Spaces:
Sleeping
Sleeping
Pragya Jatav
commited on
Commit
·
b3ae5e5
1
Parent(s):
1581ecc
version changes
Browse files- Streamlit_functions.py +178 -3
- __pycache__/Streamlit_functions.cpython-310.pyc +0 -0
- pages/2_Scenario_Planner.py +109 -51
- summary_df.pkl +1 -1
Streamlit_functions.py
CHANGED
|
@@ -37,6 +37,19 @@ spend_cols = ['tv_broadcast_spend',
|
|
| 37 |
'cm_spend',
|
| 38 |
'audio_spend',
|
| 39 |
'email_spend']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
metric_cols = ['tv_broadcast_grp',
|
| 41 |
'tv_cable_grp',
|
| 42 |
'stream_video_imp',
|
|
@@ -64,6 +77,20 @@ channels = [
|
|
| 64 |
'DIGITAL PARTNERS',
|
| 65 |
'AUDIO',
|
| 66 |
'EMAIL']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
contribution_cols = [
|
| 68 |
'Broadcast TV_Prospects',
|
| 69 |
'Cable TV_Prospects',
|
|
@@ -877,14 +904,162 @@ def scenario_spend_forecasting(delta_df,start_date,end_date):
|
|
| 877 |
|
| 878 |
df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner")
|
| 879 |
df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer")
|
| 880 |
-
df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).
|
|
|
|
|
|
|
| 881 |
df_modified2.index = df_modified2["Channels"]
|
| 882 |
-
df_modified2["Spend Change"] = df_modified2["Delta_percent"]
|
| 883 |
-
df_modified2["
|
|
|
|
| 884 |
df_modified3 = df_modified2[["Last Year Spends","Forecasted Spends","Spend Change"]].transpose()
|
| 885 |
# df_modified2["forecasted_spends"] =
|
| 886 |
# # df_modified = delta_percent
|
| 887 |
# # df_modified["Optimised Spends"] = df_modified["Current Spends"]*
|
|
|
|
| 888 |
return df_modified3
|
| 889 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 890 |
|
|
|
|
| 37 |
'cm_spend',
|
| 38 |
'audio_spend',
|
| 39 |
'email_spend']
|
| 40 |
+
spend_cols2 = ['tv_broadcast_spend',
|
| 41 |
+
'tv_cable_spend',
|
| 42 |
+
'stream_video_spend',
|
| 43 |
+
'olv_spend',
|
| 44 |
+
'disp_prospect_spend',
|
| 45 |
+
'disp_retarget_spend',
|
| 46 |
+
'social_prospect_spend',
|
| 47 |
+
'social_retarget_spend',
|
| 48 |
+
'search_brand_spend',
|
| 49 |
+
'search_nonbrand_spend',
|
| 50 |
+
'cm_spend',
|
| 51 |
+
'audio_spend',
|
| 52 |
+
'email_spend', 'Date']
|
| 53 |
metric_cols = ['tv_broadcast_grp',
|
| 54 |
'tv_cable_grp',
|
| 55 |
'stream_video_imp',
|
|
|
|
| 77 |
'DIGITAL PARTNERS',
|
| 78 |
'AUDIO',
|
| 79 |
'EMAIL']
|
| 80 |
+
channels2 = [
|
| 81 |
+
'BROADCAST TV',
|
| 82 |
+
'CABLE TV',
|
| 83 |
+
'CONNECTED & OTT TV',
|
| 84 |
+
'VIDEO',
|
| 85 |
+
'DISPLAY PROSPECTING',
|
| 86 |
+
'DISPLAY RETARGETING',
|
| 87 |
+
'SOCIAL PROSPECTING',
|
| 88 |
+
'SOCIAL RETARGETING',
|
| 89 |
+
'SEARCH BRAND',
|
| 90 |
+
'SEARCH NON-BRAND',
|
| 91 |
+
'DIGITAL PARTNERS',
|
| 92 |
+
'AUDIO',
|
| 93 |
+
'EMAIL','Date']
|
| 94 |
contribution_cols = [
