save image embeddings in gradio session to avoid repeatedly encoding
Browse files- app.py +10 -8
- segment_anything/onnx/predictor_onnx.py +7 -2
- segment_anything/predictor.py +14 -6
app.py
CHANGED
|
@@ -107,6 +107,7 @@ def reset(session_state):
|
|
| 107 |
session_state['box_list'] = []
|
| 108 |
session_state['ori_image'] = None
|
| 109 |
session_state['image_with_prompt'] = None
|
|
|
|
| 110 |
return None, session_state
|
| 111 |
|
| 112 |
|
|
@@ -116,6 +117,7 @@ def reset_all(session_state):
|
|
| 116 |
session_state['box_list'] = []
|
| 117 |
session_state['ori_image'] = None
|
| 118 |
session_state['image_with_prompt'] = None
|
|
|
|
| 119 |
return None, None, session_state
|
| 120 |
|
| 121 |
|
|
@@ -145,8 +147,8 @@ def on_image_upload(
|
|
| 145 |
session_state['ori_image'] = copy.deepcopy(image)
|
| 146 |
session_state['image_with_prompt'] = copy.deepcopy(image)
|
| 147 |
print("Image changed")
|
| 148 |
-
|
| 149 |
-
|
| 150 |
|
| 151 |
return image, session_state
|
| 152 |
|
|
@@ -188,13 +190,11 @@ def segment_with_points(
|
|
| 188 |
)
|
| 189 |
image = session_state['image_with_prompt']
|
| 190 |
|
| 191 |
-
nd_image = np.array(session_state['ori_image'])
|
| 192 |
-
predictor.set_image(nd_image)
|
| 193 |
-
|
| 194 |
if ENABLE_ONNX:
|
| 195 |
coord_np = np.array(session_state['coord_list'])[None]
|
| 196 |
label_np = np.array(session_state['label_list'])[None]
|
| 197 |
masks, scores, _ = predictor.predict(
|
|
|
|
| 198 |
point_coords=coord_np,
|
| 199 |
point_labels=label_np,
|
| 200 |
)
|
|
@@ -204,6 +204,7 @@ def segment_with_points(
|
|
| 204 |
coord_np = np.array(session_state['coord_list'])
|
| 205 |
label_np = np.array(session_state['label_list'])
|
| 206 |
masks, scores, logits = predictor.predict(
|
|
|
|
| 207 |
point_coords=coord_np,
|
| 208 |
point_labels=label_np,
|
| 209 |
num_multimask_outputs=4,
|
|
@@ -271,18 +272,18 @@ def segment_with_box(
|
|
| 271 |
)
|
| 272 |
|
| 273 |
box_np = np.array(box)
|
| 274 |
-
nd_image = np.array(session_state['ori_image'])
|
| 275 |
-
predictor.set_image(nd_image)
|
| 276 |
if ENABLE_ONNX:
|
| 277 |
point_coords = box_np.reshape(2, 2)[None]
|
| 278 |
point_labels = np.array([2, 3])[None]
|
| 279 |
masks, _, _ = predictor.predict(
|
|
|
|
| 280 |
point_coords=point_coords,
|
| 281 |
point_labels=point_labels,
|
| 282 |
)
|
| 283 |
annotations = masks[:, 0, :, :]
|
| 284 |
else:
|
| 285 |
masks, scores, _ = predictor.predict(
|
|
|
|
| 286 |
box=box_np,
|
| 287 |
num_multimask_outputs=1,
|
| 288 |
)
|
|
@@ -312,7 +313,8 @@ with gr.Blocks(css=css, title="EdgeSAM") as demo:
|
|
| 312 |
'label_list': [],
|
| 313 |
'box_list': [],
|
| 314 |
'ori_image': None,
|
| 315 |
-
'image_with_prompt': None
|
|
|
|
| 316 |
})
|
| 317 |
|
| 318 |
with gr.Row():
|
|
|
|
| 107 |
session_state['box_list'] = []
|
| 108 |
session_state['ori_image'] = None
|
| 109 |
session_state['image_with_prompt'] = None
|
| 110 |
+
session_state['feature'] = None
|
| 111 |
return None, session_state
|
| 112 |
|
| 113 |
|
|
|
|
| 117 |
session_state['box_list'] = []
|
| 118 |
session_state['ori_image'] = None
