Spaces:
Sleeping
Sleeping
File size: 33,214 Bytes
3b48627 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
'''
MMO Build Sprint 3
additions : adding more variables to session state for saved model : random effect, predicted train & test
MMO Build Sprint 4
additions : ability to run models for different response metrics
'''
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from Eda_functions import format_numbers
import numpy as np
import pickle
from st_aggrid import AgGrid
from st_aggrid import GridOptionsBuilder, GridUpdateMode
from utilities import set_header, load_local_css
from st_aggrid import GridOptionsBuilder
import time
import itertools
import statsmodels.api as sm
import numpy as npc
import re
import itertools
from sklearn.metrics import mean_absolute_error, r2_score, mean_absolute_percentage_error
from sklearn.preprocessing import MinMaxScaler
import os
import matplotlib.pyplot as plt
from statsmodels.stats.outliers_influence import variance_inflation_factor
st.set_option('deprecation.showPyplotGlobalUse', False)
import statsmodels.api as sm
import statsmodels.formula.api as smf
from datetime import datetime
import seaborn as sns
from Data_prep_functions import *
@st.cache_resource(show_spinner=False)
def save_to_pickle(file_path, final_df):
# Open the file in write-binary mode and dump the objects
with open(file_path, "wb") as f:
pickle.dump({"final_df_transformed": final_df}, f)
def get_random_effects(media_data, panel_col, mdf):
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
for i, market in enumerate(media_data[panel_col].unique()):
print(i, end='\r')
intercept = mdf.random_effects[market].values[0]
random_eff_df.loc[i, 'random_effect'] = intercept
random_eff_df.loc[i, panel_col] = market
return random_eff_df
def mdf_predict(X_df, mdf, random_eff_df):
X = X_df.copy()
X['fixed_effect'] = mdf.predict(X)
X = pd.merge(X, random_eff_df, on=panel_col, how='left')
X['pred'] = X['fixed_effect'] + X['random_effect']
# X.to_csv('Test/megred_df.csv',index=False)
X.drop(columns=['fixed_effect', 'random_effect'], inplace=True)
return X['pred']
st.set_page_config(
page_title="Model Build",
page_icon=":shark:",
layout="wide",
initial_sidebar_state='collapsed'
)
load_local_css('styles.css')
set_header()
st.header(pd.__version__)
st.title('1. Build Your Model')
with open("data_import.pkl", "rb") as f:
data = pickle.load(f)
st.session_state['bin_dict'] = data["bin_dict"]
#st.write(data["bin_dict"])
with open("final_df_transformed.pkl", "rb") as f:
data = pickle.load(f)
# Accessing the loaded objects
media_data = data["final_df_transformed"]
# Sprint4 - available response metrics is a list of all reponse metrics in the data
## these will be put in a drop down
st.session_state['media_data']=media_data
if 'available_response_metrics' not in st.session_state:
# st.session_state['available_response_metrics'] = ['Total Approved Accounts - Revenue',
# 'Total Approved Accounts - Appsflyer',
# 'Account Requests - Appsflyer',
# 'App Installs - Appsflyer']
st.session_state['available_response_metrics']=st.session_state['bin_dict']["Response Metrics"]
# Sprint4
if "is_tuned_model" not in st.session_state:
st.session_state["is_tuned_model"] = {}
for resp_metric in st.session_state['available_response_metrics'] :
resp_metric=resp_metric.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
st.session_state["is_tuned_model"][resp_metric] = False
# Sprint4 - used_response_metrics is a list of resp metrics for which user has created & saved a model
if 'used_response_metrics' not in st.session_state:
st.session_state['used_response_metrics'] = []
# Sprint4 - saved_model_names
if 'saved_model_names' not in st.session_state:
