Spaces:
Sleeping
Sleeping
File size: 37,903 Bytes
4dc7e79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 |
"""
PaveCLIP: Complete CLIP Training Framework for Pavement Data
Supports ViT/ResNet encoders, BERT/custom text encoders, SigLIP, Multi-GPU training
"""
import os
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torchvision.transforms as transforms
from torchvision.models import resnet50, resnet101
import timm
from transformers import AutoTokenizer, AutoModel, BertModel, RobertaModel
from PIL import Image
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
import logging
from typing import Dict, List, Tuple, Optional, Union
import argparse
import time
import wandb
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class PavementDataset(Dataset):
"""
Dataset loader for pavement pretraining data with complex folder structure
"""
def __init__(self, data_dir: str, transform=None, tokenizer=None, max_length=77):
self.data_dir = Path(data_dir)
self.transform = transform
self.tokenizer = tokenizer
self.max_length = max_length
self.samples = []
logger.info(f"Loading dataset from {data_dir}")
self._load_dataset()
logger.info(f"Loaded {len(self.samples)} samples from {self._get_unique_images()} unique images")
def _load_dataset(self):
"""Load all JSON files and collect image-text pairs"""
json_files = list(self.data_dir.rglob("*.json"))
for json_file in json_files:
try:
with open(json_file, 'r') as f:
data = json.load(f)
# Handle different JSON structures
if isinstance(data, list):
# List of samples
for item in data:
self._process_sample(item, json_file.parent)
elif isinstance(data, dict):
# Single sample or nested structure
if "conversations" in data:
self._process_sample(data, json_file.parent)
else:
# Check if it's a collection
for key, value in data.items():
if isinstance(value, dict) and "conversations" in value:
self._process_sample(value, json_file.parent)
elif isinstance(value, list):
for item in value:
if isinstance(item, dict) and "conversations" in item:
self._process_sample(item, json_file.parent)
except Exception as e:
logger.warning(f"Error loading {json_file}: {e}")
def _process_sample(self, sample: dict, base_path: Path):
"""Process individual sample and extract image-text pair"""
try:
image_path = sample.get("image", "")
conversations = sample.get("conversations", [])
if not image_path or not conversations:
return
# Find text response from GPT
text = ""
for conv in conversations:
if conv.get("from") == "gpt":
text = conv.get("value", "")
break
if not text:
return
# Resolve image path (relative to base_path)
full_image_path = base_path / image_path
if not full_image_path.exists():
# Try different relative paths
for possible_base in [base_path, base_path.parent, base_path.parent.parent]:
test_path = possible_base / image_path
if test_path.exists():
full_image_path = test_path
break
if full_image_path.exists():
self.samples.append({
"image_path": str(full_image_path),
"text": text.strip(),
"id": sample.get("id", f"sample_{len(self.samples)}")
})
except Exception as e:
logger.warning(f"Error processing sample: {e}")
def _get_unique_images(self):
"""Get count of unique images"""
return len(set(sample["image_path"] for sample in self.samples))
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
sample = self.samples[idx]
# Load and transform image
try:
image = Image.open(sample["image_path"]).convert("RGB")
if self.transform:
image = self.transform(image)
except Exception as e:
logger.warning(f"Error loading image {sample['image_path']}: {e}")
# Return a black image as fallback
image = torch.zeros(3, 224, 224)
# Tokenize text
text = sample["text"]
if self.tokenizer:
tokens = self.tokenizer(
text,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
)
return {
"image": image,
"input_ids": tokens["input_ids"].squeeze(),
"attention_mask": tokens["attention_mask"].squeeze(),
"text": text
}
else:
return {
"image": image,
