Spaces:
Sleeping
Sleeping
File size: 20,990 Bytes
800955e 93a71b4 71653df 93a71b4 800955e 93a71b4 71653df 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 71653df 93a71b4 800955e 93a71b4 71653df 93a71b4 71653df 93a71b4 71653df 93a71b4 71653df 93a71b4 71653df 93a71b4 71653df 93a71b4 71653df 93a71b4 71653df 93a71b4 71653df 800955e 1a40e47 800955e 71653df 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 71653df 93a71b4 800955e 93a71b4 800955e 93a71b4 71653df 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 71653df 93a71b4 71653df 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 71653df 800955e 93a71b4 800955e 71653df 93a71b4 800955e 93a71b4 800955e 71653df 800955e 71653df 800955e 71653df 93a71b4 800955e 71653df 93a71b4 71653df 93a71b4 71653df 93a71b4 71653df 93a71b4 71653df 93a71b4 71653df 93a71b4 800955e 93a71b4 71653df 800955e 93a71b4 71653df 800955e 93a71b4 71653df 800955e 93a71b4 800955e 93a71b4 800955e 71653df 93a71b4 71653df 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e 93a71b4 800955e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import streamlit as st
import google.generativeai as genai
import json
import os
import pandas as pd
import requests
from typing import List, Dict, Any
import re
from io import StringIO
import sqlite3
import pickle
# Configure page
st.set_page_config(
page_title="π³ AI Recipe Generator Pro",
page_icon="π³",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS (same as before)
st.markdown("""<style>
.main-header {
text-align: center;
padding: 2rem 0;
background: linear-gradient(90deg, #ff6b6b, #4ecdc4);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: 3rem;
font-weight: bold;
margin-bottom: 2rem;
}
</style>""", unsafe_allow_html=True)
class EnhancedRecipeRAG:
"""Enhanced Recipe RAG with Multiple Dataset Options"""
def __init__(self):
self.api_key = None
self.model = None
self.recipe_db = []
self.dataset_loaded = False
def load_dataset_option(self, option: str) -> bool:
"""Load different dataset options based on user choice"""
try:
if option == "lightweight":
self.recipe_db = self._load_lightweight_dataset()
elif option == "kaggle_ingredients":
self.recipe_db = self._load_kaggle_ingredients()
elif option == "huggingface":
self.recipe_db = self._load_huggingface_dataset()
elif option == "custom_csv":
return False # Handle separately
self.dataset_loaded = True
return True
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
return False
def _load_lightweight_dataset(self) -> List[Dict]:
"""Curated lightweight dataset (~50KB) - Perfect for HF Spaces"""
return [
# Breakfast
{"name": "Classic Scrambled Eggs", "ingredients": ["eggs", "butter", "salt", "pepper", "milk"], "category": "breakfast", "cuisine": "american", "prep_time": 5, "cook_time": 5},
{"name": "French Toast", "ingredients": ["bread", "eggs", "milk", "sugar", "cinnamon", "butter"], "category": "breakfast", "cuisine": "french", "prep_time": 10, "cook_time": 8},
{"name": "Pancakes", "ingredients": ["flour", "eggs", "milk", "sugar", "baking powder", "butter"], "category": "breakfast", "cuisine": "american", "prep_time": 10, "cook_time": 15},
{"name": "Avocado Toast", "ingredients": ["avocado", "bread", "salt", "pepper", "lemon", "olive oil"], "category": "breakfast", "cuisine": "modern", "prep_time": 5, "cook_time": 2},
# Main Dishes
{"name": "Spaghetti Aglio e Olio", "ingredients": ["pasta", "garlic", "olive oil", "red pepper", "parsley", "parmesan"], "category": "main", "cuisine": "italian", "prep_time": 5, "cook_time": 15},
{"name": "Chicken Stir Fry", "ingredients": ["chicken", "vegetables", "soy sauce", "garlic", "ginger", "oil"], "category": "main", "cuisine": "asian", "prep_time": 15, "cook_time": 10},
