Spaces:
Sleeping
Sleeping
File size: 17,270 Bytes
ff89010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from Eda_functions import *
import numpy as np
import pickle
import streamlit as st
import streamlit.components.v1 as components
import sweetviz as sv
from utilities import set_header, load_local_css
from st_aggrid import GridOptionsBuilder, GridUpdateMode
from st_aggrid import GridOptionsBuilder
from st_aggrid import AgGrid
import base64
import os
import tempfile
# from ydata_profiling import ProfileReport
import re
# from pygwalker.api.streamlit import StreamlitRenderer
# from Home_redirecting import home
import sqlite3
from utilities import update_db
st.set_page_config(
page_title="Data Validation",
page_icon=":shark:",
layout="wide",
initial_sidebar_state="collapsed",
)
load_local_css("styles.css")
set_header()
if "project_dct" not in st.session_state:
# home()
st.warning("Please select a project from home page")
st.stop()
data_path = os.path.join(st.session_state["project_path"], "data_import.pkl")
try:
with open(data_path, "rb") as f:
data = pickle.load(f)
except Exception as e:
st.error(f"Please import data from the Data Import Page")
st.stop()
conn = sqlite3.connect(r"DB\User.db", check_same_thread=False) # connection with sql db
c = conn.cursor()
st.session_state["cleaned_data"] = data["final_df"]
st.session_state["category_dict"] = data["bin_dict"]
# st.write(st.session_state['category_dict'])
st.title("Data Validation and Insights")
target_variables = [
st.session_state["category_dict"][key]
for key in st.session_state["category_dict"].keys()
if key == "Response Metrics"
]
def format_display(inp):
return inp.title().replace("_", " ").strip()
target_variables = list(*target_variables)
target_column = st.selectbox(
"Select the Target Feature/Dependent Variable (will be used in all charts as reference)",
target_variables,
index=st.session_state["project_dct"]["data_validation"]["target_column"],
format_func=format_display,
)
st.session_state["project_dct"]["data_validation"]["target_column"] = (
target_variables.index(target_column)
)
st.session_state["target_column"] = target_column
panels = st.session_state["category_dict"]["Panel Level 1"][0]
selected_panels = st.multiselect(
"Please choose the panels you wish to analyze.If no panels are selected, insights will be derived from the overall data.",
st.session_state["cleaned_data"][panels].unique(),
default=st.session_state["project_dct"]["data_validation"]["selected_panels"],
)
st.session_state["project_dct"]["data_validation"]["selected_panels"] = selected_panels
aggregation_dict = {
item: "sum" if key == "Media" else "mean"
for key, value in st.session_state["category_dict"].items()
for item in value
if item not in ["date", "Panel_1"]
}
with st.expander("**Reponse Metric Analysis**"):
if len(selected_panels) > 0:
st.session_state["Cleaned_data_panel"] = st.session_state["cleaned_data"][
st.session_state["cleaned_data"]["Panel_1"].isin(selected_panels)
]
st.session_state["Cleaned_data_panel"] = (
st.session_state["Cleaned_data_panel"]
.groupby(by="date")
.agg(aggregation_dict)
)
st.session_state["Cleaned_data_panel"] = st.session_state[
"Cleaned_data_panel"
].reset_index()
else:
# st.write(st.session_state['cleaned_data'])
st.session_state["Cleaned_data_panel"] = (
st.session_state["cleaned_data"].groupby(by="date").agg(aggregation_dict)
)
st.session_state["Cleaned_data_panel"] = st.session_state[
"Cleaned_data_panel"
].reset_index()
fig = line_plot_target(
st.session_state["Cleaned_data_panel"],
target=target_column,
title=f"{target_column} Over Time",
)
st.plotly_chart(fig, use_container_width=True)
media_channel = list(
*[
st.session_state["category_dict"][key]
for key in st.session_state["category_dict"].keys()
if key == "Media"
]
)
# st.write(media_channel)
exo_var = list(
*[
st.session_state["category_dict"][key]
for key in st.session_state["category_dict"].keys()
if key == "Exogenous"
]
)
internal_var = list(
*[
st.session_state["category_dict"][key]
for key in st.session_state["category_dict"].keys()
if key == "Internal"
]
)
Non_media_variables = exo_var + internal_var
st.markdown("### Annual Data Summary")
summary_df = summary(
st.session_state["Cleaned_data_panel"],
media_channel + [target_column],
spends=None,
Target=True,
)
st.dataframe(
summary_df,
use_container_width=True,
)
