吴吴大庸
commited on
Commit
·
c098bbc
1
Parent(s):
0a7f9b3
used open sora official space to replace our local repo
Browse files- .DS_Store +0 -0
- README.md +6 -5
- app.py +57 -161
- configs/.DS_Store +0 -0
- configs/dit/train/16x256x256.py +1 -1
- configs/dit/train/1x256x256.py +1 -1
- configs/latte/train/16x256x256.py +1 -1
- configs/opensora-v1-1/.DS_Store +0 -0
- configs/opensora-v1-1/inference/sample-ref.py +9 -17
- configs/opensora-v1-1/inference/sample.py +2 -2
- configs/opensora-v1-1/train/benchmark.py +1 -1
- configs/opensora-v1-1/train/image.py +1 -1
- configs/opensora-v1-1/train/stage1.py +1 -1
- configs/opensora-v1-1/train/stage2.py +1 -1
- configs/opensora-v1-1/train/stage3.py +1 -1
- configs/opensora-v1-1/train/video.py +1 -1
- configs/opensora/inference/16x256x256.py +1 -1
- configs/opensora/inference/16x512x512.py +1 -1
- configs/opensora/inference/64x512x512.py +1 -1
- configs/opensora/train/16x256x256-mask.py +1 -1
- configs/opensora/train/16x256x256-spee.py +1 -1
- configs/opensora/train/16x256x256.py +1 -1
- configs/opensora/train/16x512x512.py +1 -1
- configs/opensora/train/360x512x512.py +1 -1
- configs/opensora/train/64x512x512-sp.py +1 -1
- configs/opensora/train/64x512x512.py +1 -1
- configs/pixart/train/16x256x256.py +1 -1
- configs/pixart/train/1x512x512.py +1 -1
- configs/pixart/train/64x512x512.py +1 -1
- requirements.txt +1 -1
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title: Sora
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Open Sora
|
| 3 |
+
emoji: ⚡
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.25.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -19,12 +19,9 @@ import spaces
|
|
| 19 |
import torch
|
| 20 |
|
| 21 |
import gradio as gr
|
| 22 |
-
from tempfile import NamedTemporaryFile
|
| 23 |
-
import datetime
|
| 24 |
|
| 25 |
|
| 26 |
-
|
| 27 |
-
MODEL_TYPES = ["v1.1-stage2", "v1.1-stage3"]
|
| 28 |
CONFIG_MAP = {
|
| 29 |
"v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py",
|
| 30 |
"v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
|
|
@@ -34,41 +31,12 @@ HF_STDIT_MAP = {
|
|
| 34 |
"v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
|
| 35 |
}
|
| 36 |
RESOLUTION_MAP = {
|
| 37 |
-
"144p":
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
},
|
| 44 |
-
"240p": {
|
| 45 |
-
"16:9": (426, 240),
|
| 46 |
-
"9:16": (240, 426),
|
| 47 |
-
"4:3": (370, 278),
|
| 48 |
-
"3:4": (278, 370),
|
| 49 |
-
"1:1": (320, 320),
|
| 50 |
-
},
|
| 51 |
-
"360p": {
|
| 52 |
-
"16:9": (640, 360),
|
| 53 |
-
"9:16": (360, 640),
|
| 54 |
-
"4:3": (554, 416),
|
| 55 |
-
"3:4": (416, 554),
|
| 56 |
-
"1:1": (480, 480),
|
| 57 |
-
},
|
| 58 |
-
"480p": {
|
| 59 |
-
"16:9": (854, 480),
|
| 60 |
-
"9:16": (480, 854),
|
| 61 |
-
"4:3": (740, 555),
|
| 62 |
-
"3:4": (555, 740),
|
| 63 |
-
"1:1": (640, 640),
|
| 64 |
-
},
|
| 65 |
-
"720p": {
|
| 66 |
-
"16:9": (1280, 720),
|
| 67 |
-
"9:16": (720, 1280),
|
| 68 |
-
"4:3": (1108, 832),
|
| 69 |
-
"3:4": (832, 1110),
|
| 70 |
-
"1:1": (960, 960),
|
| 71 |
-
},
|
| 72 |
}
|
| 73 |
|
| 74 |
|
|
@@ -255,9 +223,9 @@ def build_models(model_type, config, enable_optimization=False):
|
|
| 255 |
# build stdit
|
| 256 |
# we load model from HuggingFace directly so that we don't need to
|
| 257 |
# handle model download logic in HuggingFace Space
|
| 258 |
-
from
|
| 259 |
|
| 260 |
-
stdit =
|
| 261 |
HF_STDIT_MAP[model_type],
|
| 262 |
enable_flash_attn=enable_optimization,
|
| 263 |
trust_remote_code=True,
|
|
@@ -334,53 +302,37 @@ device = torch.device("cuda")
|
|
| 334 |
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
|
| 335 |
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
| 339 |
with torch.inference_mode():
|
| 340 |