|
| 95 |
'Broadcast TV_Prospects',
|
| 96 |
'Cable TV_Prospects',
|
|
|
|
| 904 |
|
| 905 |
df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner")
|
| 906 |
df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer")
|
| 907 |
+
# df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).astype(int)
|
| 908 |
+
df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).astype(int)
|
| 909 |
+
|
| 910 |
df_modified2.index = df_modified2["Channels"]
|
| 911 |
+
df_modified2["Spend Change"] = df_modified2["Delta_percent"].astype(int)
|
| 912 |
+
# df_modified2["Forecasted Spends"] = df_modified2["Forecasted Spends"].astype(int)
|
| 913 |
+
df_modified2["Last Year Spends"] = df_modified2["last_year_spends"].astype(int)
|
| 914 |
df_modified3 = df_modified2[["Last Year Spends","Forecasted Spends","Spend Change"]].transpose()
|
| 915 |
# df_modified2["forecasted_spends"] =
|
| 916 |
# # df_modified = delta_percent
|
| 917 |
# # df_modified["Optimised Spends"] = df_modified["Current Spends"]*
|
| 918 |
+
|
| 919 |
return df_modified3
|
| 920 |
|
| 921 |
+
def scenario_spend_forecasting2(delta_df,start_date,end_date):
|
| 922 |
+
|
| 923 |
+
key_df = pd.DataFrame()
|
| 924 |
+
key_df["Channel_name"] = ["Email",
|
| 925 |
+
"DisplayRetargeting",
|
| 926 |
+
"\xa0Video",
|
| 927 |
+
"BroadcastTV",
|
| 928 |
+
"SocialRetargeting",
|
| 929 |
+
"Connected&OTTTV",
|
| 930 |
+
"SearchBrand",
|
| 931 |
+
"Audio",
|
| 932 |
+
"SocialProspecting",
|
| 933 |
+
"CableTV",
|
| 934 |
+
"DisplayProspecting",
|
| 935 |
+
"SearchNon-brand",
|
| 936 |
+
"DigitalPartners"]
|
| 937 |
+
key_df["Channels"] = [
|
| 938 |
+
"EMAIL",
|
| 939 |
+
"DISPLAY RETARGETING",
|
| 940 |
+
"VIDEO",
|
| 941 |
+
"BROADCAST TV",
|
| 942 |
+
"SOCIAL RETARGETING",
|
| 943 |
+
"CONNECTED & OTT TV",
|
| 944 |
+
"SEARCH BRAND",
|
| 945 |
+
"AUDIO",
|
| 946 |
+
"SOCIAL PROSPECTING",
|
| 947 |
+
"CABLE TV",
|
| 948 |
+
"DISPLAY PROSPECTING",
|
| 949 |
+
"SEARCH NON-BRAND",
|
| 950 |
+
"DIGITAL PARTNERS"
|
| 951 |
+
]
|
| 952 |
+
|
| 953 |
+
import math
|
| 954 |
+
start_date = pd.to_datetime(start_date)
|
| 955 |
+
end_date = pd.to_datetime(end_date)
|
| 956 |
+
|
| 957 |
+
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
|
| 958 |
+
cur_data = cur_data[spend_cols2]
|
| 959 |
+
cur_data.columns = channels2
|
| 960 |
+
|
| 961 |
+
cur_data["Date2"] = cur_data["Date"]+ pd.Timedelta(days=5)
|
| 962 |
+
# cur_data["Date"] = delta_df["Date"]
|
| 963 |
+
cur_data["Date_diff"] = (cur_data["Date"]-start_date).dt.days
|
| 964 |
+
cur_data["Date_diff_months"] =(np.ceil(cur_data["Date_diff"] / 30))
|
| 965 |
+
|
| 966 |
+
data2 = cur_data.groupby("Date_diff_months").agg({
|
| 967 |
+
'Date':"min",
|
| 968 |
+
"Date2":"max"
|
| 969 |
+
}).reset_index()
|
| 970 |
+
|