if st.checkbox("Show raw data"):
st.cache_resource(show_spinner=False)
def raw_df_gen():
# Convert 'date' to datetime but do not convert to string yet for sorting
dates = pd.to_datetime(st.session_state["Cleaned_data_panel"]["date"])
# Concatenate the dates with other numeric columns formatted
raw_df = pd.concat(
[
dates,
st.session_state["Cleaned_data_panel"]
.select_dtypes(np.number)
.applymap(format_numbers),
],
axis=1,
)
# Now sort raw_df by the 'date' column, which is still in datetime format
sorted_raw_df = raw_df.sort_values(by="date", ascending=True)
# After sorting, convert 'date' to string format for display
sorted_raw_df["date"] = sorted_raw_df["date"].dt.strftime("%m/%d/%Y")
return sorted_raw_df
# Display the sorted DataFrame in Streamlit
st.dataframe(raw_df_gen())
col1 = st.columns(1)
if "selected_feature" not in st.session_state:
st.session_state["selected_feature"] = None
def generate_report_with_target(channel_data, target_feature):
report = sv.analyze([channel_data, "Dataset"], target_feat=target_feature)
temp_dir = tempfile.mkdtemp()
report_path = os.path.join(temp_dir, "report.html")
report.show_html(
filepath=report_path, open_browser=False
) # Generate the report as an HTML file
return report_path
def generate_profile_report(df):
pr = df.profile_report()
temp_dir = tempfile.mkdtemp()
report_path = os.path.join(temp_dir, "report.html")
pr.to_file(report_path)
return report_path
# st.header()
with st.expander("Univariate and Bivariate Report"):
eda_columns = st.columns(2)
with eda_columns[0]:
if st.button(
"Generate Profile Report",
help="Univariate report which inlcudes all statistical analysis",
):
with st.spinner("Generating Report"):
report_file = generate_profile_report(
st.session_state["Cleaned_data_panel"]
)
if os.path.exists(report_file):
with open(report_file, "rb") as f:
st.success("Report Generated")
st.download_button(
label="Download EDA Report",
data=f.read(),
file_name="pandas_profiling_report.html",
mime="text/html",
)
else:
st.warning(
"Report generation failed. Unable to find the report file."
)
with eda_columns[1]:
if st.button(
"Generate Sweetviz Report",
help="Bivariate report for selected response metric",
):
with st.spinner("Generating Report"):
report_file = generate_report_with_target(
st.session_state["Cleaned_data_panel"], target_column
)
if os.path.exists(report_file):
with open(report_file, "rb") as f:
st.success("Report Generated")
st.download_button(
label="Download EDA Report",
data=f.read(),
file_name="report.html",
mime="text/html",
)
else:
st.warning("Report generation failed. Unable to find the report file.")
# st.warning('Work in Progress')
with st.expander("Media Variables Analysis"):
# Get the selected feature
media_variables = [
col
for col in media_channel
if "cost" not in col.lower() and "spend" not in col.lower()
]
st.session_state["selected_feature"] = st.selectbox(
"Select media", media_variables, format_func=format_display
)
st.session_state["project_dct"]["data_validation"]["selected_feature"] = (
media_variables.index(st.session_state["selected_feature"])
)
# Filter spends features based on the selected feature
spends_features = [
col
for col in st.session_state["Cleaned_data_panel"].columns
if any(keyword in col.lower() for keyword in ["cost", "spend"])
]
spends_feature = [
col
for col in spends_features
if re.split(r"_cost|_spend", col.lower())[0]
in st.session_state["selected_feature"]
]
if "validation" not in st.session_state:
st.session_state["validation"] = st.session_state["project_dct"][
"data_validation"
]["validated_variables"]
val_variables = [col for col in media_channel if col != "date"]
if not set(
st.session_state["project_dct"]["data_validation"]["validated_variables"]
).issubset(set(val_variables)):
st.session_state["validation"] = []
if len(spends_feature) == 0:
st.warning("No spends varaible available for the selected metric in data")
else:
fig_row1 = line_plot(
st.session_state["Cleaned_data_panel"],
x_col="date",
y1_cols=[st.session_state["selected_feature"]],
y2_cols=[target_column],
title=f'Analysis of {st.session_state["selected_feature"]} and {[target_column][0]} Over Time',
)
st.plotly_chart(fig_row1, use_container_width=True)
st.markdown("### Summary")
st.dataframe(
summary(
st.session_state["cleaned_data"],
[st.session_state["selected_feature"]],
spends=spends_feature[0],
),
use_container_width=True,