st.session_state['saved_model_names'] = []
if 'Model' not in st.session_state:
if "session_state_saved" in st.session_state["project_dct"]["model_build"].keys() and \
st.session_state["project_dct"]["model_build"]['session_state_saved'] is not None and \
'Model' in st.session_state["project_dct"]["model_build"]["session_state_saved"].keys():
st.session_state['Model'] = st.session_state["project_dct"]["model_build"]["session_state_saved"]['Model']
else:
st.session_state['Model'] = {}
# Sprint4 - select a response metric
default_target_idx = st.session_state["project_dct"]["model_build"].get("sel_target_col", None) if st.session_state["project_dct"]["model_build"].get("sel_target_col", None) is not None else st.session_state['available_response_metrics'][0]
sel_target_col = st.selectbox("Select the response metric",
st.session_state['available_response_metrics'],
index=st.session_state['available_response_metrics'].index(default_target_idx))
# , on_change=reset_save())
st.session_state["project_dct"]["model_build"]["sel_target_col"] = sel_target_col
target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
new_name_dct={col:col.lower().replace('.','_').lower().replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in media_data.columns}
media_data.columns=[col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in media_data.columns]
panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1']][0]# set the panel column
date_col = 'date'
is_panel = True if len(panel_col)>0 else False
if 'is_panel' not in st.session_state:
st.session_state['is_panel']=is_panel
if is_panel :
media_data.sort_values([date_col, panel_col], inplace=True)
else :
media_data.sort_values(date_col, inplace=True)
media_data.reset_index(drop=True, inplace=True)
date = media_data[date_col]
st.session_state['date'] = date
y = media_data[target_col]
if is_panel:
spends_data = media_data[
[c for c in media_data.columns if "_cost" in c.lower() or "_spend" in c.lower()] + [date_col, panel_col]]
# Sprint3 - spends for resp curves
else:
spends_data = media_data[
[c for c in media_data.columns if "_cost" in c.lower() or "_spend" in c.lower()] + [date_col]]
y = media_data[target_col]
media_data.drop([date_col], axis=1, inplace=True)
media_data.reset_index(drop=True, inplace=True)
columns = st.columns(2)
old_shape = media_data.shape
if "old_shape" not in st.session_state:
st.session_state['old_shape'] = old_shape
if 'media_data' not in st.session_state:
st.session_state['media_data'] = pd.DataFrame()
# Sprint3
if "orig_media_data" not in st.session_state:
st.session_state['orig_media_data'] = pd.DataFrame()
# Sprint3 additions
if 'random_effects' not in st.session_state:
st.session_state['random_effects'] = pd.DataFrame()
if 'pred_train' not in st.session_state:
st.session_state['pred_train'] = []
if 'pred_test' not in st.session_state:
st.session_state['pred_test'] = []
# end of Sprint3 additions
# Section 3 - Create combinations
# bucket=['paid_search', 'kwai','indicacao','infleux', 'influencer','FB: Level Achieved - Tier 1 Impressions',
# ' FB: Level Achieved - Tier 2 Impressions','paid_social_others',
# ' GA App: Will And Cid Pequena Baixo Risco Clicks',
# 'digital_tactic_others',"programmatic"
# ]
# srishti - bucket names changed
bucket = ['paid_search', 'kwai', 'indicacao', 'infleux', 'influencer', 'fb_level_achieved_tier_2',
'fb_level_achieved_tier_1', 'paid_social_others',
'ga_app',
'digital_tactic_others', "programmatic"
]
with columns[0]:
if st.button('Create Combinations of Variables'):
top_3_correlated_features = []
# # for col in st.session_state['media_data'].columns[:19]:
# original_cols = [c for c in st.session_state['media_data'].columns if
# "_clicks" in c.lower() or "_impressions" in c.lower()]
#original_cols = [c for c in original_cols if "_lag" not in c.lower() and "_adstock" not in c.lower()]
