File size: 1,851 Bytes
ed16dde
fad1354
 
 
ed16dde
 
 
fad1354
ed16dde
fad1354
 
 
 
 
ed16dde
fad1354
b2f2152
fad1354
 
b2f2152
 
fad1354
b2f2152
fad1354
 
 
b2f2152
ed16dde
 
fad1354
 
 
ed16dde
 
fad1354
ed16dde
fad1354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed16dde
fad1354
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr
from huggingface_hub import InferenceClient, OAuthToken

MODEL_ID = "Bocklitz-Lab/lit2vec-tldr-bart-model"


def respond(
    message: str,
    history: list[dict[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    hf_token: OAuthToken | None,
):
    """Summarise a chemistry abstract with the HF Inference API."""
    client = InferenceClient(
        model=MODEL_ID,
        token=None if hf_token is None else hf_token.token,
    )

    prompt = f"{system_message.strip()}\n\n{message.strip()}"

    # stream=False → one-shot; stream=True → token generator
    for chunk in client.text_generation(
        prompt,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        stream=True,            # change to False if you prefer
    ):
        yield chunk


with gr.Blocks(title="🧪 Chemistry Abstract Summariser") as demo:
    with gr.Sidebar():
        login_btn = gr.LoginButton()

    chatbot = gr.ChatInterface(
        respond,
        chatbot=gr.Chatbot(type="messages"),
        textbox=gr.Textbox(
            placeholder="Paste abstract of a chemistry paper…",
            lines=8,
        ),
        additional_inputs=[
            gr.Textbox(
                value="Summarise this chemistry paper abstract:",
                label="System message",
            ),
            gr.Slider(16, 1024, value=256, step=8, label="Max new tokens"),
            gr.Slider(0.1, 4.0, value=0.7,  step=0.1, label="Temperature"),
            gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
            login_btn,                          # 👈 passes OAuthToken to respond()
        ],
        type="messages",
    )

if __name__ == "__main__":
    demo.launch()        # Hugging Face Spaces picks this up automatically