Spaces:
Sleeping
Sleeping
| import plotly.express as px | |
| import numpy as np | |
| import plotly.graph_objects as go | |
| import streamlit as st | |
| import pandas as pd | |
| import statsmodels.api as sm | |
| from sklearn.metrics import mean_absolute_percentage_error | |
| import sys | |
| import os | |
| from utilities import set_header, load_local_css, load_authenticator | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| import sweetviz as sv | |
| import tempfile | |
| from sklearn.preprocessing import MinMaxScaler | |
| from st_aggrid import AgGrid | |
| from st_aggrid import GridOptionsBuilder, GridUpdateMode | |
| from st_aggrid import GridOptionsBuilder | |
| import sys | |
| import re | |
| import pickle | |
| from sklearn.metrics import r2_score, mean_absolute_percentage_error | |
| from Data_prep_functions import plot_actual_vs_predicted | |
| import sqlite3 | |
| from utilities import update_db | |
| sys.setrecursionlimit(10**6) | |
| original_stdout = sys.stdout | |
| sys.stdout = open("temp_stdout.txt", "w") | |
| sys.stdout.close() | |
| sys.stdout = original_stdout | |
| st.set_page_config(layout="wide") | |
| load_local_css("styles.css") | |
| set_header() | |
| # TODO : | |
| ## 1. Add non panel model support | |
| ## 2. EDA Function | |
| for k, v in st.session_state.items(): | |
| if k not in ["logout", "login", "config"] and not k.startswith( | |
| "FormSubmitter" | |
| ): | |
| st.session_state[k] = v | |
| authenticator = st.session_state.get("authenticator") | |
| if authenticator is None: | |
| authenticator = load_authenticator() | |
| name, authentication_status, username = authenticator.login("Login", "main") | |
| auth_status = st.session_state.get("authentication_status") | |
| if auth_status == True: | |
| is_state_initiaized = st.session_state.get("initialized", False) | |
| if not is_state_initiaized: | |
| if "session_name" not in st.session_state: | |
| st.session_state["session_name"] = None | |
| if "project_dct" not in st.session_state: | |
| st.error("Please load a project from Home page") | |
| st.stop() | |
| conn = sqlite3.connect( | |
| r"DB/User.db", check_same_thread=False | |
| ) # connection with sql db | |
| c = conn.cursor() | |
| if not os.path.exists( | |
| os.path.join(st.session_state["project_path"], "tuned_model.pkl") | |
| ): | |
| st.error("Please save a tuned model") | |
| st.stop() | |
| if ( | |
| "session_state_saved" | |
| in st.session_state["project_dct"]["model_tuning"].keys() | |
| and st.session_state["project_dct"]["model_tuning"][ | |
| "session_state_saved" | |
| ] | |
| != [] | |
| ): | |
| for key in ["used_response_metrics", "media_data", "bin_dict"]: | |
| if key not in st.session_state: | |
| st.session_state[key] = st.session_state["project_dct"][ | |
| "model_tuning" | |
| ]["session_state_saved"][key] | |
| st.session_state["bin_dict"] = st.session_state["project_dct"][ | |
| "model_build" | |
| ]["session_state_saved"]["bin_dict"] | |
| media_data = st.session_state["media_data"] | |
| panel_col = [ | |
| col.lower() | |
| .replace(".", "_") | |
| .replace("@", "_") | |
| .replace(" ", "_") | |
| .replace("-", "") | |
| .replace(":", "") | |
| .replace("__", "_") | |
| for col in st.session_state["bin_dict"]["Panel Level 1"] | |
| ][ | |
| 0 | |
| ] # set the panel column | |
| is_panel = True if len(panel_col) > 0 else False | |
| date_col = "date" | |
| def plot_residual_predicted(actual, predicted, df_): | |
| df_["Residuals"] = actual - pd.Series(predicted) | |
| df_["StdResidual"] = ( | |
| df_["Residuals"] - df_["Residuals"].mean() | |
| ) / df_["Residuals"].std() | |
| # Create a Plotly scatter plot | |
| fig = px.scatter( | |
| df_, | |
| x=predicted, | |
| y="StdResidual", | |
| opacity=0.5, | |
| color_discrete_sequence=["#11B6BD"], | |
| ) | |
| # Add horizontal lines | |