# ======================
|
| 341 |
# 1. Preparation
|
| 342 |
# ======================
|
| 343 |
# parse the inputs
|
| 344 |
-
resolution = RESOLUTION_MAP[resolution]
|
| 345 |
-
|
| 346 |
-
# gather args from config
|
| 347 |
-
num_frames = config.num_frames
|
| 348 |
-
frame_interval = config.frame_interval
|
| 349 |
-
fps = config.fps
|
| 350 |
-
condition_frame_length = config.condition_frame_length
|
| 351 |
-
|
| 352 |
# compute number of loops
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
else:
|
| 357 |
-
num_seconds = int(length.rstrip('s'))
|
| 358 |
-
if num_seconds <= 16:
|
| 359 |
-
num_frames = num_seconds * fps // frame_interval
|
| 360 |
-
num_loop = 1
|
| 361 |
-
else:
|
| 362 |
-
config.num_frames = 16
|
| 363 |
-
total_number_of_frames = num_seconds * fps / frame_interval
|
| 364 |
-
num_loop = math.ceil((total_number_of_frames - condition_frame_length) / (num_frames - condition_frame_length))
|
| 365 |
|
| 366 |
# prepare model args
|
| 367 |
-
if config.num_frames == 1:
|
| 368 |
-
fps = IMG_FPS
|
| 369 |
-
|
| 370 |
model_args = dict()
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
model_args["
|
| 379 |
-
model_args["
|
| 380 |
-
model_args["
|
|
|
|
|
|
|
| 381 |
|
| 382 |
# compute latent size
|
| 383 |
-
input_size = (num_frames, *resolution)
|
| 384 |
latent_size = vae.get_latent_size(input_size)
|
| 385 |
|
| 386 |
# process prompt
|
|
@@ -390,32 +342,24 @@ def run_inference(mode, prompt_text, resolution, aspect_ratio, length, reference
|
|
| 390 |
video_clips = []
|
| 391 |
|
| 392 |
# prepare mask strategy
|
| 393 |
-
if mode == "
|
| 394 |
mask_strategy = [None]
|
| 395 |
-
elif mode == "
|
| 396 |
-
|
| 397 |
-
mask_strategy = ['0']
|
| 398 |
-
else:
|
| 399 |
-
mask_strategy = [None]
|
| 400 |
else:
|
| 401 |
raise ValueError(f"Invalid mode: {mode}")
|
| 402 |
|
| 403 |
# =========================
|
| 404 |
# 2. Load reference images
|
| 405 |
# =========================
|
| 406 |
-
if mode == "
|
| 407 |
refs_x = collect_references_batch([None], vae, resolution)
|
| 408 |
-
elif mode == "
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
with NamedTemporaryFile(suffix=".jpg") as temp_file:
|
| 415 |
-
im.save(temp_file.name)
|
| 416 |
-
refs_x = collect_references_batch([temp_file.name], vae, resolution)
|
| 417 |
-
else:
|
| 418 |
-
refs_x = collect_references_batch([None], vae, resolution)
|
| 419 |
else:
|
| 420 |
raise ValueError(f"Invalid mode: {mode}")
|
| 421 |
|
|
@@ -442,20 +386,11 @@ def run_inference(mode, prompt_text, resolution, aspect_ratio, length, reference
|
|
| 442 |
mask_strategy[j] += ";"
|
| 443 |
mask_strategy[
|
| 444 |
j
|
| 445 |
-
] += f"{loop_i},{len(refs)-1},-{condition_frame_length},0,{condition_frame_length}"
|
| 446 |
|
| 447 |
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
|
| 448 |
|
| 449 |
# 4.6. diffusion sampling
|
| 450 |
-
# hack to update num_sampling_steps and cfg_scale
|
| 451 |
-
scheduler_kwargs = config.scheduler.copy()
|
| 452 |
-
scheduler_kwargs.pop('type')
|
| 453 |
-
scheduler_kwargs['num_sampling_steps'] = sampling_steps
|
| 454 |
-
scheduler_kwargs['cfg_scale'] = cfg_scale
|
| 455 |
-
|
| 456 |
-
scheduler.__init__(
|
| 457 |
-
**scheduler_kwargs
|
| 458 |
-
)
|
| 459 |
samples = scheduler.sample(
|
| 460 |
stdit,
|
| 461 |
text_encoder,
|
|
@@ -475,20 +410,10 @@ def run_inference(mode, prompt_text, resolution, aspect_ratio, length, reference
|
|
| 475 |
for i in range(1, num_loop)
|
| 476 |
]
|
| 477 |
video = torch.cat(video_clips_list, dim=1)
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
save_path = os.path.join(args.output, f"output_{timestamp}")
|
| 481 |
-
saved_path = save_sample(video, save_path=save_path, fps=config.fps // config.frame_interval)