"text": text
}
class VisionEncoder(nn.Module):
"""Flexible vision encoder supporting ViT and ResNet architectures"""
def __init__(self, model_name: str, embed_dim: int = 512, pretrained: bool = True):
super().__init__()
self.model_name = model_name
self.embed_dim = embed_dim
self.expected_image_size = 224 # Default
# Try to determine architecture type
if any(arch in model_name.lower() for arch in ["vit", "deit", "swin", "beit", "cait"]):
self._setup_vit(model_name, pretrained)
elif "resnet" in model_name.lower():
self._setup_resnet(model_name, pretrained)
else:
# 🔧 GENERIC TIMM MODEL LOADING
self._setup_generic_timm(model_name, pretrained)
# Projection head
self.projection = nn.Linear(self.feature_dim, embed_dim)
def _setup_generic_timm(self, model_name: str, pretrained: bool):
"""Setup any TIMM model generically"""
try:
self.backbone = timm.create_model(
model_name,
pretrained=pretrained,
num_classes=0 # Remove classification head
)
# Auto-detect input size and feature dimension
self.feature_dim = None
test_sizes = [224, 288, 336, 384, 448, 512]
for test_size in test_sizes:
try:
with torch.no_grad():
dummy_input = torch.randn(1, 3, test_size, test_size)
features = self.backbone(dummy_input)
# Handle different output formats
if len(features.shape) > 2:
features = features.view(features.size(0), -1)
self.feature_dim = features.shape[1]
self.expected_image_size = test_size
logger.info(f"Generic model {model_name} expects {test_size}x{test_size} → {self.feature_dim}D")
break
except Exception:
continue
if self.feature_dim is None:
raise Exception("Could not determine model specifications")
except Exception as e:
logger.error(f"Failed to load {model_name}: {e}")
raise
def _setup_vit(self, model_name: str, pretrained: bool):
"""Setup Vision Transformer - works with any TIMM ViT model"""
# Known mappings for convenience
vit_mapping = {
"vit-b/16": "vit_base_patch16_224",
"vit-b/32": "vit_base_patch32_224",
"vit-l/14": "vit_large_patch14_224",
"vit-l/14@336": "vit_large_patch14_clip_336",
"vit-h/14": "vit_huge_patch14_clip_378"
}
# Use mapping if available, otherwise use model name directly
timm_name = vit_mapping.get(model_name.lower(), model_name)
try:
self.backbone = timm.create_model(
timm_name,
pretrained=pretrained,
num_classes=0
)
# 🔧 AUTO-DETECT input size by trying common sizes
self.feature_dim = None
test_sizes = [224, 336, 378, 384, 512] # Common ViT sizes
for test_size in test_sizes:
try:
with torch.no_grad():
dummy_input = torch.randn(1, 3, test_size, test_size)
features = self.backbone(dummy_input)
self.feature_dim = features.shape[1]
self.expected_image_size = test_size
logger.info(f"Model {timm_name} expects {test_size}x{test_size} input")
break
except Exception:
continue
if self.feature_dim is None:
raise Exception("Could not determine input size for model")
except Exception as e:
logger.warning(f"Failed to load {timm_name}: {e}")
logger.warning("Falling back to basic ViT")
self.backbone = timm.create_model("vit_base_patch16_224", pretrained=pretrained, num_classes=0)
self.feature_dim = 768
self.expected_image_size = 224
def _setup_resnet(self, model_name: str, pretrained: bool):
"""Setup ResNet"""
if "resnet50" in model_name.lower():
self.backbone = resnet50(pretrained=pretrained)
elif "resnet101" in model_name.lower():
self.backbone = resnet101(pretrained=pretrained)
else:
self.backbone = resnet50(pretrained=pretrained)
# Remove classification head
self.backbone = nn.Sequential(*list(self.backbone.children())[:-1])
self.feature_dim = 2048 # ResNet feature dimension
def forward(self, x):
features = self.backbone(x)
if len(features.shape) > 2:
features = features.view(features.size(0), -1)
return self.projection(features)
class TextEncoder(nn.Module):
"""Flexible text encoder supporting various transformer models"""
def __init__(self, model_name: str = "bert-base-uncased", embed_dim: int = 512,
max_length: int = 77, pretrained: bool = True):