original_cols=st.session_state['bin_dict']['Media'] + st.session_state['bin_dict']['Internal']
original_cols=[col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in original_cols]
original_cols = [col for col in original_cols if "_cost" not in col]
# for col in st.session_state['media_data'].columns[:19]:
for col in original_cols: # srishti - new
corr_df = pd.concat([st.session_state['media_data'].filter(regex=col),
y], axis=1).corr()[target_col].iloc[:-1]
top_3_correlated_features.append(list(corr_df.sort_values(ascending=False).head(2).index))
flattened_list = [item for sublist in top_3_correlated_features for item in sublist]
# all_features_set={var:[col for col in flattened_list if var in col] for var in bucket}
all_features_set = {var: [col for col in flattened_list if var in col] for var in bucket if
len([col for col in flattened_list if var in col]) > 0} # srishti
channels_all = [values for values in all_features_set.values()]
st.session_state['combinations'] = list(itertools.product(*channels_all))
# if 'combinations' not in st.session_state:
# st.session_state['combinations']=combinations_all
st.session_state['final_selection'] = st.session_state['combinations']
st.success('Done')
# revenue.reset_index(drop=True,inplace=True)
y.reset_index(drop=True, inplace=True)
if 'Model_results' not in st.session_state:
st.session_state['Model_results'] = {'Model_object': [],
'Model_iteration': [],
'Feature_set': [],
'MAPE': [],
'R2': [],
'ADJR2': [],
'pos_count': []
}
def reset_model_result_dct():
st.session_state['Model_results'] = {'Model_object': [],
'Model_iteration': [],
'Feature_set': [],
'MAPE': [],
'R2': [],
'ADJR2': [],
'pos_count': []
}
# if st.button('Build Model'):
if 'iterations' not in st.session_state:
st.session_state['iterations'] = 0
if 'final_selection' not in st.session_state:
st.session_state['final_selection'] = False
save_path = r"Model/"
with columns[1]:
if st.session_state['final_selection']:
st.write(f'Total combinations created {format_numbers(len(st.session_state["final_selection"]))}')
# st.session_state["project_dct"]["model_build"]["all_iters_check"] = False
checkbox_default = st.session_state["project_dct"]["model_build"]["all_iters_check"] if st.session_state["project_dct"]["model_build"]['all_iters_check'] is not None else False
if st.checkbox('Build all iterations', value=checkbox_default):
# st.session_state["project_dct"]["model_build"]["all_iters_check"]
iterations = len(st.session_state['final_selection'])
st.session_state["project_dct"]["model_build"]["all_iters_check"] = True
else:
iterations = st.number_input('Select the number of iterations to perform', min_value=0, step=100,
value=st.session_state['iterations'], on_change=reset_model_result_dct)
st.session_state["project_dct"]["model_build"]["all_iters_check"] = False
st.session_state["project_dct"]["model_build"]["iterations"] = iterations
if iterations <1:
st.error('Please enter a number greater than 0')
# st.stop()
# build_button = st.session_state["project_dct"]["model_build"]["build_button"] if \
# "build_button" in st.session_state["project_dct"]["model_build"].keys() else False
if st.button('Build Model', on_click=reset_model_result_dct):
if len(st.session_state["final_selection"]) < 1 :
st.error('Please create combinations')
st.session_state["project_dct"]["model_build"]["build_button"]=True
st.session_state['iterations'] = iterations
# Section 4 - Model
# st.session_state['media_data'] = st.session_state['media_data'].fillna(method='ffill')
st.session_state['media_data'] = st.session_state['media_data'].ffill()