| 971 |
+
|
| 972 |
+
data1 = cur_data.groupby("Date_diff_months").agg({
|
| 973 |
+
'BROADCAST TV':"sum",
|
| 974 |
+
'CABLE TV':"sum",
|
| 975 |
+
'CONNECTED & OTT TV':"sum",
|
| 976 |
+
'VIDEO':"sum",
|
| 977 |
+
'DISPLAY PROSPECTING':"sum",
|
| 978 |
+
'DISPLAY RETARGETING':"sum",
|
| 979 |
+
'SOCIAL PROSPECTING':"sum",
|
| 980 |
+
'SOCIAL RETARGETING':"sum",
|
| 981 |
+
'SEARCH BRAND':"sum",
|
| 982 |
+
'SEARCH NON-BRAND':"sum",
|
| 983 |
+
'DIGITAL PARTNERS':"sum",
|
| 984 |
+
'AUDIO':"sum",
|
| 985 |
+
'EMAIL':"sum"
|
| 986 |
+
}).transpose()
|
| 987 |
+
|
| 988 |
+
months_list = cur_data["Date_diff_months"].unique()
|
| 989 |
+
data1["Channels"]=data1.index
|
| 990 |
+
df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner")
|
| 991 |
+
df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer")
|
| 992 |
+
df_modified2.index = df_modified2["Channels"]
|
| 993 |
+
|
| 994 |
+
data3 = pd.DataFrame(index = data1.index)
|
| 995 |
+
for c in months_list:
|
| 996 |
+
data3[c] = df_modified2[c]*(1+df_modified2["Delta_percent"]/100)
|
| 997 |
+
|
| 998 |
+
df1 = df_modified2[months_list].transpose()
|
| 999 |
+
df1["Metrics"] = "Last Year Spends"
|
| 1000 |
+
|
| 1001 |
+
data3 = data3.transpose()
|
| 1002 |
+
data3 = data3.astype(int)
|
| 1003 |
+
data2.index = data2["Date_diff_months"]
|
| 1004 |
+
data2.columns = ["Date_diff_months","start date","end date"]
|
| 1005 |
+
data3["start date"] = data2["start date"].dt.date
|
| 1006 |
+
data3["end date"] = data2["end date"].dt.date
|
| 1007 |
+
data3["Month"] = data3.index
|
| 1008 |
+
cols = ["Month","start date","end date",'BROADCAST TV',
|
| 1009 |
+
'CABLE TV',
|
| 1010 |
+
'CONNECTED & OTT TV',
|
| 1011 |
+
'VIDEO',
|
| 1012 |
+
'DISPLAY PROSPECTING',
|
| 1013 |
+
'DISPLAY RETARGETING',
|
| 1014 |
+
'SOCIAL PROSPECTING',
|
| 1015 |
+
'SOCIAL RETARGETING',
|
| 1016 |
+
'SEARCH BRAND',
|
| 1017 |
+
'SEARCH NON-BRAND',
|
| 1018 |
+
'DIGITAL PARTNERS',
|
| 1019 |
+
'AUDIO',
|
| 1020 |
+
'EMAIL']
|
| 1021 |
+
# data3["Metrics"] = "Forecasted Year Spends"
|
| 1022 |
+
|
| 1023 |
+
# df2 = df_modified2["Delta_percent"].transpose()
|
| 1024 |
+
# df2["Metrics"] = "Percent Change"
|
| 1025 |
+
# df_modified2["last_year_spends"] =
|
| 1026 |
+
|
| 1027 |
+
# data3 = pd.DataFrame(index = data1.index)
|
| 1028 |
+
# for c in months_list:
|
| 1029 |
+
# for idx in data3.index:
|
| 1030 |
+
# data3[c][idx] = df_modified2[c][idx]*df_modified2["Delta_percent"]
|
| 1031 |
+
|
| 1032 |
+
|
| 1033 |
+
# data1 = data1[['Date',"Date2",'BROADCAST TV',
|
| 1034 |
+
# 'CABLE TV',
|
| 1035 |
+
# 'CONNECTED & OTT TV',
|
| 1036 |
+
# 'VIDEO','DISPLAY PROSPECTING',
|
| 1037 |
+
# 'DISPLAY RETARGETING',
|
| 1038 |
+
# 'SOCIAL PROSPECTING',
|
| 1039 |
+
# 'SOCIAL RETARGETING',
|
| 1040 |
+