super().__init__()
self.model_name = model_name
self.embed_dim = embed_dim
self.max_length = max_length
if not pretrained:
# Initialize from scratch
if "bert" in model_name:
from transformers import BertConfig
config = BertConfig(vocab_size=30522, max_position_embeddings=max_length)
self.transformer = BertModel(config)
else:
self.transformer = AutoModel.from_pretrained(model_name,
ignore_mismatched_sizes=True)
else:
self.transformer = AutoModel.from_pretrained(model_name)
# Get hidden dimension
self.hidden_dim = self.transformer.config.hidden_size
# Projection head
self.projection = nn.Linear(self.hidden_dim, embed_dim)
def forward(self, input_ids, attention_mask=None):
outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)
# Use [CLS] token or mean pooling
if hasattr(outputs, 'pooler_output') and outputs.pooler_output is not None:
features = outputs.pooler_output
else:
# Mean pooling over sequence length
features = outputs.last_hidden_state.mean(dim=1)
return self.projection(features)
class CLIPModel(nn.Module):
"""CLIP model with contrastive learning"""
def __init__(self, vision_model: str, text_model: str, embed_dim: int = 512,
temperature: float = 0.07, vision_pretrained: bool = True,
text_pretrained: bool = True):
super().__init__()
self.vision_encoder = VisionEncoder(vision_model, embed_dim, vision_pretrained)
self.text_encoder = TextEncoder(text_model, embed_dim, pretrained=text_pretrained)
# Temperature parameter for contrastive loss
self.temperature = nn.Parameter(torch.tensor(temperature))
def forward(self, images, input_ids, attention_mask=None):
# Encode images and text
image_features = self.vision_encoder(images)
text_features = self.text_encoder(input_ids, attention_mask)
# Normalize features
image_features = F.normalize(image_features, p=2, dim=1)
text_features = F.normalize(text_features, p=2, dim=1)
return image_features, text_features
def compute_loss(self, image_features, text_features):
"""Compute contrastive loss"""
batch_size = image_features.shape[0]
# Compute similarity matrix
logits = torch.matmul(image_features, text_features.T) / self.temperature
# Labels are diagonal (each image matches its corresponding text)
labels = torch.arange(batch_size, device=logits.device)
# Compute cross-entropy loss for both directions
loss_img = F.cross_entropy(logits, labels)
loss_txt = F.cross_entropy(logits.T, labels)
return (loss_img + loss_txt) / 2
class SigLIPModel(nn.Module):
"""SigLIP model with sigmoid loss instead of contrastive loss"""
def __init__(self, vision_model: str, text_model: str, embed_dim: int = 512,
temperature: float = 0.07, vision_pretrained: bool = True,
text_pretrained: bool = True):
super().__init__()
self.vision_encoder = VisionEncoder(vision_model, embed_dim, vision_pretrained)
self.text_encoder = TextEncoder(text_model, embed_dim, pretrained=text_pretrained)
# Temperature parameter
self.temperature = nn.Parameter(torch.tensor(temperature))
def forward(self, images, input_ids, attention_mask=None):
# Encode images and text
image_features = self.vision_encoder(images)
text_features = self.text_encoder(input_ids, attention_mask)
# Normalize features
image_features = F.normalize(image_features, p=2, dim=1)
text_features = F.normalize(text_features, p=2, dim=1)
return image_features, text_features
def compute_loss(self, image_features, text_features):
"""Compute SigLIP loss"""
batch_size = image_features.shape[0]
# Compute similarity matrix
logits = torch.matmul(image_features, text_features.T) / self.temperature
# Create positive and negative labels
labels = torch.eye(batch_size, device=logits.device)
labels = labels * 2 - 1 # Convert to -1/1 labels
# SigLIP loss: -log(sigmoid(z_i * y_i))
loss = -F.logsigmoid(logits * labels).mean()
return loss
class PaveCLIPTrainer:
"""Complete training framework for PaveCLIP"""
def __init__(self, config: Dict):
self.config = config