|
| 119 |
session_state['image_with_prompt'] = None
|
| 120 |
+
session_state['feature'] = None
|
| 121 |
return None, None, session_state
|
| 122 |
|
| 123 |
|
|
|
|
| 147 |
session_state['ori_image'] = copy.deepcopy(image)
|
| 148 |
session_state['image_with_prompt'] = copy.deepcopy(image)
|
| 149 |
print("Image changed")
|
| 150 |
+
nd_image = np.array(image)
|
| 151 |
+
session_state['feature'] = predictor.set_image(nd_image)
|
| 152 |
|
| 153 |
return image, session_state
|
| 154 |
|
|
|
|
| 190 |
)
|
| 191 |
image = session_state['image_with_prompt']
|
| 192 |
|
|
|
|
|
|
|
|
|
|
| 193 |
if ENABLE_ONNX:
|
| 194 |
coord_np = np.array(session_state['coord_list'])[None]
|
| 195 |
label_np = np.array(session_state['label_list'])[None]
|
| 196 |
masks, scores, _ = predictor.predict(
|
| 197 |
+
features=session_state['feature'],
|
| 198 |
point_coords=coord_np,
|
| 199 |
point_labels=label_np,
|
| 200 |
)
|
|
|
|
| 204 |
coord_np = np.array(session_state['coord_list'])
|
| 205 |
label_np = np.array(session_state['label_list'])
|
| 206 |
masks, scores, logits = predictor.predict(
|
| 207 |
+
features=session_state['feature'],
|
| 208 |
point_coords=coord_np,
|
| 209 |
point_labels=label_np,
|
| 210 |
num_multimask_outputs=4,
|
|
|
|
| 272 |
)
|
| 273 |
|
| 274 |
box_np = np.array(box)
|
|
|
|
|
|
|
| 275 |
if ENABLE_ONNX:
|
| 276 |
point_coords = box_np.reshape(2, 2)[None]
|
| 277 |
point_labels = np.array([2, 3])[None]
|
| 278 |
masks, _, _ = predictor.predict(
|
| 279 |
+
features=session_state['feature'],
|
| 280 |
point_coords=point_coords,
|
| 281 |
point_labels=point_labels,
|
| 282 |
)
|
| 283 |
annotations = masks[:, 0, :, :]
|
| 284 |
else:
|
| 285 |
masks, scores, _ = predictor.predict(
|
| 286 |
+
features=session_state['feature'],
|
| 287 |
box=box_np,
|
| 288 |
num_multimask_outputs=1,
|
| 289 |
)
|
|
|
|
| 313 |
'label_list': [],
|
| 314 |
'box_list': [],
|
| 315 |
'ori_image': None,
|
| 316 |
+
'image_with_prompt': None,
|
| 317 |
+
'feature': None
|
| 318 |
})
|
| 319 |
|
| 320 |
with gr.Row():
|
segment_anything/onnx/predictor_onnx.py
CHANGED
|
@@ -60,17 +60,22 @@ class SamPredictorONNX:
|
|
| 60 |
self.features = outputs[0]
|
| 61 |
self.is_image_set = True
|
| 62 |
|
|
|
|
|
|
|
| 63 |
def predict(
|
| 64 |
self,
|
|
|
|
| 65 |
point_coords: Optional[np.ndarray] = None,
|
| 66 |
point_labels: Optional[np.ndarray] = None,
|
| 67 |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 68 |
-
if not self.is_image_set:
|
| 69 |
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
|
|
|
|
|
|
| 70 |
|
| 71 |
point_coords = self.transform.apply_coords(point_coords, self.original_size)
|
| 72 |
outputs = self.decoder.run(None, {
|
| 73 |
-
'image_embeddings':
|
| 74 |
'point_coords': point_coords.astype(np.float32),
|
| 75 |
'point_labels': point_labels.astype(np.float32)
|
| 76 |
})
|
|
|
|
| 60 |
self.features = outputs[0]
|
| 61 |
self.is_image_set = True
|
| 62 |
|
| 63 |
+
return self.features
|
| 64 |
+
|
| 65 |
def predict(
|
| 66 |
self,
|
| 67 |
+
features: np.ndarray = None,
|
| 68 |