# 'SEARCH BRAND',
|
| 1041 |
+
# 'SEARCH NON-BRAND',
|
| 1042 |
+
# 'DIGITAL PARTNERS',
|
| 1043 |
+
# 'AUDIO',
|
| 1044 |
+
# 'EMAIL',
|
| 1045 |
+
# ]]
|
| 1046 |
+
# data1[channels] = data1[channels].astype(int)
|
| 1047 |
+
# data1["Date"] = data1["Date"].dt.date
|
| 1048 |
+
# data1["Date2"] = data1["Date2"].dt.date
|
| 1049 |
+
# # pd.DataFrame(cur_data[channels].groupby("Date_diff_months").sum().transpose()).reset_index()
|
| 1050 |
+
# # # data1.columns = ["Channels","last_year_spends"]
|
| 1051 |
+
|
| 1052 |
+
# # df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner")
|
| 1053 |
+
# # df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer")
|
| 1054 |
+
# # df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).apply(numerize)
|
| 1055 |
+
# # df_modified2.index = df_modified2["Channels"]
|
| 1056 |
+
# # df_modified2["Spend Change"] = df_modified2["Delta_percent"]
|
| 1057 |
+
# # df_modified2["Last Year Spends"] = df_modified2["last_year_spends"].apply(numerize)
|
| 1058 |
+
# # df_modified3 = df_modified2[["Last Year Spends","Forecasted Spends","Spend Change"]].transpose()
|
| 1059 |
+
# # # df_modified2["forecasted_spends"] =
|
| 1060 |
+
# # # # df_modified = delta_percent
|
| 1061 |
+
# # # # df_modified["Optimised Spends"] = df_modified["Current Spends"]*
|
| 1062 |
+
# # spend_cols1 = pd.DataFrame(spend_cols)[0].to_list()
|
| 1063 |
+
|
| 1064 |
+
return data3[cols]
|
| 1065 |
|
__pycache__/Streamlit_functions.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/Streamlit_functions.cpython-310.pyc and b/__pycache__/Streamlit_functions.cpython-310.pyc differ
|
|
|
pages/2_Scenario_Planner.py
CHANGED
|
@@ -164,18 +164,18 @@ def update_sales():
|
|
| 164 |
)
|
| 165 |
|
| 166 |
|
| 167 |
-
def update_all_spends_abs_slider():
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
|
| 178 |
-
|
| 179 |
|
| 180 |
|
| 181 |
# def update_all_spends_abs_slider():
|
|
@@ -1351,7 +1351,7 @@ if auth_status == True:
|
|
| 1351 |
# )
|
| 1352 |
|
| 1353 |
with st.expander("Channel Spends Simulator", expanded=True):
|
| 1354 |
-
_columns1 = st.columns((
|
| 1355 |
with _columns1[0]:
|
| 1356 |
optimization_selection = st.selectbox(
|
| 1357 |
"Optimize", options=["Media Spends", target], key="optimization_key"
|
|
@@ -1416,6 +1416,23 @@ if auth_status == True:
|
|
| 1416 |
)
|
| 1417 |
|
| 1418 |
with _columns2[2]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1419 |
min_value = round(_scenario.actual_total_spends * 0.5)
|
| 1420 |
max_value = round(_scenario.actual_total_spends * 1.5)
|
| 1421 |
st.session_state["total_spends_change_abs_slider_options"] = [
|
|
@@ -1449,16 +1466,19 @@ if auth_status == True:
|
|
| 1449 |
on_change=update_sales,
|
| 1450 |
)
|
| 1451 |
with _columns2[2]:
|
| 1452 |
-
st.
