File size: 1,605 Bytes
ed16dde b2f2152 ed16dde b2f2152 ed16dde b2f2152 ed16dde b2f2152 ed16dde b2f2152 ed16dde b2f2152 ed16dde b2f2152 ed16dde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
from huggingface_hub import InferenceClient
def respond(
message,
history: list[dict[str, str]],
system_message,
max_tokens,
temperature,
top_p,
hf_token: gr.OAuthToken,
):
"""
Uses the Hugging Face InferenceClient with a token (OAuth) to access the model.
This works with any text-to-text model like BART, T5, Pegasus, etc.
"""
client = InferenceClient(
token=hf_token.token,
model="Bocklitz-Lab/lit2vec-tldr-bart-model"
)
# Construct input text (optionally prepend system message)
full_input = f"{system_message.strip()}\n\n{message.strip()}"
# Generate full response in one call
response = client.text_generation(
full_input,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=False # Set to True for token streaming
)
yield response
chatbot = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(),
textbox=gr.Textbox(placeholder="Enter text to summarize...", container=False, scale=7),
additional_inputs=[
gr.Textbox(value="Summarize the following scientific text.", label="System message"),
gr.Slider(minimum=16, maximum=1024, value=256, step=8, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
with gr.Blocks() as demo:
with gr.Sidebar():
gr.LoginButton()
chatbot.render()
if __name__ == "__main__":
demo.launch()
|