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.distributed = False
self.rank = 0
# Setup distributed training if specified
if config.get("distributed", False):
self._setup_distributed()
# Initialize model
self._setup_model()
# Setup data
self._setup_data()
# Setup optimization
self._setup_optimization()
# Setup logging
if config.get("wandb", False) and (not self.distributed or self.rank == 0):
wandb.init(project="paveclip", config=config)
def _setup_distributed(self):
"""Setup distributed training"""
self.distributed = True
self.rank = int(os.environ.get("LOCAL_RANK", 0))
self.world_size = int(os.environ.get("WORLD_SIZE", 1))
dist.init_process_group(backend="nccl")
torch.cuda.set_device(self.rank)
self.device = torch.device(f"cuda:{self.rank}")
logger.info(f"Initialized distributed training: rank {self.rank}/{self.world_size}")
def _setup_model(self):
"""Initialize the model"""
model_type = self.config.get("model_type", "clip").lower()
if model_type == "clip":
self.model = CLIPModel(
vision_model=self.config["vision_model"],
text_model=self.config["text_model"],
embed_dim=self.config.get("embed_dim", 512),
temperature=self.config.get("temperature", 0.07),
vision_pretrained=self.config.get("vision_pretrained", True),
text_pretrained=self.config.get("text_pretrained", True)
)
elif model_type == "siglip":
self.model = SigLIPModel(
vision_model=self.config["vision_model"],
text_model=self.config["text_model"],
embed_dim=self.config.get("embed_dim", 512),
temperature=self.config.get("temperature", 0.07),
vision_pretrained=self.config.get("vision_pretrained", True),
text_pretrained=self.config.get("text_pretrained", True)
)
else:
raise ValueError(f"Unsupported model type: {model_type}")
self.model = self.model.to(self.device)
# Wrap with DDP for distributed training
if hasattr(self, 'distributed') and self.distributed:
self.model = DDP(self.model, device_ids=[self.rank])
def _setup_data(self):
"""Setup data loaders"""
# Image transforms
if "vit" in self.config["vision_model"].lower():
image_size = 336 if "@336" in self.config["vision_model"] else 224
else:
image_size = 224
# Pavement-specific augmentations for robustness
train_transform = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomRotation(degrees=15), # Roads can be at angles
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.1, hue=0.05),
transforms.RandomGrayscale(p=0.1), # Some pavement images are grayscale
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
val_transform = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Tokenizer
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.config["text_model"])
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Dataset
train_dataset = PavementDataset(
self.config["data_dir"],
transform=train_transform,
tokenizer=self.tokenizer,
max_length=self.config.get("max_length", 77)
)
# Split for validation if specified
if self.config.get("val_split", 0.1) > 0:
val_size = int(len(train_dataset) * self.config["val_split"])
train_size = len(train_dataset) - val_size
train_dataset, val_dataset = torch.utils.data.random_split(
train_dataset, [train_size, val_size]
)
val_dataset.dataset.transform = val_transform
else:
val_dataset = None
# Data loaders
train_sampler = DistributedSampler(train_dataset) if hasattr(self, 'distributed') and self.distributed else None
self.train_loader = DataLoader(
train_dataset,
batch_size=self.config["batch_size"],
shuffle=(train_sampler is None),
sampler=train_sampler,
num_workers=self.config.get("num_workers", 4),
pin_memory=True,
drop_last=True
)
if val_dataset:
val_sampler = DistributedSampler(val_dataset) if hasattr(self, 'distributed') and self.distributed else None
self.val_loader = DataLoader(
val_dataset,
batch_size=self.config["batch_size"],
shuffle=False,
sampler=val_sampler,
num_workers=self.config.get("num_workers", 4),
pin_memory=True
)
else:
self.val_loader = None
logger.info(f"Training samples: {len(train_dataset)}")