|
| 1453 |
-
"Overall Lower Bound"
|
|
|
|
| 1454 |
)
|
| 1455 |
with _columns2[3]:
|
| 1456 |
-
|
| 1457 |
-
|
|
|
|
|
|
|
| 1458 |
)
|
| 1459 |
|
| 1460 |
-
min_value = round(_scenario.actual_total_sales *
|
| 1461 |
-
max_value = round(_scenario.actual_total_sales * 1
|
| 1462 |
# st.write(min_value)
|
| 1463 |
# st.write(max_value)
|
| 1464 |
# for value in range(min_value, max_value + 1, int(100)):
|
|
@@ -1503,7 +1523,7 @@ if auth_status == True:
|
|
| 1503 |
)
|
| 1504 |
|
| 1505 |
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
|
| 1506 |
-
_columns = st.columns((
|
| 1507 |
with _columns[0]:
|
| 1508 |
generate_spending_header("Channel")
|
| 1509 |
with _columns[1]:
|
|
@@ -1536,7 +1556,7 @@ if auth_status == True:
|
|
| 1536 |
# st.write(st.session_state["scenario"].channels[channel_name].modified_total_spends)
|
| 1537 |
# st.write(st.session_state["scenario"].channels[channel_name].bounds)
|
| 1538 |
# st.write(st.session_state["scenario"].channels[channel_name].channel_bounds_min)
|
| 1539 |
-
_columns = st.columns((
|
| 1540 |
with _columns[0]:
|
| 1541 |
st.write(channel_name_formating(channel_name))
|
| 1542 |
bin_placeholder = st.container()
|
|
@@ -1554,11 +1574,6 @@ if auth_status == True:
|
|
| 1554 |
# st.write(max_value)
|
| 1555 |
##print(st.session_state[channel_name])
|
| 1556 |
|
| 1557 |
-
|
| 1558 |
-
|
| 1559 |
-
|
| 1560 |
-
|
| 1561 |
-
|
| 1562 |
_columns_min = st.columns(2)
|
| 1563 |
with _columns_min[0]:
|
| 1564 |
spend_input = st.text_input(
|
|
@@ -1622,14 +1637,37 @@ if auth_status == True:
|
|
| 1622 |
current_channel_spends
|
| 1623 |
)
|
| 1624 |
st.session_state["acutual_predicted"]["Delta"].append(spends_delta)
|
| 1625 |
-
|
| 1626 |
-
|
| 1627 |
-
|
| 1628 |
-
|
| 1629 |
-
|
| 1630 |
-
|
| 1631 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1632 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1633 |
with _columns[3]:
|
| 1634 |
# sales
|
| 1635 |
current_channel_sales = float(_channel_class.modified_total_sales)
|
|
@@ -1638,13 +1676,38 @@ if auth_status == True:
|
|
| 1638 |
st.session_state["acutual_predicted"]["Old_sales"].append(actual_channel_sales)
|
| 1639 |
st.session_state["acutual_predicted"]["New_sales"].append(current_channel_sales)
|
| 1640 |
#st.write(actual_channel_sales)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1641 |
|
| 1642 |
-
|
| 1643 |
-
|
| 1644 |
-
|
| 1645 |
-
|
| 1646 |
-
|
| 1647 |
-
|
|
|
|
|
|
|
| 1648 |
|
| 1649 |
with _columns[4]:
|
| 1650 |
|
|
@@ -1866,7 +1929,10 @@ if auth_status == True:
|
|
| 1866 |
end_date1 = current_date + relativedelta(months = 12)- relativedelta(years=1)
|
| 1867 |
|
| 1868 |
forecasted_table_df = sf.scenario_spend_forecasting(summary_df_sorted,start_date1,end_date1)
|
| 1869 |
-
st.