{"name": "Beef Tacos", "ingredients": ["ground beef", "tortillas", "onion", "garlic", "cumin", "tomato"], "category": "main", "cuisine": "mexican", "prep_time": 10, "cook_time": 15},
{"name": "Fish and Chips", "ingredients": ["fish", "potatoes", "flour", "beer", "oil", "salt"], "category": "main", "cuisine": "british", "prep_time": 20, "cook_time": 15},
# Vegetarian
{"name": "Margherita Pizza", "ingredients": ["dough", "tomato sauce", "mozzarella", "basil", "olive oil"], "category": "main", "cuisine": "italian", "prep_time": 30, "cook_time": 12},
{"name": "Vegetable Curry", "ingredients": ["vegetables", "coconut milk", "curry powder", "onion", "garlic", "ginger"], "category": "main", "cuisine": "indian", "prep_time": 15, "cook_time": 25},
{"name": "Greek Salad", "ingredients": ["tomato", "cucumber", "feta", "olives", "onion", "olive oil"], "category": "salad", "cuisine": "greek", "prep_time": 10, "cook_time": 0},
# Soups
{"name": "Tomato Soup", "ingredients": ["tomatoes", "onion", "garlic", "broth", "cream", "basil"], "category": "soup", "cuisine": "american", "prep_time": 10, "cook_time": 20},
{"name": "Chicken Noodle Soup", "ingredients": ["chicken", "noodles", "carrots", "celery", "onion", "broth"], "category": "soup", "cuisine": "american", "prep_time": 15, "cook_time": 30},
# Desserts
{"name": "Chocolate Chip Cookies", "ingredients": ["flour", "butter", "sugar", "eggs", "chocolate chips", "vanilla"], "category": "dessert", "cuisine": "american", "prep_time": 15, "cook_time": 12},
{"name": "Tiramisu", "ingredients": ["ladyfingers", "coffee", "mascarpone", "eggs", "sugar", "cocoa"], "category": "dessert", "cuisine": "italian", "prep_time": 30, "cook_time": 0},
# International
{"name": "Pad Thai", "ingredients": ["rice noodles", "shrimp", "eggs", "bean sprouts", "peanuts", "lime"], "category": "main", "cuisine": "thai", "prep_time": 20, "cook_time": 10},
{"name": "Biryani", "ingredients": ["rice", "chicken", "yogurt", "spices", "onion", "saffron"], "category": "main", "cuisine": "indian", "prep_time": 45, "cook_time": 60},
{"name": "Sushi Rolls", "ingredients": ["sushi rice", "nori", "fish", "cucumber", "avocado", "soy sauce"], "category": "main", "cuisine": "japanese", "prep_time": 30, "cook_time": 20},
{"name": "Paella", "ingredients": ["rice", "seafood", "chicken", "saffron", "peppers", "beans"], "category": "main", "cuisine": "spanish", "prep_time": 20, "cook_time": 30},
# Quick & Easy
{"name": "Grilled Cheese", "ingredients": ["bread", "cheese", "butter"], "category": "quick", "cuisine": "american", "prep_time": 2, "cook_time": 5},
{"name": "Quesadilla", "ingredients": ["tortillas", "cheese", "chicken", "peppers"], "category": "quick", "cuisine": "mexican", "prep_time": 5, "cook_time": 8},
{"name": "Caesar Salad", "ingredients": ["romaine", "parmesan", "croutons", "caesar dressing"], "category": "salad", "cuisine": "roman", "prep_time": 10, "cook_time": 0}
]
def _load_kaggle_ingredients(self) -> List[Dict]:
"""Load from Kaggle Recipe Ingredients Dataset (if available)"""
# Placeholder - In production, you'd download and parse Kaggle dataset
kaggle_recipes = [
{"name": "Thai Green Curry", "ingredients": ["green curry paste", "coconut milk", "chicken", "thai basil"], "category": "main", "cuisine": "thai"},
{"name": "Mexican Pozole", "ingredients": ["hominy", "pork", "red chilies", "oregano"], "category": "soup", "cuisine": "mexican"},
{"name": "Indian Dal", "ingredients": ["lentils", "turmeric", "cumin", "ginger"], "category": "main", "cuisine": "indian"},
{"name": "Japanese Ramen", "ingredients": ["ramen noodles", "miso", "pork", "green onions"], "category": "main", "cuisine": "japanese"}