st.markdown(
'Data Split -- Training Period: May 9th, 2023 - October 5th,2023 , Testing Period: October 6th, 2023 - November 7th, 2023 ')
progress_bar = st.progress(0) # Initialize the progress bar
# time_remaining_text = st.empty() # Create an empty space for time remaining text
start_time = time.time() # Record the start time
progress_text = st.empty()
# time_elapsed_text = st.empty()
# for i, selected_features in enumerate(st.session_state["final_selection"][40000:40000 + int(iterations)]):
# st.write(st.session_state["final_selection"])
# for i, selected_features in enumerate(st.session_state["final_selection"]):
if is_panel == True:
for i, selected_features in enumerate(st.session_state["final_selection"][0:int(iterations)]): # srishti
df = st.session_state['media_data']
fet = [var for var in selected_features if len(var) > 0]
inp_vars_str = " + ".join(fet) # new
X = df[fet]
y = df[target_col]
ss = MinMaxScaler()
X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
X[target_col] = y # Sprint2
X[panel_col] = df[panel_col] # Sprint2
X_train = X.iloc[:8000]
X_test = X.iloc[8000:]
y_train = y.iloc[:8000]
y_test = y.iloc[8000:]
print(X_train.shape)
# model = sm.OLS(y_train, X_train).fit()
md_str = target_col + " ~ " + inp_vars_str
# md = smf.mixedlm("total_approved_accounts_revenue ~ {}".format(inp_vars_str),
# data=X_train[[target_col] + fet],
# groups=X_train[panel_col])
md = smf.mixedlm(md_str,
data=X_train[[target_col] + fet],
groups=X_train[panel_col])
mdf = md.fit()
predicted_values = mdf.fittedvalues
coefficients = mdf.fe_params.to_dict()
model_positive = [col for col in coefficients.keys() if coefficients[col] > 0]
pvalues = [var for var in list(mdf.pvalues) if var <= 0.06]
if (len(model_positive) / len(selected_features)) > 0 and (
len(pvalues) / len(selected_features)) >= 0: # srishti - changed just for testing, revert later
# predicted_values = model.predict(X_train)
mape = mean_absolute_percentage_error(y_train, predicted_values)
r2 = r2_score(y_train, predicted_values)
adjr2 = 1 - (1 - r2) * (len(y_train) - 1) / (len(y_train) - len(selected_features) - 1)
filename = os.path.join(save_path, f"model_{i}.pkl")
with open(filename, "wb") as f:
pickle.dump(mdf, f)
# with open(r"C:\Users\ManojP\Documents\MMM\simopt\Model\model.pkl", 'rb') as file:
# model = pickle.load(file)
st.session_state['Model_results']['Model_object'].append(filename)
st.session_state['Model_results']['Model_iteration'].append(i)
st.session_state['Model_results']['Feature_set'].append(fet)
st.session_state['Model_results']['MAPE'].append(mape)
st.session_state['Model_results']['R2'].append(r2)
st.session_state['Model_results']['pos_count'].append(len(model_positive))
st.session_state['Model_results']['ADJR2'].append(adjr2)
current_time = time.time()
time_taken = current_time - start_time
time_elapsed_minutes = time_taken / 60
completed_iterations_text = f"{i + 1}/{iterations}"
progress_bar.progress((i + 1) / int(iterations))
progress_text.text(
f'Completed iterations: {completed_iterations_text},Time Elapsed (min): {time_elapsed_minutes:.2f}')
st.write(
f'Out of {st.session_state["iterations"]} iterations : {len(st.session_state["Model_results"]["Model_object"])} valid models')
else:
for i, selected_features in enumerate(st.session_state["final_selection"][0:int(iterations)]): # srishti
df = st.session_state['media_data']
fet = [var for var in selected_features if len(var) > 0]
inp_vars_str = " + ".join(fet)
X = df[fet]
y = df[target_col]
ss = MinMaxScaler()
X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
X = sm.add_constant(X)
X_train = X.iloc[:130]
X_test = X.iloc[130:]
y_train = y.iloc[:130]
y_test = y.iloc[130:]