| fig.add_hline(y=0, line_dash="dash", line_color="darkorange") | |
| fig.add_hline(y=2, line_color="red") | |
| fig.add_hline(y=-2, line_color="red") | |
| fig.update_xaxes(title="Predicted") | |
| fig.update_yaxes(title="Standardized Residuals (Actual - Predicted)") | |
| # Set the same width and height for both figures | |
| fig.update_layout( | |
| title="Residuals over Predicted Values", | |
| autosize=False, | |
| width=600, | |
| height=400, | |
| ) | |
| return fig | |
| def residual_distribution(actual, predicted): | |
| Residuals = actual - pd.Series(predicted) | |
| # Create a Seaborn distribution plot | |
| sns.set(style="whitegrid") | |
| plt.figure(figsize=(6, 4)) | |
| sns.histplot(Residuals, kde=True, color="#11B6BD") | |
| plt.title(" Distribution of Residuals") | |
| plt.xlabel("Residuals") | |
| plt.ylabel("Probability Density") | |
| return plt | |
| def qqplot(actual, predicted): | |
| Residuals = actual - pd.Series(predicted) | |
| Residuals = pd.Series(Residuals) | |
| Resud_std = (Residuals - Residuals.mean()) / Residuals.std() | |
| # Create a QQ plot using Plotly with custom colors | |
| fig = go.Figure() | |
| fig.add_trace( | |
| go.Scatter( | |
| x=sm.ProbPlot(Resud_std).theoretical_quantiles, | |
| y=sm.ProbPlot(Resud_std).sample_quantiles, | |
| mode="markers", | |
| marker=dict(size=5, color="#11B6BD"), | |
| name="QQ Plot", | |
| ) | |
| ) | |
| # Add the 45-degree reference line | |
| diagonal_line = go.Scatter( | |
| x=[ | |
| -2, | |
| 2, | |
| ], # Adjust the x values as needed to fit the range of your data | |
| y=[-2, 2], # Adjust the y values accordingly | |
| mode="lines", | |
| line=dict(color="red"), # Customize the line color and style | |
| name=" ", | |
| ) | |
| fig.add_trace(diagonal_line) | |
| # Customize the layout | |
| fig.update_layout( | |
| title="QQ Plot of Residuals", | |
| title_x=0.5, | |
| autosize=False, | |
| width=600, | |
| height=400, | |
| xaxis_title="Theoretical Quantiles", | |
| yaxis_title="Sample Quantiles", | |
| ) | |
| return fig | |
| def get_random_effects(media_data, panel_col, mdf): | |
| random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"]) | |
| for i, market in enumerate(media_data[panel_col].unique()): | |
| print(i, end="\r") | |
| intercept = mdf.random_effects[market].values[0] | |
| random_eff_df.loc[i, "random_effect"] = intercept | |
| random_eff_df.loc[i, panel_col] = market | |
| return random_eff_df | |
| def mdf_predict(X_df, mdf, random_eff_df): | |
| X = X_df.copy() | |
| X = pd.merge( | |
| X, | |
| random_eff_df[[panel_col, "random_effect"]], | |
| on=panel_col, | |
| how="left", | |
| ) | |
| X["pred_fixed_effect"] = mdf.predict(X) | |
| X["pred"] = X["pred_fixed_effect"] + X["random_effect"] | |
| X.drop(columns=["pred_fixed_effect", "random_effect"], inplace=True) | |
| return X | |
| def metrics_df_panel(model_dict): | |
| metrics_df = pd.DataFrame( | |
| columns=[ | |
| "Model", | |
| "R2", | |
| "ADJR2", | |
| "Train Mape", | |
| "Test Mape", | |
| "Summary", | |
| "Model_object", | |
| ] | |
| ) | |
| i = 0 | |
| for key in model_dict.keys(): | |
| target = key.split("__")[1] | |
| metrics_df.at[i, "Model"] = target | |
| y = model_dict[key]["X_train_tuned"][target] | |
| random_df = get_random_effects( | |
| media_data, panel_col, model_dict[key]["Model_object"] | |
| ) | |
| pred = mdf_predict( | |
| model_dict[key]["X_train_tuned"], | |
| model_dict[key]["Model_object"], | |
| random_df, | |
| )["pred"] | |
| ytest = model_dict[key]["X_test_tuned"][target] | |
| predtest = mdf_predict( | |
| model_dict[key]["X_test_tuned"], | |
| model_dict[key]["Model_object"], | |
| random_df, | |
| )["pred"] | |
| metrics_df.at[i, "R2"] = r2_score(y, pred) | |
| metrics_df.at[i, "ADJR2"] = 1 - (1 - metrics_df.loc[i, "R2"]) * ( | |
| len(y) - 1 | |