|
|
|
|
|
|
|
|
|
|
| 1870 |
|
| 1871 |
st.markdown("""
|
| 1872 |
<style>
|
|
@@ -1880,24 +1946,16 @@ if auth_status == True:
|
|
| 1880 |
</style>
|
| 1881 |
""", unsafe_allow_html=True)
|
| 1882 |
|
| 1883 |
-
def save_report_forecast(forecasted_table_df):
|
| 1884 |
from io import BytesIO
|
| 1885 |
-
# excel_file_path = filename+ '.xlsx'
|
| 1886 |
-
# forecasted_table_df.to_excel(excel_file_path, index=False)
|
| 1887 |
-
|
| 1888 |
# Convert the DataFrame to an Excel file in memory
|
| 1889 |
excel_file = BytesIO()
|
| 1890 |
with pd.ExcelWriter(excel_file, engine='openpyxl') as writer:
|
| 1891 |
-
forecasted_table_df.to_excel(writer, index=
|
| 1892 |
-
|
| 1893 |
# Seek to the beginning of the BytesIO buffer
|
| 1894 |
excel_file.seek(0)
|
| 1895 |
return excel_file
|
| 1896 |
-
# message_container = st.empty()
|
| 1897 |
-
# with message_container:
|
| 1898 |
-
# st.write(f'<div class="yellow-container">{"Report Saved!"}</div>', unsafe_allow_html=True)
|
| 1899 |
-
# time.sleep(5)
|
| 1900 |
-
# st.empty()
|
| 1901 |
|
| 1902 |
st.subheader("Download Report")
|
| 1903 |
report_name = st.text_input(
|
|
@@ -1910,7 +1968,7 @@ if auth_status == True:
|
|
| 1910 |
|
| 1911 |
st.download_button(
|
| 1912 |
"Download Report",
|
| 1913 |
-
data = save_report_forecast(forecasted_table_df),
|
| 1914 |
file_name = report_name+".xlsx",
|
| 1915 |
mime="application/vnd.ms-excel",
|
| 1916 |
# on_click=lambda: save_report_forecast(forecasted_table_df,report_name),
|
|
|
|
| 164 |
)
|
| 165 |
|
| 166 |
|
| 167 |
+
# def update_all_spends_abs_slider():
|
| 168 |
+
# actual_spends = _scenario.actual_total_spends
|
| 169 |
+
# if validate_input(st.session_state["total_spends_change_abs_slider"]):
|
| 170 |
+
# modified_spends = extract_number_for_string(
|
| 171 |
+
# st.session_state["total_spends_change_abs_slider"]
|
| 172 |
+
# )
|
| 173 |
+
# st.session_state["total_spends_change"] = round(
|
| 174 |
+
# ((modified_spends / actual_spends) - 1) * 100
|
| 175 |
+
# )
|
| 176 |
+
# st.session_state["total_spends_change_abs"] = numerize(modified_spends, 1)
|
| 177 |
|
| 178 |
+
# update_all_spends()
|
| 179 |
|
| 180 |
|
| 181 |
# def update_all_spends_abs_slider():
|
|
|
|
| 1351 |
# )
|
| 1352 |
|
| 1353 |
with st.expander("Channel Spends Simulator", expanded=True):
|
| 1354 |
+
_columns1 = st.columns((1.5, 1.5, 1,1))
|
| 1355 |
with _columns1[0]:
|
| 1356 |
optimization_selection = st.selectbox(
|
| 1357 |
"Optimize", options=["Media Spends", target], key="optimization_key"
|
|
|
|
| 1416 |
)
|
| 1417 |
|
| 1418 |
with _columns2[2]:
|
| 1419 |
+
overall_lower_bound = st.number_input(
|
| 1420 |
+
"Overall Lower Bound for Spends",
|
| 1421 |
+
value = 50
|
| 1422 |
+
# key = overall_lower_bound,
|
| 1423 |
+
# on_change=partial(update_data_bound_min_overall)
|
| 1424 |
+
)
|
| 1425 |
+
with _columns2[3]:
|
| 1426 |
+
overall_upper_bound = st.number_input(
|
| 1427 |
+
"Overall Upper Bound for Spends",
|
| 1428 |
+
value = 50
|
| 1429 |
+
# key = overall_upper_bound,
|
| 1430 |
+
# on_change=partial(update_data_bound_max_overall)
|
| 1431 |
+
)
|
| 1432 |
+
|
| 1433 |
+
|
| 1434 |
+
|
| 1435 |
+
|
| 1436 |
min_value = round(_scenario.actual_total_spends * 0.5)
|
| 1437 |