model = sm.OLS(y_train, X_train).fit()
coefficients = model.params.to_list()
model_positive = [coef for coef in coefficients if coef > 0]
predicted_values = model.predict(X_train)
pvalues = [var for var in list(model.pvalues) if var <= 0.06]
# if (len(model_possitive) / len(selected_features)) > 0.9 and (len(pvalues) / len(selected_features)) >= 0.8:
if (len(model_positive) / len(selected_features)) > 0 and (len(pvalues) / len(
selected_features)) >= 0.5: # srishti - changed just for testing, revert later VALID MODEL CRITERIA
# predicted_values = model.predict(X_train)
mape = mean_absolute_percentage_error(y_train, predicted_values)
adjr2 = model.rsquared_adj
r2 = model.rsquared
filename = os.path.join(save_path, f"model_{i}.pkl")
with open(filename, "wb") as f:
pickle.dump(model, f)
# with open(r"C:\Users\ManojP\Documents\MMM\simopt\Model\model.pkl", 'rb') as file:
# model = pickle.load(file)
st.session_state['Model_results']['Model_object'].append(filename)
st.session_state['Model_results']['Model_iteration'].append(i)
st.session_state['Model_results']['Feature_set'].append(fet)
st.session_state['Model_results']['MAPE'].append(mape)
st.session_state['Model_results']['R2'].append(r2)
st.session_state['Model_results']['ADJR2'].append(adjr2)
st.session_state['Model_results']['pos_count'].append(len(model_positive))
current_time = time.time()
time_taken = current_time - start_time
time_elapsed_minutes = time_taken / 60
completed_iterations_text = f"{i + 1}/{iterations}"
progress_bar.progress((i + 1) / int(iterations))
progress_text.text(
f'Completed iterations: {completed_iterations_text},Time Elapsed (min): {time_elapsed_minutes:.2f}')
st.write(
f'Out of {st.session_state["iterations"]} iterations : {len(st.session_state["Model_results"]["Model_object"])} valid models')
pd.DataFrame(st.session_state['Model_results']).to_csv('model_output.csv')
def to_percentage(value):
return f'{value * 100:.1f}%'
## Section 5 - Select Model
st.title('2. Select Models')
show_results_defualt = st.session_state["project_dct"]["model_build"]["show_results_check"] if st.session_state["project_dct"]["model_build"]['show_results_check'] is not None else False
if 'tick' not in st.session_state:
st.session_state['tick'] = False
if st.checkbox('Show results of top 10 models (based on MAPE and Adj. R2)', value=show_results_defualt):
st.session_state["project_dct"]["model_build"]["show_results_check"] = True
st.session_state['tick'] = True
st.write('Select one model iteration to generate performance metrics for it:')
data = pd.DataFrame(st.session_state['Model_results'])
data = data[data['pos_count']==data['pos_count'].max()].reset_index(drop=True) # Sprint4 -- Srishti -- only show models with the lowest num of neg coeffs
data.sort_values(by=['ADJR2'], ascending=False, inplace=True)
data.drop_duplicates(subset='Model_iteration', inplace=True)
top_10 = data.head(10)
top_10['Rank'] = np.arange(1, len(top_10) + 1, 1)
top_10[['MAPE', 'R2', 'ADJR2']] = np.round(top_10[['MAPE', 'R2', 'ADJR2']], 4).applymap(to_percentage)
top_10_table = top_10[['Rank', 'Model_iteration', 'MAPE', 'ADJR2', 'R2']]
# top_10_table.columns=[['Rank','Model Iteration Index','MAPE','Adjusted R2','R2']]
gd = GridOptionsBuilder.from_dataframe(top_10_table)
gd.configure_pagination(enabled=True)
gd.configure_selection(
use_checkbox=True,
selection_mode="single",
pre_select_all_rows=False,
pre_selected_rows=[1],
)
gridoptions = gd.build()
table = AgGrid(top_10, gridOptions=gridoptions, update_mode=GridUpdateMode.SELECTION_CHANGED)
selected_rows = table.selected_rows
# if st.session_state["selected_rows"] != selected_rows:
# st.session_state["build_rc_cb"] = False
st.session_state["selected_rows"] = selected_rows