| ) / (len(y) - len(model_dict[key]["feature_set"]) - 1) | |
| metrics_df.at[i, "Train Mape"] = mean_absolute_percentage_error( | |
| y, pred | |
| ) | |
| metrics_df.at[i, "Test Mape"] = mean_absolute_percentage_error( | |
| ytest, predtest | |
| ) | |
| metrics_df.at[i, "Summary"] = model_dict[key][ | |
| "Model_object" | |
| ].summary() | |
| metrics_df.at[i, "Model_object"] = model_dict[key]["Model_object"] | |
| i += 1 | |
| metrics_df = np.round(metrics_df, 2) | |
| return metrics_df | |
| with open( | |
| os.path.join( | |
| st.session_state["project_path"], "final_df_transformed.pkl" | |
| ), | |
| "rb", | |
| ) as f: | |
| data = pickle.load(f) | |
| transformed_data = data["final_df_transformed"] | |
| with open( | |
| os.path.join(st.session_state["project_path"], "data_import.pkl"), "rb" | |
| ) as f: | |
| data = pickle.load(f) | |
| st.session_state["bin_dict"] = data["bin_dict"] | |
| with open( | |
| os.path.join(st.session_state["project_path"], "tuned_model.pkl"), "rb" | |
| ) as file: | |
| tuned_model_dict = pickle.load(file) | |
| feature_set_dct = { | |
| key.split("__")[1]: key_dict["feature_set"] | |
| for key, key_dict in tuned_model_dict.items() | |
| } | |
| # """ the above part should be modified so that we are fetching features set from the saved model""" | |
| def contributions(X, model, target): | |
| X1 = X.copy() | |
| for j, col in enumerate(X1.columns): | |
| X1[col] = X1[col] * model.params.values[j] | |
| contributions = np.round( | |
| (X1.sum() / sum(X1.sum()) * 100).sort_values(ascending=False), 2 | |
| ) | |
| contributions = ( | |
| pd.DataFrame(contributions, columns=target) | |
| .reset_index() | |
| .rename(columns={"index": "Channel"}) | |
| ) | |
| contributions["Channel"] = [ | |
| re.split(r"_imp|_cli", col)[0] for col in contributions["Channel"] | |
| ] | |
| return contributions | |
| if "contribution_df" not in st.session_state: | |
| st.session_state["contribution_df"] = None | |
| def contributions_panel(model_dict): | |
| media_data = st.session_state["media_data"] | |
| contribution_df = pd.DataFrame(columns=["Channel"]) | |
| for key in model_dict.keys(): | |
| best_feature_set = model_dict[key]["feature_set"] | |
| model = model_dict[key]["Model_object"] | |
| target = key.split("__")[1] | |
| X_train = model_dict[key]["X_train_tuned"] | |
| contri_df = pd.DataFrame() | |
| y = [] | |
| y_pred = [] | |
| random_eff_df = get_random_effects(media_data, panel_col, model) | |
| random_eff_df["fixed_effect"] = model.fe_params["Intercept"] | |
| random_eff_df["panel_effect"] = ( | |
| random_eff_df["random_effect"] + random_eff_df["fixed_effect"] | |
| ) | |
| coef_df = pd.DataFrame(model.fe_params) | |
| coef_df.reset_index(inplace=True) | |
| coef_df.columns = ["feature", "coef"] | |
| x_train_contribution = X_train.copy() | |
| x_train_contribution = mdf_predict( | |
| x_train_contribution, model, random_eff_df | |
| ) | |
| x_train_contribution = pd.merge( | |
| x_train_contribution, | |
| random_eff_df[[panel_col, "panel_effect"]], | |
| on=panel_col, | |
| how="left", | |
| ) | |
| for i in range(len(coef_df))[1:]: | |
| coef = coef_df.loc[i, "coef"] | |
| col = coef_df.loc[i, "feature"] | |
| x_train_contribution[str(col) + "_contr"] = ( | |
| coef * x_train_contribution[col] | |
| ) | |
| # x_train_contribution['sum_contributions'] = x_train_contribution.filter(regex="contr").sum(axis=1) | |
| # x_train_contribution['sum_contributions'] = x_train_contribution['sum_contributions'] + x_train_contribution[ | |
| # 'panel_effect'] | |
| base_cols = ["panel_effect"] + [ | |
| c | |
| for c in x_train_contribution.filter(regex="contr").columns | |
| if c | |
| in [ | |
| "Week_number_contr", | |
| "Trend_contr", | |
| "sine_wave_contr", | |
| "cosine_wave_contr", | |
| ] | |
| ] | |