|
| 482 |
return saved_path
|
| 483 |
|
| 484 |
-
@spaces.GPU(duration=200)
|
| 485 |
-
def run_image_inference(prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale):
|
| 486 |
-
return run_inference("Text2Image", prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale)
|
| 487 |
-
|
| 488 |
-
@spaces.GPU(duration=200)
|
| 489 |
-
def run_video_inference(prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale):
|
| 490 |
-
return run_inference("Text2Video", prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale)
|
| 491 |
-
|
| 492 |
|
| 493 |
def main():
|
| 494 |
# create demo
|
|
@@ -517,54 +442,31 @@ def main():
|
|
| 517 |
|
| 518 |
with gr.Row():
|
| 519 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
prompt_text = gr.Textbox(
|
| 521 |
label="Prompt",
|
| 522 |
placeholder="Describe your video here",
|
| 523 |
lines=4,
|
| 524 |
)
|
| 525 |
resolution = gr.Radio(
|
| 526 |
-
choices=["144p", "240p", "360p", "480p", "720p"],
|
| 527 |
-
value="
|
| 528 |
label="Resolution",
|
| 529 |
)
|
| 530 |
-
aspect_ratio = gr.Radio(
|
| 531 |
-
choices=["9:16", "16:9", "3:4", "4:3", "1:1"],
|
| 532 |
-
value="9:16",
|
| 533 |
-
label="Aspect Ratio (H:W)",
|
| 534 |
-
)
|
| 535 |
length = gr.Radio(
|
| 536 |
-
choices=["2s", "4s", "8s"
|
| 537 |
value="2s",
|
| 538 |
-
label="Video Length
|
| 539 |
info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
|
| 540 |
)
|
| 541 |
|
| 542 |
-
with gr.Row():
|
| 543 |
-
seed = gr.Slider(
|
| 544 |
-
value=1024,
|
| 545 |
-
minimum=1,
|
| 546 |
-
maximum=2048,
|
| 547 |
-
step=1,
|
| 548 |
-
label="Seed"
|
| 549 |
-
)
|
| 550 |
-
|
| 551 |
-
sampling_steps = gr.Slider(
|
| 552 |
-
value=100,
|
| 553 |
-
minimum=1,
|
| 554 |
-
maximum=200,
|
| 555 |
-
step=1,
|
| 556 |
-
label="Sampling steps"
|
| 557 |
-
)
|
| 558 |
-
cfg_scale = gr.Slider(
|
| 559 |
-
value=7.0,
|
| 560 |
-
minimum=0.0,
|
| 561 |
-
maximum=10.0,
|
| 562 |
-
step=0.1,
|
| 563 |
-
label="CFG Scale"
|
| 564 |
-
)
|
| 565 |
-
|
| 566 |
reference_image = gr.Image(
|
| 567 |
-
label="Reference Image (
|
| 568 |
)
|
| 569 |
|
| 570 |
with gr.Column():
|
|
@@ -574,18 +476,12 @@ def main():
|
|
| 574 |
)
|
| 575 |
|
| 576 |
with gr.Row():
|
| 577 |
-
|
| 578 |
-
video_gen_button = gr.Button("Generate video")
|
| 579 |
|
| 580 |
|
| 581 |
-
|
| 582 |
-
fn=
|
| 583 |
-
inputs=[prompt_text, resolution,
|
| 584 |
-
outputs=reference_image
|
| 585 |
-
)
|
| 586 |
-
video_gen_button.click(
|
| 587 |
-
fn=run_video_inference,
|
| 588 |
-
inputs=[prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale],
|
| 589 |
outputs=output_video
|
| 590 |
)
|
| 591 |
|
|
|
|
| 19 |
import torch
|
| 20 |
|
| 21 |
import gradio as gr
|
|
|
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
+
MODEL_TYPES = ["v1.1"]
|
|
|
|
| 25 |
CONFIG_MAP = {
|
| 26 |
"v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py",
|
| 27 |
"v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
|
|
|
|
| 31 |
"v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
|
| 32 |
}
|
| 33 |
RESOLUTION_MAP = {
|
| 34 |
+
"144p": (144, 256),
|
| 35 |
+
"240p": (240, 426),
|
| 36 |
+
"360p": (360, 480),
|
| 37 |
+
"480p": (480, 858),
|
| 38 |
+
"720p": (720, 1280),
|
| 39 |
+
"1080p": (1080, 1920)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
}
|
| 41 |
|
| 42 |
|
|
|
|
| 223 |
# build stdit
|
| 224 |
# we load model from HuggingFace directly so that we don't need to
|
| 225 |
# handle model download logic in HuggingFace Space
|
| 226 |
+
from transformers import AutoModel
|
| 227 |
|
| 228 |
+
stdit = AutoModel.from_pretrained(
|
| 229 |
HF_STDIT_MAP[model_type],
|
| 230 |
enable_flash_attn=enable_optimization,
|
| 231 |
trust_remote_code=True,
