccc8774b520c65b86e55e6f5d11f5e6b990fc3da7e81ae205af85b1ee
|
3 |
size 1822
|