# Section 6 - Display Results
if len(selected_rows) > 0:
st.header('2.1 Results Summary')
model_object = data[data['Model_iteration'] == selected_rows[0]['Model_iteration']]['Model_object']
features_set = data[data['Model_iteration'] == selected_rows[0]['Model_iteration']]['Feature_set']
with open(str(model_object.values[0]), 'rb') as file:
# print(file)
model = pickle.load(file)
st.write(model.summary())
st.header('2.2 Actual vs. Predicted Plot')
if is_panel :
df = st.session_state['media_data']
X = df[features_set.values[0]]
y = df[target_col]
ss = MinMaxScaler()
X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
# Sprint2 changes
X[target_col] = y # new
X[panel_col] = df[panel_col]
X[date_col] = date
X_train = X.iloc[:8000]
X_test = X.iloc[8000:].reset_index(drop=True)
y_train = y.iloc[:8000]
y_test = y.iloc[8000:].reset_index(drop=True)
test_spends = spends_data[8000:] # Sprint3 - test spends for resp curves
random_eff_df = get_random_effects(media_data, panel_col, model)
train_pred = model.fittedvalues
test_pred = mdf_predict(X_test, model, random_eff_df)
print("__" * 20, test_pred.isna().sum())
else :
df = st.session_state['media_data']
X = df[features_set.values[0]]
y = df[target_col]
ss = MinMaxScaler()
X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
X = sm.add_constant(X)
X[date_col] = date
X_train = X.iloc[:130]
X_test = X.iloc[130:].reset_index(drop=True)
y_train = y.iloc[:130]
y_test = y.iloc[130:].reset_index(drop=True)
test_spends = spends_data[130:] # Sprint3 - test spends for resp curves
train_pred = model.predict(X_train[features_set.values[0]+['const']])
test_pred = model.predict(X_test[features_set.values[0]+['const']])
# save x test to test - srishti
# x_test_to_save = X_test.copy()
# x_test_to_save['Actuals'] = y_test
# x_test_to_save['Predictions'] = test_pred
#
# x_train_to_save = X_train.copy()
# x_train_to_save['Actuals'] = y_train
# x_train_to_save['Predictions'] = train_pred
#
# x_train_to_save.to_csv('Test/x_train_to_save.csv', index=False)
# x_test_to_save.to_csv('Test/x_test_to_save.csv', index=False)
st.session_state['X'] = X_train
st.session_state['features_set'] = features_set.values[0]
print("**" * 20, "selected model features : ", features_set.values[0])
metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_train[date_col], y_train, train_pred,
model, target_column=sel_target_col,
is_panel=is_panel) # Sprint2
st.plotly_chart(actual_vs_predicted_plot, use_container_width=True)
st.markdown('## 2.3 Residual Analysis')
columns = st.columns(2)
with columns[0]:
fig = plot_residual_predicted(y_train, train_pred, X_train) # Sprint2
st.plotly_chart(fig)
with columns[1]:
st.empty()
fig = qqplot(y_train, train_pred) # Sprint2
st.plotly_chart(fig)
with columns[0]:
fig = residual_distribution(y_train, train_pred) # Sprint2
st.pyplot(fig)
vif_data = pd.DataFrame()
# X=X.drop('const',axis=1)
X_train_orig = X_train.copy() # Sprint2 -- creating a copy of xtrain. Later deleting panel, target & date from xtrain
del_col_list = list(set([target_col, panel_col, date_col]).intersection(set(X_train.columns)))
X_train.drop(columns=del_col_list, inplace=True) # Sprint2
vif_data["Variable"] = X_train.columns
vif_data["VIF"] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.shape[1])]
vif_data.sort_values(by=['VIF'], ascending=False, inplace=True)
vif_data = np.round(vif_data)
vif_data['VIF'] = vif_data['VIF'].astype(float)
st.header('2.4 Variance Inflation Factor (VIF)')
# st.dataframe(vif_data)
color_mapping = {
'darkgreen': (vif_data['VIF'] < 3),
'orange': (vif_data['VIF'] >= 3) & (vif_data['VIF'] <= 10),
'darkred': (vif_data['VIF'] > 10)
}
# Create a horizontal bar plot
fig, ax = plt.subplots()