|
|
|
|
| 302 |
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
|
| 303 |
|
| 304 |
|
| 305 |
+
@spaces.GPU(duration=200)
|
| 306 |
+
def run_inference(mode, prompt_text, resolution, length, reference_image):
|
| 307 |
with torch.inference_mode():
|
| 308 |
# ======================
|
| 309 |
# 1. Preparation
|
| 310 |
# ======================
|
| 311 |
# parse the inputs
|
| 312 |
+
resolution = RESOLUTION_MAP[resolution]
|
| 313 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
# compute number of loops
|
| 315 |
+
num_seconds = int(length.rstrip('s'))
|
| 316 |
+
total_number_of_frames = num_seconds * config.fps / config.frame_interval
|
| 317 |
+
num_loop = math.ceil(total_number_of_frames / config.num_frames)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
# prepare model args
|
|
|
|
|
|
|
|
|
|
| 320 |
model_args = dict()
|
| 321 |
+
height = torch.tensor([resolution[0]], device=device, dtype=dtype)
|
| 322 |
+
width = torch.tensor([resolution[1]], device=device, dtype=dtype)
|
| 323 |
+
num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype)
|
| 324 |
+
ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)
|
| 325 |
+
if config.num_frames == 1:
|
| 326 |
+
config.fps = IMG_FPS
|
| 327 |
+
fps = torch.tensor([config.fps], device=device, dtype=dtype)
|
| 328 |
+
model_args["height"] = height
|
| 329 |
+
model_args["width"] = width
|
| 330 |
+
model_args["num_frames"] = num_frames
|
| 331 |
+
model_args["ar"] = ar
|
| 332 |
+
model_args["fps"] = fps
|
| 333 |
|
| 334 |
# compute latent size
|
| 335 |
+
input_size = (config.num_frames, *resolution)
|
| 336 |
latent_size = vae.get_latent_size(input_size)
|
| 337 |
|
| 338 |
# process prompt
|
|
|
|
| 342 |
video_clips = []
|
| 343 |
|
| 344 |
# prepare mask strategy
|
| 345 |
+
if mode == "Text2Video":
|
| 346 |
mask_strategy = [None]
|
| 347 |
+
elif mode == "Image2Video":
|
| 348 |
+
mask_strategy = ['0']
|
|
|
|
|
|
|
|
|
|
| 349 |
else:
|
| 350 |
raise ValueError(f"Invalid mode: {mode}")
|
| 351 |
|
| 352 |
# =========================
|
| 353 |
# 2. Load reference images
|
| 354 |
# =========================
|
| 355 |
+
if mode == "Text2Video":
|
| 356 |
refs_x = collect_references_batch([None], vae, resolution)
|
| 357 |
+
elif mode == "Image2Video":
|
| 358 |
+
# save image to disk
|
| 359 |
+
from PIL import Image
|
| 360 |
+
im = Image.fromarray(reference_image)
|
| 361 |
+
im.save("test.jpg")
|
| 362 |
+
refs_x = collect_references_batch(["test.jpg"], vae, resolution)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
else:
|
| 364 |
raise ValueError(f"Invalid mode: {mode}")
|
| 365 |
|
|
|
|
| 386 |
mask_strategy[j] += ";"
|
| 387 |
mask_strategy[
|
| 388 |
j
|
| 389 |
+
] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}"
|
| 390 |
|
| 391 |
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
|
| 392 |
|
| 393 |
# 4.6. diffusion sampling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
samples = scheduler.sample(
|
| 395 |
stdit,
|
| 396 |
text_encoder,
|
|
|
|
| 410 |
for i in range(1, num_loop)
|
| 411 |
]
|
| 412 |
video = torch.cat(video_clips_list, dim=1)
|
| 413 |
+
save_path = f"{args.output}/sample"
|
| 414 |
+
saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True)
|
|
|
|
|
|
|
| 415 |
return saved_path
|
| 416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
| 418 |
def main():
|
| 419 |
# create demo
|
|
|
|
| 442 |
|
| 443 |
with gr.Row():
|
| 444 |
with gr.Column():
|
| 445 |
+
mode = gr.Radio(
|
| 446 |
+
choices=["Text2Video", "Image2Video"],
|
| 447 |
+
value="Text2Video",
|
| 448 |
+
label="Usage",
|
| 449 |
+
info="Choose your usage scenario",
|
| 450 |
+
)
|
| 451 |
prompt_text = gr.Textbox(
|
| 452 |
label="Prompt",
|