if val_dataset:
logger.info(f"Validation samples: {len(val_dataset)}")
def _setup_optimization(self):
"""Setup optimizer and scheduler"""
# Pavement-specific optimization strategy
# Different learning rates for vision and text encoders
vision_params = []
text_params = []
other_params = []
model = self.model.module if hasattr(self.model, 'module') else self.model
for name, param in model.named_parameters():
if 'vision_encoder' in name:
vision_params.append(param)
elif 'text_encoder' in name:
text_params.append(param)
else:
other_params.append(param)
# Different learning rates for different components
param_groups = [
{'params': vision_params, 'lr': self.config["learning_rate"] * 0.1}, # Lower LR for vision
{'params': text_params, 'lr': self.config["learning_rate"]}, # Standard LR for text
{'params': other_params, 'lr': self.config["learning_rate"]} # Standard LR for others
]
self.optimizer = torch.optim.AdamW(
param_groups,
weight_decay=self.config.get("weight_decay", 0.01)
)
# Learning rate scheduler
total_steps = len(self.train_loader) * self.config["epochs"]
warmup_steps = int(total_steps * self.config.get("warmup_ratio", 0.1))
self.scheduler = torch.optim.lr_scheduler.OneCycleLR(
self.optimizer,
max_lr=[group['lr'] for group in param_groups],
total_steps=total_steps,
pct_start=warmup_steps / total_steps,
anneal_strategy='cos'
)
def train_epoch(self, epoch: int):
"""Train for one epoch"""
self.model.train()
if hasattr(self, 'distributed') and self.distributed:
self.train_loader.sampler.set_epoch(epoch)
total_loss = 0
num_batches = len(self.train_loader)
pbar = tqdm(self.train_loader, desc=f"Epoch {epoch+1}") if (not hasattr(self, 'distributed') or self.rank == 0) else self.train_loader
for batch_idx, batch in enumerate(pbar):
images = batch["image"].to(self.device, non_blocking=True)
input_ids = batch["input_ids"].to(self.device, non_blocking=True)
attention_mask = batch["attention_mask"].to(self.device, non_blocking=True)
# Forward pass
image_features, text_features = self.model(images, input_ids, attention_mask)
# Compute loss
loss = self.model.module.compute_loss(image_features, text_features) if hasattr(self.model, 'module') else self.model.compute_loss(image_features, text_features)
# Backward pass
self.optimizer.zero_grad()
loss.backward()
# Gradient clipping for stability
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.optimizer.step()
self.scheduler.step()
total_loss += loss.item()
# Update progress bar
if hasattr(pbar, 'set_postfix'):
pbar.set_postfix({
'loss': f'{loss.item():.4f}',
'avg_loss': f'{total_loss/(batch_idx+1):.4f}',
'lr': f'{self.scheduler.get_last_lr()[0]:.2e}'
})
# Log to wandb
if self.config.get("wandb", False) and (not hasattr(self, 'distributed') or self.rank == 0):
wandb.log({
"train_loss": loss.item(),
"learning_rate": self.scheduler.get_last_lr()[0],
"epoch": epoch,
"step": epoch * num_batches + batch_idx
})
return total_loss / num_batches
def validate(self, epoch: int):
"""Validate the model"""
if self.val_loader is None:
return None
self.model.eval()
total_loss = 0
with torch.no_grad():
for batch in self.val_loader:
images = batch["image"].to(self.device, non_blocking=True)
input_ids = batch["input_ids"].to(self.device, non_blocking=True)
attention_mask = batch["attention_mask"].to(self.device, non_blocking=True)
# Forward pass
image_features, text_features = self.model(images, input_ids, attention_mask)
# Compute loss
loss = self.model.module.compute_loss(image_features, text_features) if hasattr(self.model, 'module') else self.model.compute_loss(image_features, text_features)
total_loss += loss.item()
avg_loss = total_loss / len(self.val_loader)
if self.config.get("wandb", False) and (not hasattr(self, 'distributed') or self.rank == 0):
wandb.log({
"val_loss": avg_loss,
"epoch": epoch
})
return avg_loss
def train(self):
"""Main training loop"""
logger.info("Starting training...")