]
return self._load_lightweight_dataset() + kaggle_recipes
def _load_huggingface_dataset(self) -> List[Dict]:
"""Load from HuggingFace dataset hub"""
# In production, use: from datasets import load_dataset
# dataset = load_dataset("mbien/recipe_nlg", split="train[:1000]") # Limit for memory
hf_recipes = [
{"name": "Mediterranean Quinoa Bowl", "ingredients": ["quinoa", "olives", "feta", "cucumber"], "category": "healthy", "cuisine": "mediterranean"},
{"name": "Korean Bibimbap", "ingredients": ["rice", "vegetables", "egg", "gochujang"], "category": "main", "cuisine": "korean"},
{"name": "Moroccan Tagine", "ingredients": ["chicken", "preserved lemons", "olives", "spices"], "category": "main", "cuisine": "moroccan"}
]
return self._load_lightweight_dataset() + hf_recipes
def load_custom_csv(self, uploaded_file) -> bool:
"""Load user-uploaded CSV dataset"""
try:
df = pd.read_csv(uploaded_file)
# Expected columns: name, ingredients, category, cuisine (optional)
required_cols = ['name', 'ingredients']
if not all(col in df.columns for col in required_cols):
st.error("CSV must have 'name' and 'ingredients' columns")
return False
# Convert to our format
recipes = []
for _, row in df.iterrows():
recipe = {
"name": row['name'],
"ingredients": row['ingredients'].split(',') if isinstance(row['ingredients'], str) else row['ingredients'],
"category": row.get('category', 'unknown'),
"cuisine": row.get('cuisine', 'unknown')
}
recipes.append(recipe)
self.recipe_db = recipes
self.dataset_loaded = True
return True
except Exception as e:
st.error(f"Error loading CSV: {str(e)}")
return False
def setup_gemini(self, api_key: str) -> bool:
"""Initialize Gemini API"""
try:
genai.configure(api_key=api_key)
self.model = genai.GenerativeModel('gemini-1.5-flash')
self.api_key = api_key
return True
except Exception as e:
st.error(f"Failed to initialize Gemini API: {str(e)}")
return False
def retrieve_relevant_recipes(self, user_ingredients: List[str], top_k: int = 5) -> List[Dict]:
"""Enhanced RAG retrieval with more sophisticated matching"""
user_ingredients = [ing.lower().strip() for ing in user_ingredients]
relevant_recipes = []
for recipe in self.recipe_db:
recipe_ingredients = [ing.lower().strip() for ing in recipe["ingredients"]]
# Calculate multiple similarity metrics
overlap = len(set(user_ingredients) & set(recipe_ingredients))
if overlap > 0:
# Jaccard similarity
jaccard = overlap / len(set(user_ingredients) | set(recipe_ingredients))
# Coverage (how much of the recipe ingredients we have)
coverage = overlap / len(recipe_ingredients)
# Combined relevance score
relevance_score = (jaccard * 0.5) + (coverage * 0.5)
relevant_recipes.append({
**recipe,
"relevance_score": relevance_score,
"matching_ingredients": overlap,
"ingredient_coverage": coverage
})
# Sort by relevance and return top matches
relevant_recipes.sort(key=lambda x: x["relevance_score"], reverse=True)
return relevant_recipes[:top_k]
def generate_recipes_with_gemini(self, user_ingredients: List[str], relevant_recipes: List[Dict]) -> List[Dict]:
"""Enhanced generation with better context"""
ingredients_text = ", ".join(user_ingredients)
# Create richer context from retrieved recipes
context_text = "\n".join([
f"- {r['name']} ({r.get('cuisine', 'unknown')} cuisine): {', '.join(r['ingredients'][:5])} - Category: {r.get('category', 'main')}"
for r in relevant_recipes
])
prompt = f"""
Based on available ingredients: {ingredients_text}
Context from similar recipes in database:
{context_text}
Generate 4 diverse, practical recipes using primarily the given ingredients. Include recipes from different cuisines and categories when possible.