)
cols2 = st.columns(2)
if len(set(st.session_state["validation"]).intersection(val_variables)) == len(
val_variables
):
disable = True
help = "All media variables are validated"
else:
disable = False
help = ""
with cols2[0]:
if st.button("Validate", disabled=disable, help=help):
st.session_state["validation"].append(
st.session_state["selected_feature"]
)
with cols2[1]:
if st.checkbox("Validate all", disabled=disable, help=help):
st.session_state["validation"].extend(val_variables)
st.success("All media variables are validated ✅")
if len(set(st.session_state["validation"]).intersection(val_variables)) != len(
val_variables
):
validation_data = pd.DataFrame(
{
"Validate": [
(True if col in st.session_state["validation"] else False)
for col in val_variables
],
"Variables": val_variables,
}
)
sorted_validation_df = validation_data.sort_values(
by="Variables", ascending=True, na_position="first"
)
cols3 = st.columns([1, 30])
with cols3[1]:
validation_df = st.data_editor(
sorted_validation_df,
# column_config={
# 'Validate':st.column_config.CheckboxColumn(wi)
# },
column_config={
"Validate": st.column_config.CheckboxColumn(
default=False,
width=100,
),
"Variables": st.column_config.TextColumn(width=1000),
},
hide_index=True,
)
selected_rows = validation_df[validation_df["Validate"] == True][
"Variables"
]
# st.write(selected_rows)
st.session_state["validation"].extend(selected_rows)
st.session_state["project_dct"]["data_validation"][
"validated_variables"
] = st.session_state["validation"]
not_validated_variables = [
col
for col in val_variables
if col not in st.session_state["validation"]
]
if not_validated_variables:
not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}'
st.warning(not_validated_message)
with st.expander("Non Media Variables Analysis"):
selected_columns_row4 = st.selectbox(
"Select Channel",
Non_media_variables,
format_func=format_display,
index=st.session_state["project_dct"]["data_validation"]["Non_media_variables"],
)
st.session_state["project_dct"]["data_validation"]["Non_media_variables"] = (
Non_media_variables.index(selected_columns_row4)
)
# # Create the dual-axis line plot
fig_row4 = line_plot(
st.session_state["Cleaned_data_panel"],
x_col="date",
y1_cols=[selected_columns_row4],
y2_cols=[target_column],
title=f"Analysis of {selected_columns_row4} and {target_column} Over Time",
)
st.plotly_chart(fig_row4, use_container_width=True)
selected_non_media = selected_columns_row4
sum_df = st.session_state["Cleaned_data_panel"][
["date", selected_non_media, target_column]
]
sum_df["Year"] = pd.to_datetime(
st.session_state["Cleaned_data_panel"]["date"]
).dt.year
# st.dataframe(df)
# st.dataframe(sum_df.head(2))
print(sum_df)
sum_df = sum_df.drop("date", axis=1).groupby("Year").agg("sum")
sum_df.loc["Grand Total"] = sum_df.sum()
sum_df = sum_df.applymap(format_numbers)
sum_df.fillna("-", inplace=True)
sum_df = sum_df.replace({"0.0": "-", "nan": "-"})
st.markdown("### Summary")
st.dataframe(sum_df, use_container_width=True)
# with st.expander('Interactive Dashboard'):
# pygg_app=StreamlitRenderer(st.session_state['cleaned_data'])
# pygg_app.explorer()
with st.expander("Correlation Analysis"):
options = list(
st.session_state["Cleaned_data_panel"].select_dtypes(np.number).columns
)
# selected_options = []
# num_columns = 4
# num_rows = -(-len(options) // num_columns) # Ceiling division to calculate rows
# # Create a grid of checkboxes
# st.header('Select Features for Correlation Plot')
# tick=False
# if st.checkbox('Select all'):
# tick=True
# selected_options = []
# for row in range(num_rows):
# cols = st.columns(num_columns)
# for col in cols:
# if options:
# option = options.pop(0)
# selected = col.checkbox(option,value=tick)
# if selected:
# selected_options.append(option)
# # Display selected options
selected_options = st.multiselect(
"Select Variables For correlation plot",
[var for var in options if var != target_column],
default=options[3],
)
st.pyplot(
correlation_plot(
st.session_state["Cleaned_data_panel"],
selected_options,
target_column,
)
)
if st.button("Save Changes", use_container_width=True):
update_db("2_Data_Validation.py")
project_dct_path = os.path.join(st.session_state["project_path"], "project_dct.pkl")
with open(project_dct_path, "wb") as f:
pickle.dump(st.session_state["project_dct"], f)
st.success("Changes saved")
|