point_coords: Optional[np.ndarray] = None,
|
| 69 |
point_labels: Optional[np.ndarray] = None,
|
| 70 |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 71 |
+
if features is None and not self.is_image_set:
|
| 72 |
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
| 73 |
+
if features is None:
|
| 74 |
+
features = self.features
|
| 75 |
|
| 76 |
point_coords = self.transform.apply_coords(point_coords, self.original_size)
|
| 77 |
outputs = self.decoder.run(None, {
|
| 78 |
+
'image_embeddings': features,
|
| 79 |
'point_coords': point_coords.astype(np.float32),
|
| 80 |
'point_labels': point_labels.astype(np.float32)
|
| 81 |
})
|
segment_anything/predictor.py
CHANGED
|
@@ -37,7 +37,7 @@ class SamPredictor:
|
|
| 37 |
self,
|
| 38 |
image: np.ndarray,
|
| 39 |
image_format: str = "RGB",
|
| 40 |
-
) ->
|
| 41 |
"""
|
| 42 |
Calculates the image embeddings for the provided image, allowing
|
| 43 |
masks to be predicted with the 'predict' method.
|
|
@@ -59,14 +59,14 @@ class SamPredictor:
|
|
| 59 |
input_image_torch = torch.as_tensor(input_image, device=self.device)
|
| 60 |
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
|
| 61 |
|
| 62 |
-
self.set_torch_image(input_image_torch, image.shape[:2])
|
| 63 |
|
| 64 |
@torch.no_grad()
|
| 65 |
def set_torch_image(
|
| 66 |
self,
|
| 67 |
transformed_image: torch.Tensor,
|
| 68 |
original_image_size: Tuple[int, ...],
|
| 69 |
-
) ->
|
| 70 |
"""
|
| 71 |
Calculates the image embeddings for the provided image, allowing
|
| 72 |
masks to be predicted with the 'predict' method. Expects the input
|
|
@@ -91,8 +91,11 @@ class SamPredictor:
|
|
| 91 |
self.features = self.model.image_encoder(input_image)
|
| 92 |
self.is_image_set = True
|
| 93 |
|
|
|
|
|
|
|
| 94 |
def predict(
|
| 95 |
self,
|
|
|
|
| 96 |
point_coords: Optional[np.ndarray] = None,
|
| 97 |
point_labels: Optional[np.ndarray] = None,
|
| 98 |
box: Optional[np.ndarray] = None,
|
|
@@ -131,9 +134,12 @@ class SamPredictor:
|
|
| 131 |
of masks and H=W=256. These low resolution logits can be passed to
|
| 132 |
a subsequent iteration as mask input.
|
| 133 |
"""
|
| 134 |
-
if not self.is_image_set:
|
| 135 |
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
| 136 |
|
|
|
|
|
|
|
|
|
|
| 137 |
# Transform input prompts
|
| 138 |
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
|
| 139 |
if point_coords is not None:
|
|
@@ -153,6 +159,7 @@ class SamPredictor:
|
|
| 153 |
mask_input_torch = mask_input_torch[None, :, :, :]
|
| 154 |
|
| 155 |
masks, iou_predictions, low_res_masks = self.predict_torch(
|
|
|
|
| 156 |
coords_torch,
|
| 157 |
labels_torch,
|
| 158 |
box_torch,
|
|
@@ -170,6 +177,7 @@ class SamPredictor:
|
|
| 170 |
@torch.no_grad()
|
| 171 |
def predict_torch(
|
| 172 |
self,
|
|
|
|
| 173 |
point_coords: Optional[torch.Tensor],
|
| 174 |
point_labels: Optional[torch.Tensor],
|
| 175 |
boxes: Optional[torch.Tensor] = None,
|
|
@@ -211,7 +219,7 @@ class SamPredictor:
|
|
| 211 |
of masks and H=W=256. These low res logits can be passed to
|
| 212 |
a subsequent iteration as mask input.