max_value = round(_scenario.actual_total_spends * 1.5)
|
| 1438 |
st.session_state["total_spends_change_abs_slider_options"] = [
|
|
|
|
| 1466 |
on_change=update_sales,
|
| 1467 |
)
|
| 1468 |
with _columns2[2]:
|
| 1469 |
+
overall_lower_bound = st.number_input(
|
| 1470 |
+
"Overall Lower Bound for Spends",
|
| 1471 |
+
value = 50
|
| 1472 |
)
|
| 1473 |
with _columns2[3]:
|
| 1474 |
+
|
| 1475 |
+
overall_upper_bound = st.number_input(
|
| 1476 |
+
"Overall Upper Bound for Spends",
|
| 1477 |
+
value = 50
|
| 1478 |
)
|
| 1479 |
|
| 1480 |
+
min_value = round(_scenario.actual_total_sales * (1-overall_lower_bound/100))
|
| 1481 |
+
max_value = round(_scenario.actual_total_sales * (1+overall_upper_bound/100))
|
| 1482 |
# st.write(min_value)
|
| 1483 |
# st.write(max_value)
|
| 1484 |
# for value in range(min_value, max_value + 1, int(100)):
|
|
|
|
| 1523 |
)
|
| 1524 |
|
| 1525 |
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
|
| 1526 |
+
_columns = st.columns((1.5,2.5,2,2, 1))
|
| 1527 |
with _columns[0]:
|
| 1528 |
generate_spending_header("Channel")
|
| 1529 |
with _columns[1]:
|
|
|
|
| 1556 |
# st.write(st.session_state["scenario"].channels[channel_name].modified_total_spends)
|
| 1557 |
# st.write(st.session_state["scenario"].channels[channel_name].bounds)
|
| 1558 |
# st.write(st.session_state["scenario"].channels[channel_name].channel_bounds_min)
|
| 1559 |
+
_columns = st.columns((1.5,2.5,2,2, 1))
|
| 1560 |
with _columns[0]:
|
| 1561 |
st.write(channel_name_formating(channel_name))
|
| 1562 |
bin_placeholder = st.container()
|
|
|
|
| 1574 |
# st.write(max_value)
|
| 1575 |
##print(st.session_state[channel_name])
|
| 1576 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1577 |
_columns_min = st.columns(2)
|
| 1578 |
with _columns_min[0]:
|
| 1579 |
spend_input = st.text_input(
|
|
|
|
| 1637 |
current_channel_spends
|
| 1638 |
)
|
| 1639 |
st.session_state["acutual_predicted"]["Delta"].append(spends_delta)
|
| 1640 |
+
_spend_cols = st.columns(2)
|
| 1641 |
+
with _spend_cols[0]:
|
| 1642 |
+
st.metric(
|
| 1643 |
+
label="Actual Spends",
|
| 1644 |
+
value=format_numbers(actual_channel_spends),
|
| 1645 |
+
# delta=numerize(spends_delta, 1),
|
| 1646 |
+
# label_visibility="collapsed",
|
| 1647 |
+
)
|
| 1648 |
+
|
| 1649 |
+
st.metric(
|
| 1650 |
+
label="Change",
|
| 1651 |
+
value= format_numbers_f(spends_delta),
|
| 1652 |
+
delta=numerize(spends_delta, 1),
|
| 1653 |
+
# label_visibility="collapsed",
|
| 1654 |
+
)
|
| 1655 |
+
with _spend_cols[1]:
|
| 1656 |
+
st.metric(
|
| 1657 |
+
label="Simulated Spends",
|
| 1658 |
+
value=format_numbers(current_channel_spends),
|
| 1659 |
+
# delta=numerize(spends_delta, 1),
|
| 1660 |
+
# label_visibility="collapsed",
|
| 1661 |
+
)
|
| 1662 |
|
| 1663 |
+
st.metric(
|
| 1664 |
+
label="Percent Change",
|
| 1665 |
+
value= numerize(( spends_delta/actual_channel_spends)*100,0) +"%",
|
| 1666 |
+
delta=numerize(spends_delta, 1),
|
| 1667 |
+
# label_visibility="collapsed",
|
| 1668 |
+
)
|
| 1669 |
+
|
| 1670 |
+
|
| 1671 |
with _columns[3]:
|
| 1672 |
# sales
|
| 1673 |
current_channel_sales = float(_channel_class.modified_total_sales)
|
|
|
|
| 1676 |