best_val_loss = float('inf')
for epoch in range(self.config["epochs"]):
# Train
train_loss = self.train_epoch(epoch)
# Validate
val_loss = self.validate(epoch)
# Log epoch results
if not hasattr(self, 'distributed') or self.rank == 0:
logger.info(f"Epoch {epoch+1}/{self.config['epochs']}")
logger.info(f"Train Loss: {train_loss:.4f}")
if val_loss is not None:
logger.info(f"Val Loss: {val_loss:.4f}")
# Save checkpoint
if (not hasattr(self, 'distributed') or self.rank == 0) and val_loss is not None and val_loss < best_val_loss:
best_val_loss = val_loss
self.save_checkpoint(epoch, is_best=True)
# Regular checkpoint
if (epoch + 1) % self.config.get("save_every", 10) == 0:
if not hasattr(self, 'distributed') or self.rank == 0:
self.save_checkpoint(epoch, is_best=False)
def save_checkpoint(self, epoch: int, is_best: bool = False):
"""Save model checkpoint"""
model_state = self.model.module.state_dict() if hasattr(self.model, 'module') else self.model.state_dict()
checkpoint = {
'epoch': epoch,
'model_state_dict': model_state,
'optimizer_state_dict': self.optimizer.state_dict(),
'config': self.config
}
filename = f"paveclip_epoch_{epoch+1}.pt"
if is_best:
filename = "paveclip_best.pt"
save_path = Path(self.config["output_dir"]) / filename
save_path.parent.mkdir(parents=True, exist_ok=True)
torch.save(checkpoint, save_path)
logger.info(f"Saved checkpoint: {save_path}")
class PaveCLIPEvaluator:
"""Evaluation utilities for PaveCLIP"""
def __init__(self, model_path: str, config: Dict):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.config = config
# Load model
checkpoint = torch.load(model_path, map_location=self.device)
model_config = checkpoint['config']
# Initialize model
if model_config.get("model_type", "clip").lower() == "clip":
self.model = CLIPModel(
vision_model=model_config["vision_model"],
text_model=model_config["text_model"],
embed_dim=model_config.get("embed_dim", 512)
)
else:
self.model = SigLIPModel(
vision_model=model_config["vision_model"],
text_model=model_config["text_model"],
embed_dim=model_config.get("embed_dim", 512)
)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model = self.model.to(self.device)
self.model.eval()
# Setup tokenizer and transforms
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_config["text_model"])
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Image transforms
#image_size = 336 if "@336" in model_config["vision_model"] else 224
expected = getattr(self.model.vision_encoder, "expected_image_size", 224)
self.transform = transforms.Compose([
transforms.Resize((expected, expected)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.image_size = expected # keep for later use
def encode_images(self, image_paths: List[str]) -> torch.Tensor:
"""Encode list of images"""
features = []
with torch.no_grad():
for img_path in image_paths:
image = Image.open(img_path).convert("RGB")
image = self.transform(image).unsqueeze(0).to(self.device)
img_features, _ = self.model(image, torch.zeros(1, 1).long().to(self.device))
features.append(img_features.cpu())
return torch.cat(features, dim=0)
def encode_texts(self, texts: List[str]) -> torch.Tensor:
"""Encode list of texts"""
tokens = self.tokenizer(
texts,
max_length=77,
padding='max_length',
truncation=True,
return_tensors='pt'
)
# with torch.no_grad():
# tokens = {k: v.to(self.device) for k, v in tokens.items()}
# dummy_images = torch.zeros(len(texts), 3, 224, 224).to(self.device)
# _, text_features = self.model(dummy_images, tokens["input_ids"], tokens["attention_mask"])
# In PaveCLIPEvaluator.encode_texts
with torch.no_grad():
tokens = {k: v.to(self.device) for k, v in tokens.items()}
text_features = self.model.text_encoder(tokens["input_ids"], tokens["attention_mask"])
text_features = F.normalize(text_features, p=2, dim=1)
return text_features.cpu()
def zero_shot_classification(self, image_paths: List[str], class_texts: List[str]) -> Dict:
"""Perform zero-shot classification"""
logger.info("Performing zero-shot classification...")