fig.set_figwidth(10) # Adjust the width of the figure as needed
# Sort the bars by descending VIF values
vif_data = vif_data.sort_values(by='VIF', ascending=False)
# Iterate through the color mapping and plot bars with corresponding colors
for color, condition in color_mapping.items():
subset = vif_data[condition]
bars = ax.barh(subset["Variable"], subset["VIF"], color=color, label=color)
# Add text annotations on top of the bars
for bar in bars:
width = bar.get_width()
ax.annotate(f'{width:}', xy=(width, bar.get_y() + bar.get_height() / 2), xytext=(5, 0),
textcoords='offset points', va='center')
# Customize the plot
ax.set_xlabel('VIF Values')
# ax.set_title('2.4 Variance Inflation Factor (VIF)')
# ax.legend(loc='upper right')
# Display the plot in Streamlit
st.pyplot(fig)
with st.expander('Results Summary Test data'):
# ss = MinMaxScaler()
# X_test = pd.DataFrame(ss.fit_transform(X_test), columns=X_test.columns)
st.header('2.2 Actual vs. Predicted Plot')
metrics_table, line, actual_vs_predicted_plot = plot_actual_vs_predicted(X_test[date_col], y_test,
test_pred, model,
target_column=sel_target_col,
is_panel=is_panel) # Sprint2
st.plotly_chart(actual_vs_predicted_plot, use_container_width=True)
st.markdown('## 2.3 Residual Analysis')
columns = st.columns(2)
with columns[0]:
fig = plot_residual_predicted(y, test_pred, X_test) # Sprint2
st.plotly_chart(fig)
with columns[1]:
st.empty()
fig = qqplot(y, test_pred) # Sprint2
st.plotly_chart(fig)
with columns[0]:
fig = residual_distribution(y, test_pred) # Sprint2
st.pyplot(fig)
value = False
save_button_model = st.checkbox('Save this model to tune', key='build_rc_cb') # , on_click=set_save())
if save_button_model:
mod_name = st.text_input('Enter model name')
if len(mod_name) > 0:
mod_name = mod_name + "__" + target_col # Sprint4 - adding target col to model name
if is_panel :
pred_train= model.fittedvalues
pred_test= mdf_predict(X_test, model, random_eff_df)
else :
st.session_state['features_set'] = st.session_state['features_set'] + ['const']
pred_train= model.predict(X_train_orig[st.session_state['features_set']])
pred_test= model.predict(X_test[st.session_state['features_set']])
st.session_state['Model'][mod_name] = {"Model_object": model,
'feature_set': st.session_state['features_set'],
'X_train': X_train_orig,
'X_test': X_test,
'y_train': y_train,
'y_test': y_test,
'pred_train':pred_train,
'pred_test': pred_test
}
st.session_state['X_train'] = X_train_orig
st.session_state['X_test_spends'] = test_spends
st.session_state['saved_model_names'].append(mod_name)
# Sprint3 additions
if is_panel :
random_eff_df = get_random_effects(media_data, panel_col, model)
st.session_state['random_effects'] = random_eff_df
with open("best_models.pkl", "wb") as f:
pickle.dump(st.session_state['Model'], f)
st.success(mod_name + ' model saved! Proceed to the next page to tune the model')
urm = st.session_state['used_response_metrics']
urm.append(sel_target_col)
st.session_state['used_response_metrics'] = list(set(urm))
mod_name = ""
# Sprint4 - add the formatted name of the target col to used resp metrics
value = False
st.session_state["project_dct"]["model_build"]["session_state_saved"] = {}
for key in ['Model', 'bin_dict', 'used_response_metrics', 'date', 'saved_model_names', 'media_data', 'X_test_spends']:
st.session_state["project_dct"]["model_build"]["session_state_saved"][key] = st.session_state[key]
project_dct_path = os.path.join(st.session_state['project_path'], "project_dct.pkl")
with open(project_dct_path, 'wb') as f:
pickle.dump(st.session_state["project_dct"], f)
st.toast("💾 Saved Successfully!")
else :
st.session_state["project_dct"]["model_build"]["show_results_check"] = False |