Spaces:
Running
on
T4
Running
on
T4
| import gradio as gr | |
| import os, gc, torch | |
| from datetime import datetime | |
| from huggingface_hub import hf_hub_download | |
| from pynvml import * | |
| nvmlInit() | |
| gpu_h = nvmlDeviceGetHandleByIndex(0) | |
| ctx_limit = 1024 | |
| title = "RWKV-4-Raven-7B-v9-Eng99%-Other1%-20230412-ctx8192" | |
| os.environ["RWKV_JIT_ON"] = '1' | |
| os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) | |
| from rwkv.model import RWKV | |
| model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth") | |
| model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16') | |
| from rwkv.utils import PIPELINE, PIPELINE_ARGS | |
| pipeline = PIPELINE(model, "20B_tokenizer.json") | |
| def generate_prompt(instruction, input=None): | |
| if input: | |
| return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
| # Instruction: | |
| {instruction} | |
| # Input: | |
| {input} | |
| # Response: | |
| """ | |
| else: | |
| return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
| # Instruction: | |
| {instruction} | |
| # Response: | |
| """ | |
| def evaluate( | |
| instruction, | |
| input=None, | |
| token_count=200, | |
| temperature=1.0, | |
| top_p=0.7, | |
| presencePenalty = 0.1, | |
| countPenalty = 0.1, | |
| ): | |
| args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), | |
| alpha_frequency = countPenalty, | |
| alpha_presence = presencePenalty, | |
| token_ban = [], # ban the generation of some tokens | |
| token_stop = [0]) # stop generation whenever you see any token here | |
| instruction = instruction.strip() | |
| input = input.strip() | |
| ctx = generate_prompt(instruction, input) | |
| gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) | |
| print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') | |
| all_tokens = [] | |
| out_last = 0 | |
| out_str = '' | |
| occurrence = {} | |
| state = None | |
| for i in range(int(token_count)): | |
| out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) | |
| for n in occurrence: | |
| out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) | |
| token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) | |
| if token in args.token_stop: | |
| break | |
| all_tokens += [token] | |
| if token not in occurrence: | |
| occurrence[token] = 1 | |
| else: | |
| occurrence[token] += 1 | |
| tmp = pipeline.decode(all_tokens[out_last:]) | |
| if '\ufffd' not in tmp: | |
| out_str += tmp | |
| yield out_str.strip() | |
| out_last = i + 1 | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| yield out_str.strip() | |
| examples = [ | |
| ["Tell me about ravens.", "", 150, 1.0, 0.5, 0.4, 0.4], | |
| ["Write a python function to mine 1 BTC, with details and comments.", "", 150, 1.0, 0.5, 0.2, 0.2], | |
| ["Write a song about ravens.", "", 150, 1.0, 0.5, 0.4, 0.4], | |
| ["Explain the following metaphor: Life is like cats.", "", 150, 1.0, 0.5, 0.4, 0.4], | |
| ["Write a story using the following information", "A man named Alex chops a tree down", 150, 1.0, 0.5, 0.4, 0.4], | |
| ["Generate a list of adjectives that describe a person as brave.", "", 150, 1.0, 0.5, 0.4, 0.4], | |
| ["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 150, 1.0, 0.5, 0.4, 0.4], | |
| ] | |
| g = gr.Interface( | |
| fn=evaluate, | |
| inputs=[ | |
| gr.components.Textbox(lines=2, label="Instruction", value="Tell me about ravens."), | |
| gr.components.Textbox(lines=2, label="Input", placeholder="none"), | |
| gr.components.Slider(minimum=10, maximum=200, step=10, value=150), # token_count | |
| gr.components.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0), # temperature | |
| gr.components.Slider(minimum=0, maximum=1, step=0.05, value=0.5), # top_p | |
| gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # presencePenalty | |
| gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # countPenalty | |
| ], | |
| outputs=[ | |
| gr.inputs.Textbox( | |
| lines=5, | |
| label="Output", | |
| ) | |
| ], | |
| title=f"🐦Raven - {title}", | |
| description="Raven is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM) finetuned to follow instructions. *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen 1024. It is finetuned on [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), codealpaca and more. For best results, *** keep you prompt short and clear ***.", | |
| examples=examples, | |
| cache_examples=False, | |
| ) | |
| g.queue(concurrency_count=1, max_size=10) | |
| g.launch(share=False) | |