# Encode images and texts
image_features = self.encode_images(image_paths)
text_features = self.encode_texts(class_texts)
# Compute similarities
similarities = torch.matmul(image_features, text_features.T)
predictions = similarities.argmax(dim=1)
# Compute accuracy if ground truth is available
results = {
"predictions": predictions.tolist(),
"similarities": similarities.tolist(),
"class_texts": class_texts
}
return results
def image_retrieval(self, query_text: str, image_paths: List[str], top_k: int = 5) -> List[Tuple[str, float]]:
"""Retrieve top-k images for a text query"""
logger.info(f"Retrieving top-{top_k} images for query: '{query_text}'")
# Encode query and images
text_features = self.encode_texts([query_text])
image_features = self.encode_images(image_paths)
# Compute similarities
similarities = torch.matmul(text_features, image_features.T).squeeze()
# Get top-k results
top_k_indices = similarities.argsort(descending=True)[:top_k]
results = []
for idx in top_k_indices:
results.append((image_paths[idx.item()], similarities[idx.item()].item()))
return results
def main():
"""Main training script"""
parser = argparse.ArgumentParser(description="Train PaveCLIP model")
# Model arguments
parser.add_argument("--model_type", default="clip", choices=["clip", "siglip"],
help="Model type to train")
parser.add_argument("--vision_model", default="vit-b/16",
help="Vision encoder (e.g., vit-b/16, vit-l/14@336, resnet50)")
parser.add_argument("--text_model", default="bert-base-uncased",
help="Text encoder (e.g., bert-base-uncased, roberta-base)")
parser.add_argument("--embed_dim", type=int, default=512,
help="Embedding dimension")
parser.add_argument("--vision_pretrained", action="store_true",
help="Use pretrained vision encoder")
parser.add_argument("--text_pretrained", action="store_true",
help="Use pretrained text encoder")
# Data arguments
parser.add_argument("--data_dir", required=True,
help="Path to Pavement_Pretraining_Data directory")
parser.add_argument("--val_split", type=float, default=0.1,
help="Validation split ratio")
parser.add_argument("--max_length", type=int, default=77,
help="Maximum text length")
# Training arguments
parser.add_argument("--batch_size", type=int, default=64,
help="Batch size")
parser.add_argument("--epochs", type=int, default=50,
help="Number of epochs")
parser.add_argument("--learning_rate", type=float, default=1e-4,
help="Learning rate")
parser.add_argument("--weight_decay", type=float, default=0.01,
help="Weight decay")
parser.add_argument("--temperature", type=float, default=0.07,
help="Temperature parameter")
parser.add_argument("--warmup_ratio", type=float, default=0.1,
help="Warmup ratio")
# System arguments
parser.add_argument("--num_workers", type=int, default=4,
help="Number of data loader workers")
parser.add_argument("--output_dir", default="./checkpoints",
help="Output directory for checkpoints")
parser.add_argument("--save_every", type=int, default=10,
help="Save checkpoint every N epochs")
parser.add_argument("--wandb", action="store_true",
help="Use Weights & Biases logging")
parser.add_argument("--distributed", action="store_true",
help="Enable distributed training")
args = parser.parse_args()
# Convert args to config dict
config = vars(args)
# Initialize trainer
trainer = PaveCLIPTrainer(config)
# Start training
trainer.train()
# Cleanup distributed training
if config.get("distributed", False):
dist.destroy_process_group()
if __name__ == "__main__":
main()
# python paveclip_training.py \
# --vision_model vit-b/16 \
# --text_model distilbert-base-uncased \
# --vision_pretrained \
# --text_pretrained \
# --data_dir ./Pavement_Pretraining_Data \
# --batch_size 64 \
# --epochs 100 \
# --wandb
# torchrun --nproc_per_node=4 paveclip_training.py \
# --distributed \
# [other args] |