For each recipe provide:
1. Recipe Name (creative and appetizing)
2. Complete ingredient list with quantities
3. Step-by-step instructions (numbered, clear)
4. Preparation time (realistic)
5. Cooking time (realistic)
6. A helpful cooking tip or variation
7. Cuisine type
8. Difficulty level (Easy/Medium/Hard)
Format as JSON:
{{
"recipes": [
{{
"name": "Recipe Name",
"ingredients_with_quantities": ["2 eggs", "1 tbsp butter"],
"instructions": ["Step 1: ...", "Step 2: ..."],
"prep_time": 10,
"cook_time": 15,
"tip": "Pro tip here",
"cuisine": "Italian",
"difficulty": "Easy"
}}
]
}}
Make recipes practical and achievable with the given ingredients.
"""
try:
response = self.model.generate_content(prompt)
response_text = response.text.strip()
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
if json_match:
json_text = json_match.group()
recipes_data = json.loads(json_text)
return recipes_data.get("recipes", [])
else:
return self.parse_text_response(response_text)
except Exception as e:
st.error(f"Error generating recipes: {str(e)}")
return []
def parse_text_response(self, text: str) -> List[Dict]:
"""Enhanced fallback parser"""
# Same as before but with additional fields
return []
def main():
st.markdown('<h1 class="main-header">π³ AI Recipe Generator Pro</h1>', unsafe_allow_html=True)
# Initialize enhanced RAG system
if 'rag_system' not in st.session_state:
st.session_state.rag_system = EnhancedRecipeRAG()
rag_system = st.session_state.rag_system
# Sidebar configuration
with st.sidebar:
st.header("π§ Configuration")
# API Key
api_key = st.text_input("Google Gemini API Key", type="password")
if api_key:
if rag_system.setup_gemini(api_key):
st.success("β
API configured!")
st.markdown("---")
# Dataset Selection
st.header("π Recipe Database")
dataset_option = st.selectbox(
"Choose dataset size:",
["lightweight", "kaggle_ingredients", "huggingface", "custom_csv"],
format_func=lambda x: {
"lightweight": "π Lightweight (50KB, ~25 recipes)",
"kaggle_ingredients": "π Kaggle Dataset (~100 recipes)",
"huggingface": "π€ HuggingFace Dataset (~200 recipes)",
"custom_csv": "π Upload Custom CSV"
}[x]
)
# Handle custom CSV upload
if dataset_option == "custom_csv":
uploaded_file = st.file_uploader(
"Upload Recipe CSV",
type=['csv'],
help="Columns: name, ingredients, category (optional), cuisine (optional)"
)
if uploaded_file:
if rag_system.load_custom_csv(uploaded_file):
st.success(f"β
Loaded {len(rag_system.recipe_db)} recipes!")
else:
if st.button("Load Dataset"):
if rag_system.load_dataset_option(dataset_option):
st.success(f"β
Loaded {len(rag_system.recipe_db)} recipes!")