| 453 |
placeholder="Describe your video here",
|
| 454 |
lines=4,
|
| 455 |
)
|
| 456 |
resolution = gr.Radio(
|
| 457 |
+
choices=["144p", "240p", "360p", "480p", "720p", "1080p"],
|
| 458 |
+
value="144p",
|
| 459 |
label="Resolution",
|
| 460 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
length = gr.Radio(
|
| 462 |
+
choices=["2s", "4s", "8s"],
|
| 463 |
value="2s",
|
| 464 |
+
label="Video Length",
|
| 465 |
info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
|
| 466 |
)
|
| 467 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
reference_image = gr.Image(
|
| 469 |
+
label="Reference Image (only used for Image2Video)",
|
| 470 |
)
|
| 471 |
|
| 472 |
with gr.Column():
|
|
|
|
| 476 |
)
|
| 477 |
|
| 478 |
with gr.Row():
|
| 479 |
+
submit_button = gr.Button("Generate video")
|
|
|
|
| 480 |
|
| 481 |
|
| 482 |
+
submit_button.click(
|
| 483 |
+
fn=run_inference,
|
| 484 |
+
inputs=[mode, prompt_text, resolution, length, reference_image],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
outputs=output_video
|
| 486 |
)
|
| 487 |
|
configs/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
configs/dit/train/16x256x256.py
CHANGED
|
@@ -18,7 +18,7 @@ sp_size = 1
|
|
| 18 |
model = dict(
|
| 19 |
type="DiT-XL/2",
|
| 20 |
from_pretrained="DiT-XL-2-256x256.pt",
|
| 21 |
-
|
| 22 |
enable_layernorm_kernel=True,
|
| 23 |
)
|
| 24 |
vae = dict(
|
|
|
|
| 18 |
model = dict(
|
| 19 |
type="DiT-XL/2",
|
| 20 |
from_pretrained="DiT-XL-2-256x256.pt",
|
| 21 |
+
enable_flashattn=True,
|
| 22 |
enable_layernorm_kernel=True,
|
| 23 |
)
|
| 24 |
vae = dict(
|
configs/dit/train/1x256x256.py
CHANGED
|
@@ -19,7 +19,7 @@ sp_size = 1
|
|
| 19 |
model = dict(
|
| 20 |
type="DiT-XL/2",
|
| 21 |
no_temporal_pos_emb=True,
|
| 22 |
-
|
| 23 |
enable_layernorm_kernel=True,
|
| 24 |
)
|
| 25 |
vae = dict(
|
|
|
|
| 19 |
model = dict(
|
| 20 |
type="DiT-XL/2",
|
| 21 |
no_temporal_pos_emb=True,
|
| 22 |
+
enable_flashattn=True,
|
| 23 |
enable_layernorm_kernel=True,
|
| 24 |
)
|
| 25 |
vae = dict(
|
configs/latte/train/16x256x256.py
CHANGED
|
@@ -17,7 +17,7 @@ sp_size = 1
|
|
| 17 |
# Define model
|
| 18 |
model = dict(
|
| 19 |
type="Latte-XL/2",
|
| 20 |
-
|
| 21 |
enable_layernorm_kernel=True,
|
| 22 |
)
|
| 23 |
vae = dict(
|
|
|
|
| 17 |
# Define model
|
| 18 |
model = dict(
|
| 19 |
type="Latte-XL/2",
|
| 20 |
+
enable_flashattn=True,
|
| 21 |
enable_layernorm_kernel=True,
|
| 22 |
)
|
| 23 |
vae = dict(
|
configs/opensora-v1-1/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
configs/opensora-v1-1/inference/sample-ref.py
CHANGED
|
@@ -14,34 +14,26 @@ prompt = [
|
|
| 14 |
|
| 15 |
loop = 2
|
| 16 |
condition_frame_length = 4
|
| 17 |
-
# (
|
| 18 |
-
# loop id, [the loop index of the condition image or video]
|
| 19 |
-
# reference id, [the index of the condition image or video in the reference_path]
|
| 20 |
-
# reference start, [the start frame of the condition image or video]
|
| 21 |
-
# target start, [the location to insert]
|
| 22 |
-
# length, [the number of frames to insert]
|
| 23 |
-
# edit_ratio [the edit rate of the condition image or video]
|
| 24 |
-
# )
|
| 25 |
-
# See https://github.com/hpcaitech/Open-Sora/blob/main/docs/config.md#advanced-inference-config for more details
|
| 26 |
-
# See https://github.com/hpcaitech/Open-Sora/blob/main/docs/commands.md#inference-with-open-sora-11 for more examples
|
| 27 |
-
mask_strategy = [
|
| 28 |
-
"0,0,0,0,8,0.3",
|
| 29 |
-
None,
|
| 30 |
-
"0",
|
| 31 |
-
]
|
| 32 |
reference_path = [
|
| 33 |
"https://cdn.openai.com/tmp/s/interp/d0.mp4",
|
| 34 |
None,
|
| 35 |
"assets/images/condition/wave.png",
|
| 36 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# Define model
|