|
| 213 |
"""
|
| 214 |
-
if not self.is_image_set:
|
| 215 |
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
| 216 |
|
| 217 |
if point_coords is not None:
|
|
@@ -228,7 +236,7 @@ class SamPredictor:
|
|
| 228 |
|
| 229 |
# Predict masks
|
| 230 |
low_res_masks, iou_predictions = self.model.mask_decoder(
|
| 231 |
-
image_embeddings=
|
| 232 |
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
| 233 |
sparse_prompt_embeddings=sparse_embeddings,
|
| 234 |
dense_prompt_embeddings=dense_embeddings,
|
|
|
|
| 37 |
self,
|
| 38 |
image: np.ndarray,
|
| 39 |
image_format: str = "RGB",
|
| 40 |
+
) -> torch.Tensor:
|
| 41 |
"""
|
| 42 |
Calculates the image embeddings for the provided image, allowing
|
| 43 |
masks to be predicted with the 'predict' method.
|
|
|
|
| 59 |
input_image_torch = torch.as_tensor(input_image, device=self.device)
|
| 60 |
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
|
| 61 |
|
| 62 |
+
return self.set_torch_image(input_image_torch, image.shape[:2])
|
| 63 |
|
| 64 |
@torch.no_grad()
|
| 65 |
def set_torch_image(
|
| 66 |
self,
|
| 67 |
transformed_image: torch.Tensor,
|
| 68 |
original_image_size: Tuple[int, ...],
|
| 69 |
+
) -> torch.Tensor:
|
| 70 |
"""
|
| 71 |
Calculates the image embeddings for the provided image, allowing
|
| 72 |
masks to be predicted with the 'predict' method. Expects the input
|
|
|
|
| 91 |
self.features = self.model.image_encoder(input_image)
|
| 92 |
self.is_image_set = True
|
| 93 |
|
| 94 |
+
return self.features
|
| 95 |
+
|
| 96 |
def predict(
|
| 97 |
self,
|
| 98 |
+
features: torch.Tensor = None,
|
| 99 |
point_coords: Optional[np.ndarray] = None,
|
| 100 |
point_labels: Optional[np.ndarray] = None,
|
| 101 |
box: Optional[np.ndarray] = None,
|
|
|
|
| 134 |
of masks and H=W=256. These low resolution logits can be passed to
|
| 135 |
a subsequent iteration as mask input.
|
| 136 |
"""
|
| 137 |
+
if features is None and not self.is_image_set:
|
| 138 |
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
| 139 |
|
| 140 |
+
if features is None:
|
| 141 |
+
features = self.features
|
| 142 |
+
|
| 143 |
# Transform input prompts
|
| 144 |
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
|
| 145 |
if point_coords is not None:
|
|
|
|
| 159 |
mask_input_torch = mask_input_torch[None, :, :, :]
|
| 160 |
|
| 161 |
masks, iou_predictions, low_res_masks = self.predict_torch(
|
| 162 |
+
features,
|
| 163 |
coords_torch,
|
| 164 |
labels_torch,
|
| 165 |
box_torch,
|
|
|
|
| 177 |
@torch.no_grad()
|
| 178 |
def predict_torch(
|
| 179 |
self,
|
| 180 |
+
features: torch.Tensor,
|
| 181 |
point_coords: Optional[torch.Tensor],
|
| 182 |
point_labels: Optional[torch.Tensor],
|
| 183 |
boxes: Optional[torch.Tensor] = None,
|
|
|
|
| 219 |
of masks and H=W=256. These low res logits can be passed to
|
| 220 |
a subsequent iteration as mask input.
|
| 221 |
"""
|
| 222 |
+
if features is None and not self.is_image_set:
|
| 223 |
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
| 224 |
|
| 225 |
if point_coords is not None:
|
|
|
|
| 236 |
|
| 237 |
# Predict masks
|
| 238 |
low_res_masks, iou_predictions = self.model.mask_decoder(
|
| 239 |
+
image_embeddings=features,
|
| 240 |
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
| 241 |
sparse_prompt_embeddings=sparse_embeddings,
|
| 242 |
dense_prompt_embeddings=dense_embeddings,
|