st.session_state["acutual_predicted"]["Old_sales"].append(actual_channel_sales)
|
| 1677 |
st.session_state["acutual_predicted"]["New_sales"].append(current_channel_sales)
|
| 1678 |
#st.write(actual_channel_sales)
|
| 1679 |
+
|
| 1680 |
+
_prospect_cols = st.columns(2)
|
| 1681 |
+
with _prospect_cols[0]:
|
| 1682 |
+
st.metric(
|
| 1683 |
+
# target,
|
| 1684 |
+
label="Actual Prospects",
|
| 1685 |
+
value= format_numbers_f(actual_channel_sales),
|
| 1686 |
+
# delta=numerize(sales_delta, 1),
|
| 1687 |
+
# label_visibility="collapsed",
|
| 1688 |
+
)
|
| 1689 |
+
st.metric(
|
| 1690 |
+
label="Change",
|
| 1691 |
+
value= format_numbers_f(_channel_class.delta_sales),
|
| 1692 |
+
delta=numerize(sales_delta, 1),
|
| 1693 |
+
# label_visibility="collapsed",
|
| 1694 |
+
)
|
| 1695 |
+
with _prospect_cols[1]:
|
| 1696 |
+
st.metric(
|
| 1697 |
+
label="Simulated Prospects",
|
| 1698 |
+
value= format_numbers_f(current_channel_sales),
|
| 1699 |
+
# delta=numerize(sales_delta, 1),
|
| 1700 |
+
# label_visibility="collapsed",
|
| 1701 |
+
)
|
| 1702 |
|
| 1703 |
+
st.metric(
|
| 1704 |
+
label="Percent Change",
|
| 1705 |
+
value= numerize((_channel_class.delta_sales/actual_channel_sales)*100,0) +"%",
|
| 1706 |
+
delta=numerize(sales_delta, 1),
|
| 1707 |
+
# label_visibility="collapsed",
|
| 1708 |
+
)
|
| 1709 |
+
|
| 1710 |
+
|
| 1711 |
|
| 1712 |
with _columns[4]:
|
| 1713 |
|
|
|
|
| 1929 |
end_date1 = current_date + relativedelta(months = 12)- relativedelta(years=1)
|
| 1930 |
|
| 1931 |
forecasted_table_df = sf.scenario_spend_forecasting(summary_df_sorted,start_date1,end_date1)
|
| 1932 |
+
st.dataframe(forecasted_table_df)
|
| 1933 |
+
|
| 1934 |
+
forecasted_table_df2 = sf.scenario_spend_forecasting2(summary_df_sorted,start_date1,end_date1)
|
| 1935 |
+
st.dataframe(forecasted_table_df2)
|
| 1936 |
|
| 1937 |
st.markdown("""
|
| 1938 |
<style>
|
|
|
|
| 1946 |
</style>
|
| 1947 |
""", unsafe_allow_html=True)
|
| 1948 |
|
| 1949 |
+
def save_report_forecast(forecasted_table_df,forecasted_table_df2):
|
| 1950 |
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
| 1951 |
# Convert the DataFrame to an Excel file in memory
|
| 1952 |
excel_file = BytesIO()
|
| 1953 |
with pd.ExcelWriter(excel_file, engine='openpyxl') as writer:
|
| 1954 |
+
forecasted_table_df.to_excel(writer, index=True, sheet_name='Forecasted Spends')
|
| 1955 |
+
forecasted_table_df2.to_excel(writer, index=False, sheet_name='Monthly Breakdown')
|
| 1956 |
# Seek to the beginning of the BytesIO buffer
|
| 1957 |
excel_file.seek(0)
|
| 1958 |
return excel_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1959 |
|
| 1960 |
st.subheader("Download Report")
|
| 1961 |
report_name = st.text_input(
|
|
|
|
| 1968 |
|
| 1969 |
st.download_button(
|
| 1970 |
"Download Report",
|
| 1971 |
+
data = save_report_forecast(forecasted_table_df,forecasted_table_df2),
|
| 1972 |
file_name = report_name+".xlsx",
|
| 1973 |
mime="application/vnd.ms-excel",
|
| 1974 |
# on_click=lambda: save_report_forecast(forecasted_table_df,report_name),
|
summary_df.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1822
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2cdad2e46bd5810d3a714d9ef98b7644d6f5cdd61a62b160d3a1dd48b8bf9aec
|
| 3 |
size 1822
|