| 39 |
model = dict(
|
| 40 |
type="STDiT2-XL/2",
|
| 41 |
-
from_pretrained=
|
| 42 |
input_sq_size=512,
|
| 43 |
qk_norm=True,
|
| 44 |
-
|
| 45 |
enable_layernorm_kernel=True,
|
| 46 |
)
|
| 47 |
vae = dict(
|
|
|
|
| 14 |
|
| 15 |
loop = 2
|
| 16 |
condition_frame_length = 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
reference_path = [
|
| 18 |
"https://cdn.openai.com/tmp/s/interp/d0.mp4",
|
| 19 |
None,
|
| 20 |
"assets/images/condition/wave.png",
|
| 21 |
]
|
| 22 |
+
# valid when reference_path is not None
|
| 23 |
+
# (loop id, ref id, ref start, length, target start)
|
| 24 |
+
mask_strategy = [
|
| 25 |
+
"0,0,0,0,8,0.3",
|
| 26 |
+
None,
|
| 27 |
+
"0",
|
| 28 |
+
]
|
| 29 |
|
| 30 |
# Define model
|
| 31 |
model = dict(
|
| 32 |
type="STDiT2-XL/2",
|
| 33 |
+
from_pretrained=None,
|
| 34 |
input_sq_size=512,
|
| 35 |
qk_norm=True,
|
| 36 |
+
enable_flashattn=True,
|
| 37 |
enable_layernorm_kernel=True,
|
| 38 |
)
|
| 39 |
vae = dict(
|
configs/opensora-v1-1/inference/sample.py
CHANGED
|
@@ -7,10 +7,10 @@ multi_resolution = "STDiT2"
|
|
| 7 |
# Define model
|
| 8 |
model = dict(
|
| 9 |
type="STDiT2-XL/2",
|
| 10 |
-
from_pretrained=
|
| 11 |
input_sq_size=512,
|
| 12 |
qk_norm=True,
|
| 13 |
-
|
| 14 |
enable_layernorm_kernel=True,
|
| 15 |
)
|
| 16 |
vae = dict(
|
|
|
|
| 7 |
# Define model
|
| 8 |
model = dict(
|
| 9 |
type="STDiT2-XL/2",
|
| 10 |
+
from_pretrained=None,
|
| 11 |
input_sq_size=512,
|
| 12 |
qk_norm=True,
|
| 13 |
+
enable_flashattn=True,
|
| 14 |
enable_layernorm_kernel=True,
|
| 15 |
)
|
| 16 |
vae = dict(
|
configs/opensora-v1-1/train/benchmark.py
CHANGED
|
@@ -65,7 +65,7 @@ model = dict(
|
|
| 65 |
from_pretrained=None,
|
| 66 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 67 |
qk_norm=True,
|
| 68 |
-
|
| 69 |
enable_layernorm_kernel=True,
|
| 70 |
)
|
| 71 |
vae = dict(
|
|
|
|
| 65 |
from_pretrained=None,
|
| 66 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 67 |
qk_norm=True,
|
| 68 |
+
enable_flashattn=True,
|
| 69 |
enable_layernorm_kernel=True,
|
| 70 |
)
|
| 71 |
vae = dict(
|
configs/opensora-v1-1/train/image.py
CHANGED
|
@@ -29,7 +29,7 @@ model = dict(
|
|
| 29 |
from_pretrained=None,
|
| 30 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 31 |
qk_norm=True,
|
| 32 |
-
|
| 33 |
enable_layernorm_kernel=True,
|
| 34 |
)
|
| 35 |
vae = dict(
|
|
|
|
| 29 |
from_pretrained=None,
|
| 30 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 31 |
qk_norm=True,
|
| 32 |
+
enable_flashattn=True,
|
| 33 |
enable_layernorm_kernel=True,
|
| 34 |
)
|
| 35 |
vae = dict(
|
configs/opensora-v1-1/train/stage1.py
CHANGED
|
@@ -41,7 +41,7 @@ model = dict(
|
|
| 41 |
from_pretrained=None,
|
| 42 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 43 |
qk_norm=True,
|
| 44 |
-
|
| 45 |
enable_layernorm_kernel=True,
|
| 46 |
)
|
| 47 |
vae = dict(
|
|
|
|
| 41 |
from_pretrained=None,
|
| 42 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 43 |
qk_norm=True,
|
| 44 |
+
enable_flashattn=True,
|
| 45 |
enable_layernorm_kernel=True,
|
| 46 |
)
|
| 47 |
vae = dict(
|
configs/opensora-v1-1/train/stage2.py
CHANGED
|
@@ -43,7 +43,7 @@ model = dict(
|
|
| 43 |
from_pretrained=None,
|
| 44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 45 |
qk_norm=True,
|
| 46 |
-
|
| 47 |
enable_layernorm_kernel=True,
|
| 48 |
)
|
| 49 |
vae = dict(
|
|
|
|
| 43 |
from_pretrained=None,
|
| 44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 45 |
qk_norm=True,
|
| 46 |
+
enable_flashattn=True,
|
| 47 |
enable_layernorm_kernel=True,
|
| 48 |
)
|
| 49 |
vae = dict(
|
configs/opensora-v1-1/train/stage3.py
CHANGED
|
@@ -43,7 +43,7 @@ model = dict(
|
|
| 43 |
from_pretrained=None,
|
| 44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 45 |
qk_norm=True,
|
| 46 |
-
|
| 47 |
enable_layernorm_kernel=True,
|
| 48 |
)
|
| 49 |
vae = dict(
|
|
|
|
| 43 |
from_pretrained=None,
|
| 44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 45 |
qk_norm=True,
|
| 46 |
+
enable_flashattn=True,
|
| 47 |
enable_layernorm_kernel=True,
|
| 48 |
)
|
| 49 |
vae = dict(
|
configs/opensora-v1-1/train/video.py
CHANGED
|
@@ -31,7 +31,7 @@ model = dict(
|
|
| 31 |
from_pretrained=None,
|
| 32 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 33 |
qk_norm=True,
|
| 34 |
-
|
| 35 |
enable_layernorm_kernel=True,
|
| 36 |
)
|
| 37 |
vae = dict(
|
|
|
|
| 31 |
from_pretrained=None,
|
| 32 |
input_sq_size=512, # pretrained model is trained on 512x512
|
| 33 |
qk_norm=True,
|
| 34 |
+
enable_flashattn=True,
|
| 35 |
enable_layernorm_kernel=True,
|
| 36 |
)
|
| 37 |
vae = dict(
|
configs/opensora/inference/16x256x256.py
CHANGED
|
@@ -7,7 +7,7 @@ model = dict(
|
|
| 7 |
type="STDiT-XL/2",
|
| 8 |
space_scale=0.5,
|
| 9 |
time_scale=1.0,
|
| 10 |
-
|
| 11 |
enable_layernorm_kernel=True,
|
| 12 |
from_pretrained="PRETRAINED_MODEL",
|
| 13 |
)
|
|
|
|
| 7 |
type="STDiT-XL/2",
|
| 8 |
space_scale=0.5,
|
| 9 |
time_scale=1.0,
|
| 10 |
+
enable_flashattn=True,
|
| 11 |
enable_layernorm_kernel=True,
|
| 12 |
from_pretrained="PRETRAINED_MODEL",
|
| 13 |
)
|
configs/opensora/inference/16x512x512.py
CHANGED
|
@@ -7,7 +7,7 @@ model = dict(
|
|
| 7 |
type="STDiT-XL/2",
|
| 8 |
space_scale=1.0,
|
| 9 |
time_scale=1.0,
|
| 10 |
-
|
| 11 |
enable_layernorm_kernel=True,
|
| 12 |
from_pretrained="PRETRAINED_MODEL",
|
| 13 |
)
|
|
|
|
| 7 |
type="STDiT-XL/2",
|
| 8 |
space_scale=1.0,
|
| 9 |
time_scale=1.0,
|
| 10 |
+
enable_flashattn=True,
|
| 11 |
enable_layernorm_kernel=True,
|
| 12 |
from_pretrained="PRETRAINED_MODEL",
|
| 13 |
)
|
configs/opensora/inference/64x512x512.py
CHANGED
|
@@ -7,7 +7,7 @@ model = dict(
|
|
| 7 |
type="STDiT-XL/2",
|
| 8 |
space_scale=1.0,
|
| 9 |
time_scale=2 / 3,
|
| 10 |
-
|
| 11 |
enable_layernorm_kernel=True,
|
| 12 |
from_pretrained="PRETRAINED_MODEL",
|
| 13 |
)
|
|
|
|
| 7 |
type="STDiT-XL/2",
|
| 8 |
space_scale=1.0,
|
| 9 |
time_scale=2 / 3,
|
| 10 |
+
enable_flashattn=True,
|
| 11 |
enable_layernorm_kernel=True,
|
| 12 |
from_pretrained="PRETRAINED_MODEL",
|
| 13 |
)
|
configs/opensora/train/16x256x256-mask.py
CHANGED
|
@@ -20,7 +20,7 @@ model = dict(
|
|
| 20 |
space_scale=0.5,
|
| 21 |
time_scale=1.0,
|
| 22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
| 23 |
-
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
mask_ratios = {
|
|
|
|
| 20 |
space_scale=0.5,
|
| 21 |
time_scale=1.0,
|
| 22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
| 23 |
+
enable_flashattn=True,
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
mask_ratios = {
|
configs/opensora/train/16x256x256-spee.py
CHANGED
|
@@ -20,7 +20,7 @@ model = dict(
|
|
| 20 |
space_scale=0.5,
|
| 21 |
time_scale=1.0,
|
| 22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
| 23 |
-
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
mask_ratios = {
|
|
|
|
| 20 |
space_scale=0.5,
|
| 21 |
time_scale=1.0,
|
| 22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
| 23 |
+
enable_flashattn=True,
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
mask_ratios = {
|
configs/opensora/train/16x256x256.py
CHANGED
|
@@ -20,7 +20,7 @@ model = dict(
|
|
| 20 |
space_scale=0.5,
|
| 21 |
time_scale=1.0,
|
| 22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
| 23 |
-
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
vae = dict(
|
|
|
|
| 20 |
space_scale=0.5,
|
| 21 |
time_scale=1.0,
|
| 22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
| 23 |
+
enable_flashattn=True,