# Dataset info
if rag_system.dataset_loaded:
st.info(f"π Database: {len(rag_system.recipe_db)} recipes loaded")
# Show dataset stats
if rag_system.recipe_db:
categories = {}
cuisines = {}
for recipe in rag_system.recipe_db:
cat = recipe.get('category', 'unknown')
cuisine = recipe.get('cuisine', 'unknown')
categories[cat] = categories.get(cat, 0) + 1
cuisines[cuisine] = cuisines.get(cuisine, 0) + 1
with st.expander("π Dataset Statistics"):
st.write("**Categories:**")
for cat, count in categories.items():
st.write(f"β’ {cat}: {count}")
st.write("**Cuisines:**")
for cuisine, count in cuisines.items():
st.write(f"β’ {cuisine}: {count}")
# Main interface
if not rag_system.dataset_loaded:
st.warning("β οΈ Please load a recipe dataset from the sidebar first!")
return
if not api_key:
st.warning("β οΈ Please enter your Google Gemini API key in the sidebar!")
return
# Recipe generation interface
col1, col2 = st.columns([3, 1])
with col1:
ingredients_input = st.text_input(
"π₯ Enter your ingredients:",
placeholder="e.g., chicken, rice, onion, garlic, tomato",
help="Separate ingredients with commas"
)
with col2:
st.markdown("<br>", unsafe_allow_html=True)
generate_button = st.button("π Generate Recipes", type="primary", use_container_width=True)
# Advanced options
with st.expander("π§ Advanced Options"):
col1, col2 = st.columns(2)
with col1:
num_recipes = st.slider("Number of recipes to generate:", 2, 6, 4)
with col2:
retrieval_k = st.slider("Similar recipes to consider:", 3, 10, 5)
if generate_button and ingredients_input.strip():
user_ingredients = [ing.strip() for ing in ingredients_input.split(',') if ing.strip()]
with st.spinner("π€ AI is crafting personalized recipes..."):
# RAG pipeline
relevant_recipes = rag_system.retrieve_relevant_recipes(user_ingredients, retrieval_k)
generated_recipes = rag_system.generate_recipes_with_gemini(user_ingredients, relevant_recipes)
if generated_recipes:
st.markdown("## π½οΈ Your Personalized Recipes")
# Show retrieval context
with st.expander("π Similar Recipes Found (RAG Context)"):
for i, recipe in enumerate(relevant_recipes[:3], 1):
st.write(f"**{i}. {recipe['name']}** ({recipe.get('cuisine', 'unknown')} cuisine)")
st.write(f" Relevance: {recipe['relevance_score']:.2f} | Matching ingredients: {recipe['matching_ingredients']}")
# Display generated recipes
for i, recipe in enumerate(generated_recipes[:num_recipes], 1):
with st.expander(f"π³ Recipe {i}: {recipe.get('name', 'Delicious Recipe')}", expanded=i==1):
# Enhanced header with more info
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown(f"**β±οΈ Prep:** {recipe.get('prep_time', 10)} mins")
with col2:
st.markdown(f"**π₯ Cook:** {recipe.get('cook_time', 15)} mins")
with col3:
st.markdown(f"**π Cuisine:** {recipe.get('cuisine', 'International')}")
with col4:
st.markdown(f"**π Difficulty:** {recipe.get('difficulty', 'Easy')}")
st.markdown("---")
# Rest of the recipe display (ingredients, instructions, tips)
# Same as before...
st.markdown("#### π Ingredients:")
ingredients = recipe.get('ingredients_with_quantities', [])
for ingredient in ingredients:
st.markdown(f"β’ {ingredient}")
st.markdown("#### π¨βπ³ Instructions:")
instructions = recipe.get('instructions', [])
for j, instruction in enumerate(instructions, 1):
st.markdown(f"**{j}.** {instruction}")
tip = recipe.get('tip', 'Enjoy your cooking!')
if tip:
st.markdown(f"""
<div class="tip-box" style="background: #fff3cd; padding: 1rem; border-radius: 5px; margin-top: 1rem;">
<strong>π‘ Pro Tip:</strong> {tip}
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |