Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
import gradio as gr | |
# Load the base model and tokenizer | |
base_model_path = "NousResearch/Llama-2-7b-chat-hf" # Path to the base model | |
tokenizer_path = "BoburAmirov/test-llama-uz" # Path to the tokenizer | |
# Load the tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "right" | |
# Load the base model | |
base_model = AutoModelForCausalLM.from_pretrained(base_model_path) | |
# Load the adapter | |
adapter_path = "BoburAmirov/test-llama-uz/adapter_model.safetensors" | |
model = PeftModel.from_pretrained(base_model, adapter_path) | |
# Set the model to evaluation mode | |
model.eval() | |
def generate_text(input_prompt): | |
# Tokenize the input | |
input_ids = tokenizer(input_prompt, return_tensors="pt") | |
# Generate text | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids, | |
max_length=200, # Adjust max_length as needed | |
num_return_sequences=1, | |
temperature=0.7, # Control randomness | |
top_p=0.9, # Control diversity | |
top_k=50, # Control diversity | |
) | |
# Decode the generated text | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."), | |
outputs="text", | |
title="Text Generation with LLaMA-2", | |
description="Enter a prompt and get generated text from the fine-tuned LLaMA-2 model." | |
) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
interface.launch(server_name="0.0.0.0", server_port=7860) | |