| x_train_contribution["base_contr"] = x_train_contribution[ | |
| base_cols | |
| ].sum(axis=1) | |
| x_train_contribution.drop(columns=base_cols, inplace=True) | |
| # x_train_contribution.to_csv("Test/smr_x_train_contribution.csv", index=False) | |
| contri_df = pd.DataFrame( | |
| x_train_contribution.filter(regex="contr").sum(axis=0) | |
| ) | |
| contri_df.reset_index(inplace=True) | |
| contri_df.columns = ["Channel", target] | |
| contri_df["Channel"] = ( | |
| contri_df["Channel"] | |
| .str.split("(_impres|_clicks)") | |
| .apply(lambda c: c[0]) | |
| ) | |
| contri_df[target] = ( | |
| 100 * contri_df[target] / contri_df[target].sum() | |
| ) | |
| contri_df["Channel"].replace("base_contr", "base", inplace=True) | |
| contribution_df = pd.merge( | |
| contribution_df, contri_df, on="Channel", how="outer" | |
| ) | |
| # st.session_state["contribution_df"] = contributions_panel(tuned_model_dict) | |
| return contribution_df | |
| metrics_table = metrics_df_panel(tuned_model_dict) | |
| eda_columns = st.columns(2) | |
| with eda_columns[1]: | |
| eda = st.button( | |
| "Generate EDA Report", | |
| help="Click to generate a bivariate report for the selected response metric from the table below.", | |
| ) | |
| # st.markdown('Model Metrics') | |
| st.title("Contribution Overview") | |
| options = st.session_state["used_response_metrics"] | |
| options = [ | |
| opt.lower() | |
| .replace(" ", "_") | |
| .replace("-", "") | |
| .replace(":", "") | |
| .replace("__", "_") | |
| for opt in options | |
| ] | |
| default_options = ( | |
| st.session_state["project_dct"]["saved_model_results"].get( | |
| "selected_options" | |
| ) | |
| if st.session_state["project_dct"]["saved_model_results"].get( | |
| "selected_options" | |
| ) | |
| is not None | |
| else [options[-1]] | |
| ) | |
| for i in default_options: | |
| if i not in options: | |
| st.write(i) | |
| default_options.remove(i) | |
| contribution_selections = st.multiselect( | |
| "Select the Response Metrics to compare contributions", | |
| options, | |
| default=default_options, | |
| ) | |
| trace_data = [] | |
| st.session_state["contribution_df"] = contributions_panel(tuned_model_dict) | |
| for selection in contribution_selections: | |
| trace = go.Bar( | |
| x=st.session_state["contribution_df"]["Channel"], | |
| y=st.session_state["contribution_df"][selection], | |
| name=selection, | |
| text=np.round(st.session_state["contribution_df"][selection], 0) | |
| .astype(int) | |
| .astype(str) | |
| + "%", | |
| textposition="outside", | |
| ) | |
| trace_data.append(trace) | |
| layout = go.Layout( | |
| title="Metrics Contribution by Channel", | |
| xaxis=dict(title="Channel Name"), | |
| yaxis=dict(title="Metrics Contribution"), | |
| barmode="group", | |
| ) | |
| fig = go.Figure(data=trace_data, layout=layout) | |
| st.plotly_chart(fig, use_container_width=True) | |
| ############################################ Waterfall Chart ############################################ | |
| # import plotly.graph_objects as go | |
| # # Initialize a Plotly figure | |
| # fig = go.Figure() | |
| # for selection in contribution_selections: | |
| # # Ensure y_values are numeric | |
| # y_values = st.session_state["contribution_df"][selection].values.astype(float) | |
| # # Generating text labels for each bar, ensuring operations are compatible with string formats | |
| # text_values = [f"{val}%" for val in np.round(y_values, 0).astype(int)] | |
| # fig.add_trace( | |
| # go.Waterfall( | |
| # name=selection, | |
| # orientation="v", | |
| # measure=["relative"] | |
| # * len(y_values), # Adjust if you have absolute values at certain points | |
| # x=st.session_state["contribution_df"]["Channel"].tolist(), | |
| # text=text_values, | |
| # textposition="outside", | |
| # y=y_values, | |
| # increasing={"marker": {"color": "green"}}, | |
| # decreasing={"marker": {"color": "red"}}, | |
| # totals={"marker": {"color": "blue"}}, | |
| # ) | |
| # ) | |
| # fig.update_layout( | |
| # title="Metrics Contribution by Channel", | |
| # xaxis={"title": "Channel Name"}, | |
| # yaxis={"title": "Metrics Contribution"}, | |
| # height=600, | |
| # ) | |
| # # Displaying the waterfall chart in Streamlit | |
| # st.plotly_chart(fig, use_container_width=True) | |
| import plotly.graph_objects as go | |
| # Initialize a Plotly figure | |
| fig = go.Figure() | |
| for selection in contribution_selections: | |
| # Ensure contributions are numeric | |
| contributions = ( | |
| st.session_state["contribution_df"][selection] | |
| .values.astype(float) | |
| .tolist() | |
| ) | |
| channel_names = st.session_state["contribution_df"]["Channel"].tolist() | |
| display_name, display_contribution, base_contribution = [], [], 0 | |
| for channel_name, contribution in zip(channel_names, contributions): | |
| if channel_name != "const" and channel_name != "base": | |
| display_name.append(channel_name) | |
| display_contribution.append(contribution) | |
| else: | |
| base_contribution = contribution | |
| display_name = ["Base Sales"] + display_name | |
| display_contribution = [base_contribution] + display_contribution | |
| # Generating text labels for each bar, ensuring operations are compatible with string formats | |
| text_values = [ | |
| f"{val}%" for val in np.round(display_contribution, 0).astype(int) | |
| ] | |
| fig.add_trace( | |
| go.Waterfall( | |
| orientation="v", | |
| measure=["relative"] | |
| * len( | |
| display_contribution | |
| ), # Adjust if you have absolute values at certain points | |
| x=display_name, | |
| text=text_values, | |
| textposition="outside", | |
| y=display_contribution, | |
| increasing={"marker": {"color": "green"}}, | |
| decreasing={"marker": {"color": "red"}}, | |
| totals={"marker": {"color": "blue"}}, | |
| ) | |
| ) | |
| fig.update_layout( | |
| title="Metrics Contribution by Channel", | |
| xaxis={"title": "Channel Name"}, | |
| yaxis={"title": "Metrics Contribution"}, | |
| height=600, | |
| ) | |
| # Displaying the waterfall chart in Streamlit | |
| st.plotly_chart(fig, use_container_width=True) | |
| ############################################ Waterfall Chart ############################################ | |
| st.title("Analysis of Models Result") | |
| # st.markdown() | |
| previous_selection = st.session_state["project_dct"][ | |
| "saved_model_results" | |
| ].get("model_grid_sel", [1]) | |
| st.write(np.round(metrics_table, 2)) | |
| gd_table = metrics_table.iloc[:, :-2] | |
| gd = GridOptionsBuilder.from_dataframe(gd_table) | |
| # gd.configure_pagination(enabled=True) | |
| gd.configure_selection( | |
| use_checkbox=True, | |
| selection_mode="single", | |
| pre_select_all_rows=False, | |
| pre_selected_rows=previous_selection, | |
| ) | |
| gridoptions = gd.build() | |
| table = AgGrid( | |
| gd_table, | |
| gridOptions=gridoptions, | |
| fit_columns_on_grid_load=True, | |
| height=200, | |
| ) | |
| # table=metrics_table.iloc[:,:-2] | |
| # table.insert(0, "Select", False) | |
| # selection_table=st.data_editor(table,column_config={"Select": st.column_config.CheckboxColumn(required=True)}) | |
| if len(table.selected_rows) > 0: | |
| st.session_state["project_dct"]["saved_model_results"][ | |
| "model_grid_sel" | |
| ] = table.selected_rows[0]["_selectedRowNodeInfo"]["nodeRowIndex"] | |
| if len(table.selected_rows) == 0: | |
| st.warning( | |
| "Click on the checkbox to view comprehensive results of the selected model." | |
| ) | |
| st.stop() | |
| else: | |
| target_column = table.selected_rows[0]["Model"] | |
| feature_set = feature_set_dct[target_column] | |
| # with eda_columns[1]: | |
| # if eda: | |
| # def generate_report_with_target(channel_data, target_feature): | |
| # report = sv.analyze( | |
| # [channel_data, "Dataset"], target_feat=target_feature, verbose=False | |
| # ) | |
| # temp_dir = tempfile.mkdtemp() | |
| # report_path = os.path.join(temp_dir, "report.html") | |
| # report.show_html( | |
| # filepath=report_path, open_browser=False | |
| # ) # Generate the report as an HTML file | |
| # return report_path | |
| # | |
| # report_data = transformed_data[feature_set] | |
| # report_data[target_column] = transformed_data[target_column] | |
| # report_file = generate_report_with_target(report_data, target_column) | |
| # | |
| # if os.path.exists(report_file): | |
| # with open(report_file, "rb") as f: | |
| # st.download_button( | |
| # label="Download EDA Report", | |
| # data=f.read(), | |
| # file_name="report.html", | |
| # mime="text/html", | |
| # ) | |
| # else: | |
| # st.warning("Report generation failed. Unable to find the report file.") | |
| model = metrics_table[metrics_table["Model"] == target_column][ | |
| "Model_object" | |
| ].iloc[0] | |
| target = metrics_table[metrics_table["Model"] == target_column][ | |
| "Model" | |
| ].iloc[0] | |
| st.header("Model Summary") | |
| st.write(model.summary()) | |
| sel_dict = tuned_model_dict[ | |
| [k for k in tuned_model_dict.keys() if k.split("__")[1] == target][0] | |
| ] | |
| X_train = sel_dict["X_train_tuned"] | |
| y_train = X_train[target] | |
| random_effects = get_random_effects(media_data, panel_col, model) | |
| pred = mdf_predict(X_train, model, random_effects)["pred"] | |
| X_test = sel_dict["X_test_tuned"] | |
| y_test = X_test[target] | |
| predtest = mdf_predict(X_test, model, random_effects)["pred"] | |
| metrics_table_train, _, fig_train = plot_actual_vs_predicted( | |
| X_train[date_col], | |
| y_train, | |
| pred, | |
| model, | |
| target_column=target_column, | |
| flag=None, | |
| repeat_all_years=False, | |
| is_panel=is_panel, | |
| ) | |
| metrics_table_test, _, fig_test = plot_actual_vs_predicted( | |
| X_test[date_col], | |
| y_test, | |
| predtest, | |
| model, | |
| target_column=target_column, | |
| flag=None, | |
| repeat_all_years=False, | |
| is_panel=is_panel, | |
| ) | |
| metrics_table_train = metrics_table_train.set_index("Metric").transpose() | |
| metrics_table_train.index = ["Train"] | |
| metrics_table_test = metrics_table_test.set_index("Metric").transpose() | |
| metrics_table_test.index = ["test"] | |
| metrics_table = np.round( | |
| pd.concat([metrics_table_train, metrics_table_test]), 2 | |
| ) | |
| st.markdown("Result Overview") | |
| st.dataframe(np.round(metrics_table, 2), use_container_width=True) | |
| st.subheader("Actual vs Predicted Plot Train") | |
| st.plotly_chart(fig_train, use_container_width=True) | |
| st.subheader("Actual vs Predicted Plot Test") | |
| st.plotly_chart(fig_test, use_container_width=True) | |
| st.markdown("## Residual Analysis") | |
| columns = st.columns(2) | |
| Xtrain1 = X_train.copy() | |
| with columns[0]: | |
| fig = plot_residual_predicted(y_train, model.predict(Xtrain1), Xtrain1) | |
| st.plotly_chart(fig) | |
| with columns[1]: | |
| st.empty() | |
| fig = qqplot(y_train, model.predict(X_train)) | |
| st.plotly_chart(fig) | |
| with columns[0]: | |
| fig = residual_distribution(y_train, model.predict(X_train)) | |
| st.pyplot(fig) | |
| update_db("6_AI_Model_Result.py") | |
| elif auth_status == False: | |
| st.error("Username/Password is incorrect") | |
| try: | |
| username_forgot_pw, email_forgot_password, random_password = ( | |
| authenticator.forgot_password("Forgot password") | |
| ) | |
| if username_forgot_pw: | |
| st.success("New password sent securely") | |
| # Random password to be transferred to the user securely | |
| elif username_forgot_pw == False: | |
| st.error("Username not found") | |
| except Exception as e: | |
| st.error(e) | |