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
vae = dict(
|
configs/opensora/train/16x512x512.py
CHANGED
|
@@ -20,7 +20,7 @@ model = dict(
|
|
| 20 |
space_scale=1.0,
|
| 21 |
time_scale=1.0,
|
| 22 |
from_pretrained=None,
|
| 23 |
-
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
vae = dict(
|
|
|
|
| 20 |
space_scale=1.0,
|
| 21 |
time_scale=1.0,
|
| 22 |
from_pretrained=None,
|
| 23 |
+
enable_flashattn=True,
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
vae = dict(
|
configs/opensora/train/360x512x512.py
CHANGED
|
@@ -26,7 +26,7 @@ model = dict(
|
|
| 26 |
space_scale=1.0,
|
| 27 |
time_scale=2 / 3,
|
| 28 |
from_pretrained=None,
|
| 29 |
-
|
| 30 |
enable_layernorm_kernel=True,
|
| 31 |
enable_sequence_parallelism=True, # enable sq here
|
| 32 |
)
|
|
|
|
| 26 |
space_scale=1.0,
|
| 27 |
time_scale=2 / 3,
|
| 28 |
from_pretrained=None,
|
| 29 |
+
enable_flashattn=True,
|
| 30 |
enable_layernorm_kernel=True,
|
| 31 |
enable_sequence_parallelism=True, # enable sq here
|
| 32 |
)
|
configs/opensora/train/64x512x512-sp.py
CHANGED
|
@@ -20,7 +20,7 @@ model = dict(
|
|
| 20 |
space_scale=1.0,
|
| 21 |
time_scale=2 / 3,
|
| 22 |
from_pretrained=None,
|
| 23 |
-
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
enable_sequence_parallelism=True, # enable sq here
|
| 26 |
)
|
|
|
|
| 20 |
space_scale=1.0,
|
| 21 |
time_scale=2 / 3,
|
| 22 |
from_pretrained=None,
|
| 23 |
+
enable_flashattn=True,
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
enable_sequence_parallelism=True, # enable sq here
|
| 26 |
)
|
configs/opensora/train/64x512x512.py
CHANGED
|
@@ -20,7 +20,7 @@ model = dict(
|
|
| 20 |
space_scale=1.0,
|
| 21 |
time_scale=2 / 3,
|
| 22 |
from_pretrained=None,
|
| 23 |
-
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
vae = dict(
|
|
|
|
| 20 |
space_scale=1.0,
|
| 21 |
time_scale=2 / 3,
|
| 22 |
from_pretrained=None,
|
| 23 |
+
enable_flashattn=True,
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
vae = dict(
|
configs/pixart/train/16x256x256.py
CHANGED
|
@@ -20,7 +20,7 @@ model = dict(
|
|
| 20 |
space_scale=0.5,
|
| 21 |
time_scale=1.0,
|
| 22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
| 23 |
-
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
vae = dict(
|
|
|
|
| 20 |
space_scale=0.5,
|
| 21 |
time_scale=1.0,
|
| 22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
| 23 |
+
enable_flashattn=True,
|
| 24 |
enable_layernorm_kernel=True,
|
| 25 |
)
|
| 26 |
vae = dict(
|
configs/pixart/train/1x512x512.py
CHANGED
|
@@ -21,7 +21,7 @@ model = dict(
|
|
| 21 |
time_scale=1.0,
|
| 22 |
no_temporal_pos_emb=True,
|
| 23 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
| 24 |
-
|
| 25 |
enable_layernorm_kernel=True,
|
| 26 |
)
|
| 27 |
vae = dict(
|
|
|
|
| 21 |
time_scale=1.0,
|
| 22 |
no_temporal_pos_emb=True,
|
| 23 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
| 24 |
+
enable_flashattn=True,
|
| 25 |
enable_layernorm_kernel=True,
|
| 26 |
)
|
| 27 |
vae = dict(
|
configs/pixart/train/64x512x512.py
CHANGED
|
@@ -21,7 +21,7 @@ model = dict(
|
|
| 21 |
space_scale=1.0,
|
| 22 |
time_scale=2 / 3,
|
| 23 |
from_pretrained=None,
|
| 24 |
-
|
| 25 |
enable_layernorm_kernel=True,
|
| 26 |
)
|
| 27 |
vae = dict(
|
|
|
|
| 21 |
space_scale=1.0,
|
| 22 |
time_scale=2 / 3,
|
| 23 |
from_pretrained=None,
|
| 24 |
+
enable_flashattn=True,
|
| 25 |
enable_layernorm_kernel=True,
|
| 26 |
)
|
| 27 |
vae = dict(
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
xformers
|
| 2 |
transformers
|
|
|
|
| 3 |
git+https://github.com/hpcaitech/Open-Sora.git#egg=opensora
|
|
|
|
|
|
|
| 1 |
transformers
|
| 2 |
+
xformers
|
| 3 |
git+https://github.com/hpcaitech/Open-Sora.git#egg=opensora
|